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Abstract

Co-occurrence Filter (CoF) is a boundary preserving fil-
ter. It is based on the Bilateral Filter (BF) but instead of
using a Gaussian on the range values to preserve edges
it relies on a co-occurrence matrix. Pixel values that co-
occur frequently in the image (i.e., inside textured regions)
will have a high weight in the co-occurrence matrix. This,
in turn, means that such pixel pairs will be averaged and
hence smoothed, regardless of their intensity differences.
On the other hand, pixel values that rarely co-occur (i.e.,
across texture boundaries) will have a low weight in the
co-occurrence matrix. As a result, they will not be averaged
and the boundary between them will be preserved. The CoF
therefore extends the BF to deal with boundaries, not just
edges. It learns co-occurrences directly from the image. We
can achieve various filtering results by directing it to learn
the co-occurrence matrix from a part of the image, or a dif-
ferent image. We give the definition of the filter, discuss how
to use it with color images and show several use cases.

1. Introduction
There is a long and rich history of edge-preserving filters.

These filters smooth the image while preserving its edges.
This begs the question: what is an edge? The overwhelming
answer in edge-preserving filter literature is that an edge is
a sharp discontinuity in intensity value.

Recent edge detectors give a different answer to this
question. Instead of focusing on edge detection, they focus
on boundary detection where the goal is to detect bound-
aries between textures. That is, edges within texture should
be ignored while edges that serve as boundaries between
textures should be marked.

Our goal is to design a boundary preserving filter that
will smooth edges within a textured region and not across
texture boundaries.

Co-occurrence Filter (CoF) is the happy marriage of
boundary detection and edge preserving filters. It combines
ideas from the edge detection literature directly into the fil-
tering process. As a result, there is no need for a two-stage

solution.
We start with the Bilateral Filter (BF), which is a well

known edge-preserving filter. The output of the BF at a ref-
erence pixel is a weighted average of pixels in its neighbor-
hood. The BF mixes pixel values based on two Gaussians.
The spatial Gaussian assigns weight based on proximity
in the image plane and the range Gaussian assigns weight
based on similarity in appearance. As a result, nearby pix-
els with small intensity differences will mix, while pixels
that are far away or with large intensity difference will not.
This gives the BF its edge-preserving power.

Because of the way it is defined, the BF can not distin-
guish between edges within a texture and edges between
textures. This is where Co-occurrence information steps
in. The Co-occurrence Filter (CoF), that we propose, re-
places the range Gaussian filter of the BF with a normalized
co-occurrence matrix. Pixel values that co-occur frequently
(i.e., in a textured region) will have a high weight and will
therefore mix together. This way texture will be smoothed.
On the other hand, pixel values that rarely co-occur (i.e., on
the boundary between textures) will have a low weight and
will therefore not mix. This way smoothing will not occur
across texture boundaries.

Figure 1 shows that CoF is about texture and not about
edge strength. The input image consists of two regions
(dark on the left side and light on the right side) corrupted
by white Gaussian noise. In addition, there are several
patches with checkerboard pattern spread across the image
plane. The intensity difference between the two regions
is lower than that of the checkerboard. The co-occurrence
matrix computed from that image gives high weight to the
Gaussian noise and the checkerboard texture because they
are prevalent in the image. It gives a low weight to the
boundary between the two regions of the image, because
it is quite a rare phenomenon. CoF filters out the noise and
smooths out the checkerboard patches while keeping sharp
boundaries between the different textures.

The proposed filter enjoys a couple of advantages. First,
there is no parameter tweaking, as it collects co-occurrence
information directly from the image. Second, the user
can specify from where the filter should collect the co-
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Figure 1. CoF is not about edge strength: (Left) input image with zoom-ins. (Center) Co-occurrence matrix with zoom-ins. The
two large Gaussian ”‘bumps”’ correspond to the two regions in the image. The size of the Gaussian correlates with the amount of noise
added to the image. There is a red dot (i.e., high weight) at the four corners of the co-occurrence matrix - this captures the checkerboard
black-white co-occurrences. (Right) CoF result with zoom-ins. The Gaussian noise is removed, the checkerboards are smoothed and the
sharp edge between the two regions is preserved.

occurrence data. For example, the filter can collect data
from the whole image, part of it or from a different image
altogether.

Extending co-occurrence matrices to deal with color im-
ages is not trivial because the co-occurrence space becomes
prohibitively large. Simply quantizing RGB values intro-
duces strong aliasing artifacts and we develop an approxi-
mation scheme that lets us handle color images gracefully.
The resulting filter is fast in practice and can be used in dif-
ferent scenarios and for various artistic effects.

2. Related Work

The bilateral filter (BF) was rediscovered several times
by Aurich and Weule [2], Smith and Brady [21], who in-
troduced the SUSAN filter, and Tomasi and Manduchi [22]
who gave BF its name. It was later popularized by Durand
and Dorsey [22]. For a recent survey of BF see [16]. [12]
learns a high dimensional linear filter. Thus it generalizes
the bilateral filter, which can be viewed as a Gaussian filter
in high dimensions.

The BF is just one of a large number of edge-preserving
filters that include Anisotropic Diffusion [18], guided im-
age filter [9], or the domain transform filter [7] to name a
few. These filters smooth images by averaging neighboring
pixels. The weights are determined based on similarity in
appearance and proximity in location. Correctly determin-
ing these weights determines what parts of the image should
be smoothed and where smoothing should stop.

Joint/Cross BF [4,19] recovers weights on one image and
applies it to another image. This concept was taken one step
further with the guided image filter [9] where an image is
assumed to be a locally linear model of the guidance image.

The Rolling Guidance Filter [26] uses the guidance im-
age in a novel way leading to a scale-aware filter. That filter
can be tuned to smooth out image structure at a particular

scale by successively applying the BF with a properly se-
lected guidance image.

[14] solves a joint filtering problem. Instead of pre-
designing the filter, it trains two CNNs that extract features
from the filtered and the guidance images.

The WLS method [6] treats edge preserving filtering as a
weighted least square problem where the goal is to approxi-
mate the input image anywhere, except at sharp edges. The
Euclidean distance in WLS can be replaced by the diffu-
sion distance [5]. The diffusion distance between two points
equals the difference between the probabilities of random
walkers to start at both points and end up in the same point.
To approximate this, [5] uses the dominant eigenvectors of
the affinity matrix, dubbed diffusion maps. Diffusion maps
can be efficiently calculated using the Naystöm method.

Similarly to WLS, L0 smoothing [23] approximates the
input image with a piecewise constant image by controlling,
through L0 regularization, the number of edges allowed at
the output image. Xi et al. [24] assumes that an image is
composed of structure and texture. Their goal is to separate
the two. To achieve that, they measure the relative total
variation per patch and use it as a smoothness term for an
optimization problem.

In the field of edge detection there has been great
progress in recent years. This progress can be quantita-
tively measured on the Berkeley Segmentation Data Set
[15]. Some of the leading methods include Normalized Cuts
and its derivative work [1, 20] that treat the problem as a
spectral clustering problem where affinities between pixels
are trained offline. Structured Edge Detector [3] trains a
structured random forest on a large training set and then ap-
plies it to detect true edges in the query image.

Semantic filtering [25], uses the edges of [3] to modify
the distances in the transformed domain of [16]. It does
so by re-weighting the distance between neighboring pixels
according to its confidence in the edge between them. We,



in contrast, rely on pixel co-occurrences. This gives us the
freedom to determine from where to learn co-occurrences.

Co-occurrences were recently used for boundary detec-
tion [11]. They collect co-occurrence statistics (termed
Pointwise Mutual Information, or PMI, in their paper) to
learn the probability of boundaries in an image and use that
information to compute the affinities required by spectral
clustering. The method performs very well on the Berkeley
Segmentation Data Set [15].

Co-occurrence information was first introduced by Har-
alick et al. [8]. They proposed 14 statistical measures that
can be extracted from the co-occurrence matrix and be used
to measure similarity between textures. Later, color cor-
relograms, that also rely on co-occurrence data, were used
by Huang et al. [10] as image descriptor within an image
retrieval system. Finally, co-occurrence statistics was also
used with graph cuts by Ladicky et al. [13] where the goal
was to solve a label assignment problem such that the labels
will satisfy some given co-occurrence matrix.

3. Co-occurrence Filter

Linear filters take the form:

Jp =

∑
q∈N(p) w(p, q) · Iq∑
q∈N(p) w(p, q)

(1)

where Jp and Iq are output and input pixel values, p and q
are pixel indices, and w(p, q) is the weight of the contribu-
tion of pixel q to the output of pixel p. We consider gray
scale images for now. Color images will be discussed later.

In Gaussian filter, w(p, q) takes the form of:

w(p, q) = exp(−d(p, q)
2

2 · σs2
) , Gσs(p, q) (2)

where d(p, q) is the Euclidean distance, in the image plane,
between pixels p and q, and σs is a user specified parameter.
Since w(p, q) does not depend on image content, the filter
is shift invariant.

In the Bilateral filter, w(p, q) takes the form of:

w(p, q) = Gσs
(p, q) · exp(−|Ip − Iq|

2

2 · σr2
) (3)

where σr is a user specified parameter and in this case
w(p, q) depends on image content and the filter is shift-
variant.

3.1. Definition

We define the Co-occurrence filter to be:

Jp =

∑
q∈N(p)Gσs

(p, q) ·M(Ip, Iq) · Iq∑
q∈N(p)Gσs

(p, q) ·M(Ip, Iq)
(4)

(a) (b) (c) (d)

Figure 2. Role of context in CoF: (a) input image, (b) BF, (c)
CoF, (d) Zoom ins. The BF filters the top and bottom images the
same way. The CoF, on the other hand, filters them differently. The
zoom ins shows the weight assigned to pixels when filtering the
center pixel. Observe how the weights of CoF change depending
on the content of the image.

Which means that w(p, q) takes the form of:

w(p, q) = Gσs(p, q) ·M(Ip, Iq) (5)

whereM is a 256×256 matrix (in the case of the usual gray
scale images) that is given by:

M(a, b) =
C(a, b)

h(a)h(b)
. (6)

In words, M(a, b) is based on the co-occurrence matrix
C(a, b) that counts the co-occurrence of values a and b di-
vided by their frequencies (i.e., the histogram of pixel val-
ues), h(a) and h(b), in the image. By construction, M is
symmetric. To prevent division by zero we add a small con-
stant to the denominator. Formally:

C(a, b) =
∑
p,q

exp(−d(p, q)
2

2 · σ2
)[Ip = a][Iq = b] (7)

and
h(a) =

∑
p

[Ip = a] (8)

where σ is a user specified parameter and [·] equals 1 if the
expression inside the brackets is true and 0 otherwise.

The co-occurrence matrix integrates all co-occurrences
across all distances, weighted by their distance, in the image
plane. This weight captures our belief that co-occurrences
that occur far away carry a lower weight. In theory, we
should sample all pixel pairs in the image plane. In practice,
we consider only pixel pairs within a window. This differs
from the usual gray-level co-occurrence matrix (e.g., [8])
that is defined for a particular distance between pairs of pix-
els.

3.2. Properties

Analyzing equation 7, we observe that when σ goes to 0,
C(a, b) converges to a diagonal matrix. This is because the
weight for every pair of pixels p and q goes to zero, except



(a) (b) (c) (d) (e)

Figure 3. Collecting co-occurrence statistics: Co-occurrence
statistics can be collected from different parts of the image. (a)
input image contaminated with white Gaussian noise. Bottom part
of the image shows difference between input image and clean im-
age (not shown). (b) result of CoF when collecting statistics from
all of the image (red dashed rectangle in (a)). (c) result of CoF
when collecting statistics from one region (yellow dashed rectan-
gle in (a)). That particular region is smoothed out, the rest of the
image is not. (d) result of CoF when collecting statistics along the
edge between two regions (green dashed rectangle in (a)). That
particular edge between regions is smoothed out, as well as the
two neighboring regions, the rest of the image is not. (e) The co-
occurrence matrices corresponding to (b-d), from top to bottom,
respectively.

for the case p = q. Plugging this back into equation 6 we
have that M is also a diagonal matrix, with elements on the
diagonal taking the form:

M(a, a) =
C(a, a)

h(a)h(a)
=

h(a)

h(a)2
=

1

h(a)
(9)

As a result, CoF becomes a delta function that does not
change the input image at all. This is because each pixel
is only affected by pixels with the same intensity value.

At the other extreme, when σ goes to∞, then C(a, b) =
h(a)h(b). This is because the weight is equal for all pairs
of pixels p and q, and C(a, b) is simply the product of the
frequencies of values a and b. Plugging this back into equa-
tion 6 we have that:

M(a, b) =
C(a, b)

h(a)h(b)
=
h(a)h(b)

h(a)h(b)
= 1. (10)

That is, the matrix M converges to the all one matrix, and
the CoF becomes the Gaussian filter. The bilateral filter can
be constructed manually as a band-diagonal matrix M .

Figure 2 demonstrates the importance of context in CoF.
The top row shows an image of a lone white star against a
dark background. In this case, CoF and BF behave simi-
larly. They preserve the sharp intensity difference between
the white pixels of the star and the black pixels of the back-
ground. The bottom row show a galaxy of stars. The BF
is completely agnostic to the presence of multiple stars in
the image. CoF, on the other hand, behaves quite differ-
ently. Because there are multiple stars, the co-occurrence
matrix picks up the co-occurrences of black and white pix-
els and the filtered image shows a milky result where black
and white pixels are mixed. We emphasize that we did not
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Figure 4. Effects of quantization: (a) CoF on image with 256
gray values. (b) CoF on image with 32 gray values with hard clus-
ter assignment. (c) CoF on image with 32 gray values with soft
cluster assignment. (d) 1D profile of a particular row. The bottom
half of each image shows the difference between the filtered image
and the clean input image. The non-quantized result of (a) gives
the exact solution. Soft quantization (c) gives better results than
(b). See text for more details.

change any of the parameters of CoF at all. Everything is
dictated by the data.

Figure 3 shows what happens when we pick different
parts of the image from which to collect co-occurrence data.
The input image consists of a sequence of step edges cor-
rupted with some white Gaussian noise. Collecting co-
occurrence data from all the image will lead CoF to filter out
the noise with minimal smoothing of the step edges. Col-
lecting co-occurrence statistics from part of one flat region
will smooth all that region but will keep noise and sharp
edges in other parts of the image intact. Finally, collecting
co-occurrence statistics from the vicinity of a step edge will
cause CoF to smooth out that particular step edge and the
two neighboring regions.

3.3. Guided CoF

So far we have assumed the input image is a gray scale
image. We now extend CoF to work on color images.

One can use equation (7) to calculate co-occurrence in
color space. This means constructing a 2563 × 2563 co-
occurrence matrix. This matrix is too large for practical
purposes. Moreover, the number of pixels in a typical image
is too small to properly sample that space. We therefore
quantize, using k-means, the pixel values of I to produce a
guidance image T . This solves both problems. The size of
the co-occurrence matrix of T is only k × k, where k is the
number of quantized values, and the number of pixels in T
is enough to properly sample this space.

Let MT denote the co-occurrence matrix of T . Then the
guided CoF filter, CoF(I,MT ), is given by:

Jp =

∑
q∈N(p)G(p, q)MT (Tp, Tq) · Ip∑
q∈N(p)G(p, q)MT (Tp, Tq)

(11)

The introduction of clustering changed equation (4) into
equation (11). We collect co-occurrence statistics from T
and use it to guide the filtering, hence we denote it the guid-
ance image. This resembles the guided version of the bilat-
eral filter, where the filtered image differs from the image



that is used to compute color distances. The next subsec-
tion discusses how to collect MT .

3.3.1 Quantized Co-occurrences

Let {τl}kl=1 denote k clusters after clustering pixel values.
Then a straightforward way to extend equation 7 is to let:

Chard(τa, τb) =
∑
p,q

exp(−d(p, q)
2

2 · σ2
)[Tp = a][Tq = b]

(12)
where τa and τb denote two clusters, and Tp = a means
that pixel p belongs to cluster τa. We term this approach
hard clustering, because each pixel is assigned to its closest
cluster center.

The time complexity of computing co-occurrences us-
ing hard clustering is O(n · r2), where n is the number
of pixels in the image and r is the size of the window.
This is because at each pixel location we must compute co-
occurrence statistics for r2 pixel pairs. In theory r = n, in
practice we use a small window (r = 15× 15).

However, such an approach introduces severe artifacts.
These artifacts are created because pixel values that are
nearby in the original space might be mapped to two dif-
ferent clusters in the quantization step.

Figure 4 illustrates the problem on a gray scale image.
The left image shows a simple ramp image with gray scale
values ranging from 0 to 255. Running CoF on it will
leave the image unchanged because each intensity value co-
occurs with the same number of intensity values above and
below it. Collecting co-occurrence statistics using equa-
tion 12 introduces noticeable artifacts (see Figure 4(b)).

To fix that, we relax the assignment of a pixel value to a
single cluster. Instead, we use soft assignment. We assign
a probability for the pixel value to belong to each of the
clusters, using the following:

Csoft(τa, τb) =
∑
p,q

exp(−d(p, q)
2

2 · σ2
)Pr(p ∈ τa)Pr(q ∈ τb)

(13)
Unfortunately, moving from hard to soft assignment

comes at a high computational cost. The cost of collect-
ing co-occurrence statistics using soft assignment is O(n ·
r2 · k2) operations, as opposed to the O(n · r2) of hard as-
signment.

To overcome this, let Pr(p ∈ τ) = K(Ip, τ), where K
is a kernel function (i.e., a Gaussian):

K(a, b) =
1

Z
exp(−||a− b||

2

2σ2
r

) (14)

for some user specified parameter σr and normalization
constant Z.

In words, K measures the probability of assigning pixel
p to cluster τ based on the distance, in appearance space,
between pixel value Ip and cluster center τ . We now make
the approximation that Pr(p ∈ τ) ≈ K(τp, τ). That is, the
distance between Ip and τ is approximated by the distance
between τp and τ , where τp is the cluster center closest to
Ip. In the supplemental, we derive the following relation:

Csoft(τa, τb) ≈
∑
k1,k2

K(τa, τk1)·K(τb, τk2)Chard(τk1 , τk2)

(15)
The difference between Equation 13 and Equation 15 is

that instead of working with all pixel values we only work
with cluster centers. Using this approximation, the time
complexity of collecting co-occurrence statistics using soft
assignment drops from O(n · r2 · k2) to O(n · r2 + k4).
For a typical image of size 512 × 512 we have (n = 218,
r = 24 × 24, and k = 28), which leads to a speed up of
about 210 = 1024, (i.e., three orders of magnitude). Fig-
ure 4(c) shows the result of the soft assignment approach
with our approximation. Observe how the staircase effect is
greatly reduced.

Algorithm 1 provides an outline of our method. In
words, given a color image we first cluster its pixel values
and use the quantized image, T , to calculate the hard quan-
tization co-occurrence matrix, Chard. This takes O(n · r2).
Once we have Chard, we use cluster distances to approxi-
mate soft co-occurrence matrix, Csoft, that takes an addi-
tional O(k4). We divide Csoft by the cluster probabilities
and get the normalized co-occurrence matrix, MT . Finally,
we use this MT to filter the original image, I .

Algorithm 1 Guided Co-occurrence Filtering
Input image: I
Filtered image: J

1: [T, cc]← Quantize( I ) % using k-means
2: Chard← Compute Co-occurrence( T ) % using equation(12)
3: Csoft← Hard2Soft( Chard, cc ) % using equation(15)
4: MT ← Cooc2PMI(Csoft, cc) % using equation(6)
5: J ← CoF( I,MT ) % using equation (11)

4. Results

In this section we discuss some implementation details
and demonstrate the performance of CoF. We conclude with
two applications: background bluring and image recoloring.

Throughout this section we have used the guided version
of the CoF filter, as described in section 3.3. For quantiza-
tion, we use K-means, over lab colors, with k = 32. To
speed up the clustering we sample the image on a regular
grid with a spacing of 10 pixels in both rows and columns.



input ws = 3 ws = 5 ws = 15

Figure 5. The effect of window size: We show the effect of
window size (ws), used when collecting co-occurrence statistics,
on the behavior of CoF. The larger the window, the stronger the
smoothing. The remaining edges stay sharp.

Input Zoom in Hard CoF Soft CoF

Figure 6. The effect of soft quantization: The red rectangle
zooms in on Barbara’s hand. The yellow rectangle zooms in
on an image filtered with the hard clustering variant of the Co-
occurrence filtered. The green rectangle zooms in on the soft clus-
tering variant. Results are shown after 5 iterations of CoF. Notice
how the quantization artifact on the hand disappear once we move
to the soft version.

For all the images, we collected co-occurrence over a win-
dow of 15 × 15, with σ2

s = 2 ·
√
(15) + 1. Unless ex-

plicitly mentioned, we used the same kernel for smoothing.
Collecting co-occurrences takes about 2 seconds for 1 MP
image. Filtering the image takes about 1.2 seconds 1. All
timing is for CPU implementation.

The first example, shown in Figure 5 shows the effects
of the window size on the filter. As expected, the larger the
window the larger are the objects that are smoothed by the
filter. In all cases, though, the boundaries between textures
remain sharp.

Figure 6 shows the importance of proper quantization.
Working with hard clustering introduces strong quantiza-
tion artifacts. Working with soft cluster assignment leads to
a much smoother result.

In Figure 6 we applied CoF multiple times. This raises
the question: how to apply CoF iteratively? There are two
ways to do that. Either by learning the co-occurrence statis-
tics once, at the beginning, which we term Iterative CoF (I-
CoF), or by learning the co-occurrence statistics after each
round, which we term Rolling CoF (R-CoF). In Figure 6 we
have used I-CoF.

Figure 7 shows the difference between I-CoF and R-CoF
after 10 iterations. As can be seen, I-CoF does a better job
of smoothing texture while preserving sharp boundaries be-
tween textures. For the rest of this paper we use I-CoF when
running CoF multiple times.

1Code will be released upon publication.

Input Iterative Rolling
Figure 7. Comparison of iterative vs. rolling CoF: iterative
(using the same M ), rolling (updating M after each iteration).

input 1, 3, and 10 iterations

0 1 2 3 4 5 6 7 8 9 10
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D

Figure 8. Applying CoF Iteratively: First row: shows the results
of applying CoF for 1, 3 and 10 itterations. Bottom figure shows
convergence rate (i.e., Mean-Squared-Difference, in intensity val-
ues, between successive iterations of the algorithm) on a semi-
logarithmic scale.

Figure 8 shows the result of the algorithm after 1, 3 and
10 iterations. It also shows the mean of per-pixel squared
differences between two iterations of the algorithm. As can
be seen, the algorithm quickly converges.

Figure 9 compares CoF with a number of edge preserv-
ing filters. Evaluating different filters is challenging be-
cause there is no agreed upon, objective error measure to
optimize for. We therefore, resort to subjective evaluation,
to illustrate the differences between CoF and each of them.
On the first row we compare against Domain Transform [7]
and Guided Image Filter [9]. Both methods provide plausi-
ble results on the hut’s roof. In addition, they enhance the
leaves’ colors, meaning red /green and yellow leaves will
become a smoother red, green or yellow. This is due to the
fact that both methods are edge preserving. CoF, on the
other hand, learns that red, yellow and green are part of a
texture and smooths them together. This doesn’t come at
the cost of smoothing across boundaries, see for example
how nicely it preserves the sharp boundary between the hut
and the leaves.

The second row compares CoF to L0 smoothing [23]
and the rolling guidance filter [26]. L0 performs a global



Input Domain Transform [7] Guided Image Filter [9] CoF

Input L0 Smoothing [23] Rolling Guided Filter [26] CoF

Input Edge Map [3] Semantic Filter [25] CoF

Input EV1, EV0.65&EV0.18 WLS+DM [5] CoF

Figure 9. Comparison to other Methods: The first row compares CoF against Domain Transform [7] and Guided Image Filter [9]. The
second row against L0 smoothing [23] and Rolling Guided Filter [26]. The third row against the Semantic Filter [25]. The last row against
WLS with diffusion distances [5].

smoothing operation that respects the strongest edges. One
of its greatest applications is in image simplification. It
works best for images with textures of modest gradients.
If the image includes a texture with abrupt changes, take for
example the pile of black olives in the center of the image,
L0 might wrongly respect some of the edges , and the tex-
ture will not be smoothed. Rolling Guidance Filter (RGF)
smooths texture up to a particular size. In this example we
choose the window size to match the largest olive. Indeed
it smoothed nicely all of the olives. However, that came at
the price of rounding the price signs. In addition, as the
edges of the leaves that are located between the piles are
smaller than the largest olive, RGF smoothed them out and
damaged their structure.

The third row compares CoF with Semantic filter [25].
Semantic filtering uses the edge map produced by SED [3]

to down-weight pixels that are not detected as edges. This
produces great results inside textures with small gradients,
see for example how nicely the trees are smoothed. How-
ever, in cases where the edge detector provide false edges,
the semantic filter fails, see for example the artifacts in the
middle of the sunflower field.

The forth row compares CoF to WLS enhanced with Dif-
fusion distance [5]. We present the first three eignvectors.
As can be seen, none of them cluster the black and white
strips of the Zebra together. CoF, on the other hand, man-
ages to fade the zebra into gray.

Figure 10 shows a number of potential applications of
CoF. See supplemental for more examples, details and com-
parisons.

Figure 10(a) shows the input image taken from a short
video clip [17]. On top of it, we show user supplied scrib-



(a) Input + Scribble (b) Mask (c) B&W CoF (d) FB CoF 20 frames

(e) CoF (f) FB CoF (g) Foreground (h) Background

Figure 10. Applications: A list of potential use cases for CoF. See text for details.

bles. Figure 10(e) shows the result of running CoF on the
image where the co-occurrence matrix was collected over
the entire image, without using the scribbles.

We next show how to use CoF for selective smooth-
ing. To do that, we first need to convert the scribbles into
a mask, so that we can collect sufficient statistics for the
foreground co-occurrence matrix MF and the background
co-occurrence matrix MB .

One way to do that is to use interactive segmentation. In-
stead, we show a different approach that is based solely on
CoF. Let S denote the sparse scribble image and compute
the mask L = CoF(S,MT ). Figure 10(b) shows the fil-
tered result, which we threshold to get the foreground mask.
This works because the scribble pixels belong to the fore-
ground and the co-occurrence matrix, computed from T ,
makes CoF mix them. Note that the mask L is not a perfect
segmentation of the image. It might have mislabeled pix-
els, but the goal of this step is simply to extend the support
of the scribbles. We found that it is better to miss a few
foreground pixels than include background pixels that will
distort the co-occurrence statistics. Once we have the mask
L we collect MF and MB . Figures 10(g) and 10(h) show
the result of running CoF on I with either MF or MB .

A better control of the result can be achieved by properly
combining MF and MB . This is shown in Figure 10(f). It
was generated using the following filter:

Jp =

∑
q∈N(p)(MF (Ip, Iq) · Ip +MB(Ip, Iq) · Iq)∑

q∈N(p)(MF (Ip, Iq) +MB(Ip, Iq))
(16)

In words, if p is a foreground pixel, then MF (p, q) >>
MB(p, q), for most of its neighbors, q. In this case, most
neighbors contribute Ip, hence the resulting value, Jp, will
remain close to Ip. This will keep the image sharp at fore-
ground pixels. On the other hand, if p is a background pixel,
then MF (p, q) << MB(p, q) for most of neighbors. This

time, each neighbor contributes Iq , and the resulting value
would be a weighted average of these values (i.e., smooth-
ing). It is important to emphasize that the proposed algo-
rithm might smooth foreground pixels slightly but back-
ground pixels will be smoothed much more.

Figure 10(c) shows how to turn the background into
grayscale, while keeping the object in full color. To do that,
we use the following filter:

Jp =
αIcolorp + βIgrayp

α+ β
(17)

where

α =
∑

q∈N(p)

MF (Ip, Iq), β =
∑

q∈N(p)

MB(Ip, Iq). (18)

and Igray is a grayscale version of the image. Intuitively,
α measures how well the neighboring pixels of pixel p co-
occur with it, under the foreground co-occurrence matrix
MF . Similarly, β measures how well the neighboring pixels
of p co-occur with it, under the background co-occurrence
matrix MB . As a result, foreground pixels will prefer the
Icolor while background pixels will prefer Igray.

The last example, shown in Figure 10(d), shows how to
use CoF in video. In this case the co-occurrence matrices
collected on image 10(a) can be applied to an image that
is 20 frames apart in the video. Evidently, the learned co-
occurrence matrices produce reasonable results.

Taken together, Figure 10 shows the many ways CoF can
be used to achieve various artistic results.

5. Conclusions
We proposed Co-occurrence Filter (CoF), a boundary

preserving filter. CoF collects co-occurrence statistics from
the image before applying the filter. A high co-occurrence



weight causes pixel values to mix, leading to smooth-
ing within textured region. On the other hand, low co-
occurrence weight prevents pixels from mixing, leading to
sharp boundaries between textured regions. We defined the
filter, demonstrated its features and showed how it should
be applied to color images. We show results on various im-
ages and suggested several use cases that include learning
co-occurrence statistics on parts of the image, or learning
them on one image and applying it to another. Finally, we
presented several use cases to demonstrate its power and
potential.
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Appendix

We derive the connection between the co-occurrence ma-
trix using hard and soft clustering. The former is faster to
compute, but the latter is more accurate. We suggest an ap-
proximation that maintains the speed of the hard clustering
approach with the visual quality of soft clustering. Recall
that calculating co-occurrence matrix using hard and soft
assignments is given by:

Chard(τa, τb) =
∑
i,j

exp(−
d2ij
σ2

)[i ∈ τa][j ∈ τb] (19)

Csoft(τa, τb) =
∑
i,j

exp(−
d2ij
σ2

)Pr(i ∈ τa)Pr(j ∈ τb)

(20)
Since di,j decays exponentially, we compute equation 20

for i, j that are at most r pixels apart ( we use r = 3 · σ ).
In practice, this means that for each pixel, we evaluate r2

pairs, and for each pair k2 products of cluster assignment
probabilities. This amounts to O(n · r2 · k2). In contrast,
when evaluating equation 19 we have per pixel only r2 non
zeros pairs, which makes the complexity merely O(n · r2).

Normally, Pr(i ∈ τa) is modeled as K(pi, τa) where K
is a kernel function (see Equation 21). We want a coarser
model for Pr(i ∈ τa) that will maintain the complexity of
hard clustering. To do so, we assume that we have a hard
clustering assignment i→ τ(i) and make the following ap-
proximation:

Pr(i ∈ τa) = K(pi, τa) ≈ K(τ(i), τa) (21)

In words, the distance between pixel value pi and cluster
τa is approximated by the distance between τ(i) and cluster
τa. Using this model we have:

Csoft(τa, τb) (22)

=
∑
i,j

exp(−
d2ij

2 · σ2
) · Pr(i ∈ τa) · Pr(j ∈ τb)

≈
i

∑
i,j

exp(−
d2ij

2 · σ2
) ·K(τa, τ(i)) ·K(τb, τ(j))

=
ii

∑
i,j

exp(−
d2ij

2 · σ2
) ·

∑
τk1

[i ∈ τk1 ]·

K(τa, τk1) ·
∑
τk2

[j ∈ τk2 ] ·K(τb, τk2)

=
iii

∑
τk1

,τk2

K(τa, τk1) ·K(τb, τk2)·

∑
i,j

exp(−
d2ij

2 · σ2
) · [i ∈ τk1 ] · [j ∈ τk2 ]

=
iv

∑
τk1

,τk2

K(τa, τk1) ·K(τb, τk2) · Chard(τk1 , τk2)

where:

i assign the approximation in equation (21).

ii [i ∈ τk1 ] equals 1 only for τk1 = τ(i) and 0 otherwise.

iii rearrange summations.

iv use equation (19) for hard quantization.
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