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Abstract

We propose a new error measure for matching pixels that
is based on co-occurrence statistics. The measure relies
on a co-occurrence matrix that counts the number of times
pairs of pixel values co-occur within a window. The error
incurred by matching a pair of pixels is inversely propor-
tional to the probability that their values co-occur together,
and not their color difference. This measure also works with
features other than color, e.g. deep features. We show that
this improves the state-of-the-art performance of template
matching on standard benchmarks.

We then propose an embedding scheme that maps the in-
put image to an embedded image such that the Euclidean
distance between pixel values in the embedded space re-
sembles the co-occurrence statistics in the original space.
This lets us run existing vision algorithms on the embedded
images and enjoy the power of co-occurrence statistics for
free. We demonstrate this on two algorithms, the Lucas-
Kanade image registration and the Kernelized Correlation
Filter (KCF) tracker. Experiments show that performance
of each algorithm improves by about 10%.

1. Introduction
Measuring similarity between pixels is a basic task in

computer vision. Stereo matching algorithms, for example,
use template matching to measure the similarity of potential
matches. Texture synthesis algorithms rely on patch simi-
larity to fill in holes, and tracking algorithms need to match
the appearance of the object from one frame to the next.

Let us focus on template matching as a canonical ap-
plication that relies on a pixel similarity measure. Ar-
guably the most popular measure is the Sum-of-Squared-
Differences (SSD) that is based on the Euclidean distance
between corresponding pixel values in the template and the
candidate window.

But SSD is very sensitive to small deformations. To deal
with this problem one often use patch level representations
such as SIFT [18], HOG [3], or the first layers of a deep net-

work [26]. These representations use a small neighborhood
to collect local statistics that increase the robustness of pixel
representation to small misalignment and deformations, at
the cost of losing precise pixel localization. The metric used
to compare these features often remains the Euclidean met-
ric.

The key contribution of this paper is the introduction of
a new similarity measure between pixel values that is based
on co-occurrence statistics. Co-occurrence statistics are col-
lected over the entire image plane and measure the proba-
bility of a pair of pixel values to co-occur within a small
window. We take the cost of matching pixels to be inversely
proportional to the probability of their values co-occurring.
Why?

Because co-occurrence statistics has long been used to
capture texture. Pixel values that co-occur frequently in the
image are probably a part of textured region. Therefore, this
measure implicitly captures some notion of texture similar-
ity. This has nothing to do with the actual pixel values, only
their co-occurrence statistics. In other words, we learn pixel
similarity from data instead of imposing the Euclidean dis-
tance on it.

Co-occurrence statistics differ from the patch based rep-
resentations mentioned earlier. Patch based methods collect
local statistics whereas co-occurrence collects global statis-
tics. The two approaches complement each other and we
can collect co-occurrence statistics of RGB values, as well
as other, more involved features, such as deep features. Ex-
periments show that combining both approaches greatly en-
hances the performance of template matching on standard
template matching benchmarks.

We then propose an embedding scheme that maps the
pixel values of the input image to a new space. The embed-
ding maps pixel values that co-occur frequently to nearby
points in the embedded space, where proximity is based on
the Euclidean distance. There are several reasons for do-
ing that. First, it allows us to run existing template match-
ing implementations on the embedded images without any
modifications. Second, because existing template match-
ing algorithms achieve sub-pixel accuracy, we get this accu-
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racy for free. The alternative, of achieving sub-pixel accu-
racy by working directly with co-occurrence statistics, is not
straightforward to achieve. Third, working with sub-pixel
accuracy lets us extend our template matching algorithm
to work with more general transformations that do not fall
on integer pixel coordinates (i.e., rotations, 2D affine). On
the downside, we find that working in the embedded space
degrades the accuracy of template matching, compared to
working directly with co-occurrence statistics. Still, work-
ing with embedded images yields results that are substan-
tially better than working with SSD.

Finally, there is no need to limit ourselves to template
matching. We can run any vision algorithm on the embed-
ded images. We demonstrate this on two algorithms. The
Lucas-Kanade (LK) image registration algorithm [19] and
the Kernelized Correlation Filter (KCF) tracker [11].

The LK algorithm performs gradient descent, a step that
is easy to do in Euclidean space, but not as easy when work-
ing with co-occurrence statistics directly. The KCF tracker
treats tracking as a binary classification problem and solves
it efficiently by working in the frequency domain. Again,
it is easy to perform FFT on a Euclidean space but it is not
clear how to compute the Fourier transform of a space en-
dowed with a co-occurrence error measure.

These problems go away once we embed the images. Ex-
periments show that both algorithms enjoy a 10% boost in
performance just by working on the embedded images, with
no modification to the actual algorithms themselves.

To summarize, we introduce a new error measure that
is based on co-occurrence statistics. The new measure is
robust to misalignment and deformations, fast to compute,
and can work with different pixel values such as RGB color
or deep features. We then suggest an embedding scheme
and show that other vision algorithms can benefit from the
co-occurrence error measure. Results of extensive experi-
ments on several data sets demonstrate the potential of our
method.

2. Background
We use template matching to demonstrate the power of

co-occurrence statistics as a similarity measure. Because
template matching is a vast topic, we cover here only the
relevant work related to ours. We focus on the simple
case of 2D translation, but the principles presented here
can be extended to other parametric transformations. For
an overview see [23].

Template matching seeks to find a candidate window
in a target image that matches a given template. This re-
quires the definition of a similarity measure between the
window and the template, such as the Sum-of-Squared-
Differences (SSD) or Sum-of-Absolute-Differences (SAD).
To deal with illumination changes one might use Normal-
ized Cross-Correlation (NCC) or the more elaborate Gener-

alized Laplacian Distance [8]. To handle noise and outliers
one might use robust measures such as M-estimators [1].

When tracking a deformable object it might be better to
represent the template as a histogram and use an appropriate
similarity measure between histograms [2].

In the medical image literature, the use of information
theoretic criteria is very popular. For example, two images
of different modality are aligned by maximizing their mu-
tual information [20, 29]. However, it is important to point
out that mutual information used in these cases is between
the different modalities, whereas we are dealing with im-
ages of the same modality. See [24] for a recent survey.

Egnal [7] proposed to use Mutual Information (MI) as
a stereo correspondence measure to handle illumination
changes. Each patch in the source image is matched to sev-
eral candidate patches in the target image and the match
that maximizes the MI is selected. There is no global in-
formation sharing in the process. Each patch is processed
independently.

Kim et al. [17] later extended the idea to work on a
Markov Random Field (MRF). The basic idea is to use
Graph-Cuts to find a disparity field that maximizes the MI
between the warped source image and the target image, in-
stead of trying to minimize a SSD or SAD error measure.
See also the follow up work by Hirschmuller [13]. These
works differ from ours because they measure the MI be-
tween the entire warped source and target images. We, on
the other hand, focus on learning the co-occurrence statis-
tics at the pixel level and from the entire image.

The Lucas-Kanade algorithm was adopted to work with
MI by Dowson and Bowden [6] by changing the equations
to maximize the MI between the two images instead of min-
imizing the standard SSD error. As with previous work,
they demonstrate their algorithm on images with different
modalities or different illumination.

Co-occurrence statistics was first introduced by Haralick
et al. [10] for the purpose of texture analysis. Recently, co-
occurrence data (termed mutual pointwise information) was
used for crisp boundary detection by Isola et al. [15]. They
use Normalized Cuts [25] to find edges. However, instead of
using pixel differences when constructing the Affinity ma-
trix, they use co-occurrence statistics. Co-occurrence statis-
tics was also used to extend the Bilateral Filter to deal with
texture [16]. The core idea there was to replace the range
Gaussian of the bilateral filter with a co-occurrence statis-
tics measure, thus capturing texture properties instead of
differences in pixel value.

The idea of using co-occurrence statistics for image
matching was also suggested by Hseu et al. [14]. How-
ever, they only considered the case of gray scale images
and the simple case of 2D translation. There is no discus-
sion of color, or patch based features, and no discussion of
the embedding idea presented here. The only experiment



they present is a synthetic one on the image of Lena.
There has also been a considerable amount of work on

embedding using co-occurrence data. Globerson et al. dis-
cuss Euclidean embedding of co-occurring data of differ-
ent types, such as text and images [9]. This is a general-
ization of the Stochastic Neighborhood Embedding (SNE)
of Hinton and Roweis [12] and its extension tSNE by Van
Der Maaten and Hinton [28]. Common to these works is
that they attempt to preserve neighborhood structure such
that data that co-occur in the original space should co-occur
in the embedding space. This is in contrast with our goal
where we wish to embed the data such that Euclidean dis-
tance in the embedded space will match the co-occurrence
statistics in the original space. We therefore use Multi-
Dimensional-Scaling (MDS) for our embedding.

Most recently, Dekel et al. [4] and Talmi et al. [27] have
been working on the same problem of Template Matching.

Dekel et al. proposed the Best-Buddies Similarity (BBS)
measure. BBS maps the pixels of the template and the can-
didate window into a spatial-appearance space and then de-
fines a similarity measure between the two point sets. In
particular, they compute the mutual nearest neighbors be-
tween the two point sets and show that this measure is ro-
bust to outliers. This comes at a higher computational cost.

This work was later extended by Talmi et al. [27] that
introduced two key ideas: The first is to enforce diversity in
the mutual nearest-neighbor matching and the second is to
explicitly consider the deformation of the nearest-neighbor
field. To reduce the computational burden they use Approx-
imate Nearest Neighbor.

Both methods do not achieve sub-pixel accuracy and do
not generalize to other parametric transformations such as
rotations. Our method, in contrast, is simpler, fits with
existing template matching pipeline, and can generalize to
other parametric transformations. In addition, our embed-
ding scheme allows any other vision algorithm to benefit
from co-occurrence error measure.

3. Method
SSD based template matching minimizes the following

objective function:
∑
p(Tp−Rp)2 where T is the template,

R ⊆ I is a region in image I , with the same size as T , and
p is pixel location.

Co-occurrence based template matching (CoTM)
maximizes the following objective function instead:∑
pM(Tp, Rp), where M is a (normalized) co-occurrence

matrix that is learned from the image data. Once we have
computed M , we can use it to give the cost of matching
pixel value Tp with pixel valueRp. In case of multi-channel
images (i.e., color or deep features), we quantize the image
to a fixed number of k clusters using k-means. In what
follows we define the co-occurrence matrix and discuss its
properties.

3.1. Co-occurrence Matrix

A co-occurrence matrix C(a, b) counts the number of
times that the two pixel values a and b appear together in
an image. Each pair contributes to C relative to their dis-
tance in the image plane. Formally:

C(a, b) =
1

Z

∑
p,q

exp(
−d(p, q)2

2σ2
)[Ip = a][Iq = b] (1)

where p and q are pixel location, Ip is the value of pixel p in
image I , and Z is a normalization factor. σ is a user speci-
fied parameter and [·] equals 1 if the value inside the bracket
is true and 0 otherwise. The use of a Gaussian weight cap-
tures our belief that pixel pairs that are close in the image
plane matter more. In practice, we only consider pixels
within a window proportional to σ.

Co-occurrence as described by Eq. 1 promotes pixel val-
ues that occur often in the image. To preserve pixel values
that rarely occur in the image (and therefore we believe are
important) we divideC by their prior probabilities to get the
Pointwise Mutual Information (PMI) matrix:

M(a, b) =
C(a, b)

h(a)h(b)
(2)

where h(a) is the probability of observing pixel value a in
the image (i.e., h is a normalized histogram of pixel values).
While co-occurrence promotes pixel values that frequently
appear in the image, PMI penalizes them.

Fig. 1 shows a query image and its PMI matrix M .
For better visualization we show only the meaningful
rows/columns of the matrix. The color patches along the
axis of the PMI matrix indicate the cluster’s color. The en-
tries of the matrix are given in inverse grayscale, so bright
colors mean a low PMI score and dark colors mean a high
score. M(A) specifies the PMI of brown and blue colors.
Since brown and blue rarely co-occur, their PMI is low. On
the other hand, orange and white co-occur frequently, hence
their PMI value, M(B), is high. This has nothing to do with
the intensity differences between brown and blue vs orange
and white. The only factor that affectsM is how often pixel
values co-occur. Another interesting entry in the matrix is
the one of light and dark green, M(C). Even though they
co-occur frequently, their PMI value is low. This is because
the prior probabilities of light and dark green are fairly high
in the image.

This property of M will come in handy when trying to
match a template with a lot of background pixels in it (see
Fig. 2). In this case we match two templates with different
size to the same image. The result shows that in both cases
only pixels that belong to the object have a high weight and
the matching result is almost the same.

3.2. Template Matching

Given a template T and a regionR ⊆ I , what is the prob-
ability that R matches T ? Assuming Gaussian independent



Query M

Figure 1. Co-occurrence Statistics: (Left) Query image.
(Right) It’s corresponding PMI matrix M . For better visualiza-
tion we show only the important rows/columns of M . We collect
co-occurrence statistics from the query image according to Eq. 2.
M (A) has a low score because brown and blue rarely co-occur
in the image. On the other hand, white and orange co-occur fre-
quently, therefore their corresponding entry, M (B), is high. Light
and dark green co-occur frequently but their score M (C) is low
because each of them appear frequently in the image.

pixel noise, the (log) probability is:
logPr(R|T ; Θ)
=
∑
p logPr(Rp|Tp; Θ)

=
∑
p logG(Tp −Rp|0;σ)

= − 1
2 |T |log(2πσ2)− 1

2σ2

∑
p ||Tp −Rp||2

(3)

where G(x|µ, σ) = 1√
2πσ

exp(− 1
2σ2 (x− µ)2) is the Gaus-

sian density function. The last expression is the sum-of-
squared-differences (SSD). Minimizing it maximizes the
probability of region R matching T .

The Gaussian noise assumption is very strong. It as-
sumes that the geometric transformation used to warp the
template to the image is sufficient and hence all noise is
due to intensity errors (that are modeled with a Gaussian).
In practice, the transformation model we use might not be
sufficient to capture the true deformations of the template.

Another problem with the Gaussian noise assumption is
that it is very sensitive to outliers. For example, if some of
the pixels in T or R belong to the background or are oc-
cluded then their error will have a very strong and negative
effect on the outcome of the match.

We use co-occurrence statistics to address these issues.
Specifically, we maximize the same objective function, but
assume a different noise model. Assuming that pixels move
locally and independently, we have that:

logPr(R|T )
=
∑
p log(Pr(Rp|Tp))

=
∑
p log(Pr(Rp, Tp))−

∑
p log(Pr(Tp))

=
∑
p log(Pr(Rp, Tp))

(4)

where we drop
∑
p log(Pr(Tp)) because it depends only on

the template which is fixed. As can be seen, in the Gaussian
model we minimize the sum of squared distances, while in
Eq. 4 we maximize the sum of joint probabilities. An out-
line of the algorithm is given in Algorithm 1.

(a) (b) (c)

Figure 2. Background Influence: (a) small (top) and large (bot-
tom) templates. (b) query image, we mark by solid (dashed) line
the patch that best matches the small (large) template. (c) The
per-pixel score M(Tp, Qp). Notice that adding more background
pixels doesn’t changes the overall score significantly.

Algorithm 1: Co-Occurrence Template Matching (CoTM)
Input : Template (T ), Query Image (I)
Output: Matching Region (R̂)

1 Iidx ← Quantize( I ); Tidx ← Quantize( T ) ;

2 C ← Collect Co-occurrence(Iidx, Tidx) % Eq. 1 ;

3 M ← Normalize(C) % Eq. 2 ;

4 Compute SR =
∑

p M(Tidx(p), Ridx(p)) ∀ Ridx ⊆ Iidx ;

5 Return R̂ = arg max
R

(SR)

3.3. Embedding

In Sec. 3.2 we have shown how to use co-occurrence
statistics to match a template to an image. We now extend
this approach to address some of its limitations. First, it is
not clear how to use this scheme to match with sub-pixel ac-
curacy. Naively, one might suggest interpolating the input
image and use the interpolated values in the co-occurrence
matrix. Since co-occurrence is not a linear operation, this is
clearly wrong. Second, sub-pixel accuracy will allow us to
extend template matching to deal with more general trans-
formations that do not work on integer pixel coordinates
(i.e., rotations, 2D affine). Third, we would like to make
use of existing template matching algorithms and not have
to modify them.

On top of that, we would like other vision applications to
take advantage of the co-occurrence measure. For example,
Lucas-Kanade [19] uses a first order Taylor approximation
to derive a gradient descent process to register a pair of im-
ages. This assumes the images are differentiable. Unfortu-
nately, the matrixM is not differentiable which complicates
things.

Another example is the Kernelized Correlation Filter
(KCF) tracker [11]. KCF treats tracking as a binary clas-
sification problem that is solved efficiently in the frequency
domain. However, it is not clear how to apply the Fourier
transform to a space endowed with a co-occurrence similar-



ity measure, and not a Euclidean distance.
To address these problems we propose to embed the pixel

values in a new space that is endowed with a regular Eu-
clidean metric. We can then perform Lucas-Kanade, KCF
tracking, or any other vision algorithm, for that matter, in
the new space. To do that, we assume that the co-occurrence
matrix is an affinity matrix. Our goal is to map points
with high affinity (i.e., high co-occurrence value) to nearby
points in the embedded Euclidean space.

We use Multi-dimensional scaling (MDS) for the em-
bedding. MDS takes a distance matrix as an input. It
then uses eigenvalues decomposition to find a mapping to
a given d-dimensional space such that L2 distance in this
space produces a distance matrix that is as close as possible
to the input distance matrix. Formally, we look for points
{y1, ..., yk}, yi ∈ Rd such that:

arg min
{y}

∑
a,b

(D(a, b)− ||y
a
− y

b
||2)2 (5)

where the distance matrix is:

D(a, b) = −log

(
C(a, b)√

C(a, a) · C(b, b)

)
(6)

Manipulating C in this fashion ensures that D is symmetric
with zeros across its diagonal 1.

Given the distance matrix D defined in Eq. 6 we use
MDS to embed it in a d-dimensional space. Each pixel is
now assigned the corresponding vector. Fig. 3 illustrates the
embedding process. We show the embedding results to 1D
(i.e., grayscale) and 3D (i.e., RGB images). Observe how
textured regions in the input image are mapped to constant
colors in the embedded space. In particular, in the 3D case,
the different textures are mapped to Red, Green and Blue
colors, which are far apart in color space.

Any vision algorithm can now operate on the embed-
ded images. We demonstrate this using Template matching,
Lucas-Kanade, and KCF tracking. The advantage of the
embedding is that existing vision pipelines remain intact.

4. Results
We evaluated CoTM on two public benchmark datasets.

The first, created by Dekel et al. [5] from 35 annotated color
video sequences of the OTB dataset [31]. Those videos
are challenging because of occlusions, nonrigid deforma-
tions, in-plane/out-plane rotation, luminance changes, scale
differences and more. The dataset contains 105 template-
image pairs. Each image pair consist of frames f and f+20,
where f was randomly chosen. For each pair of frames,
the template is the annotated ground-truth bounding box in
frame f and the query image is frame f + 20.

1The matrix D is not guaranteed to be a distance matrix because the tri-
angle inequality is not guaranteed to hold. In practice, we did not observe
any problems with the embedding.

(a) input (b) 1D embedding (c) 3D embedding

Figure 3. Embedding: The input image (a) is embedded either
to 1D (b) or 3D (c) space. Observe how the checkerboard texture
is mapped to an almost constant color both in (b) and in (c). Vision
algorithms that assume images are piecewise constant will benefit
from working on the embedded images.

We also evaluate our method on a similar but larger
dataset due to Oron et al. [21]. This benchmark was gen-
erated from the OTB dataset and includes both color and
grayscale videos. The dataset consists of three data sets.
Each dataset includes 270 template-image pairs and each
image pair consist of frames f and f + ∆f , where f was
randomly chosen and ∆f ∈ {25, 50, 100}2.

The evaluation metric is based on the standard Intersec-
tion over Union (IoU). The area-under-curve (AUC) is used
to compare between the different methods.

We use pre-trained VGG network [26] to generate deep
features in a way similar to [21] and [27]. Specifically, we
concatenate the 64 features of conv1 2 with the 256 fea-
tures of conv3 4, which amounts to 320 features per pixel.
conv3 4’s size is 1/4 of the original image, in both dimen-
sions. We used bilinear interpolation to resize it back to the
image size.

4.1. Evaluation

We compare CoTM, on both color and deep feature im-
ages, to two state-of-the-art measures for template match-
ing: Deformable Diversity Similarity [27] (DDIS) and Best-
Buddies Similarity [5] (BBS). In addition, we compare
our method to SSD. The success plots for all methods on
the 105 template-image pairs benchmark are presented in
Fig. 4.

Some comments are in order. The AUC score of tem-
plate matching using color pixel values and standard SSD
measure is quite poor at 0.43. Replacing color features with
deep features, but keeping the SSD error measure, increases
the score to 0.55. However, replacing the SSD similar-
ity measure with co-occurrence statistics, while keeping the
color features, increases the score to 0.62. In other words,
using co-occurrence statistics of simple RGB values leads
to better results than using deep features with standard SSD
measure. Combining deep features and co-occurrence sim-
ilarity measure brings the score to 0.67.

Examples of CoTM are shown in Fig. 5. As can be seen,

2The dataset for ∆f = 100 consists of only 252 video sequences.
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Figure 4. Accuracy: Evaluation on the benchmark of [5]: 105 template-image pairs. Left: evaluation on deep features. Right: evaluation
on color features. AUC is shown in the legend.

Template Query Image BBS DDIS CoTM

(a) (b) (c) (d) (e)

Figure 5. Results on real data using color features: (a) The template marked in green (b) Detection results in the query
image of 6 different methods: CoTM, DDIS, BBS, SSD. (c-e) The corresponding likelihood maps of BBS, DDIS and CoTM
respectively. Observe how sharp and localized are our heat maps.



Method 25 50 100 Mean
CoTM-DC 0.69 0.61 0.59 0.63
CoTM-D 0.68 0.60 0.59 0.62
DDIS-D 0.68 0.60 0.58 0.62
BBS-D 0.60 0.51 0.53 0.55
SSD-D 0.58 0.51 0.52 0.54
DDIS-C 0.65 0.59 0.54 0.59
CoTM-C 0.60 0.54 0.45 0.53
BBS-C 0.59 0.50 0.45 0.51
SSD-C 0.43 0.36 0.31 0.37
CoTM-DU 0.63 0.54 0.51 0.56
CoTM-CU 0.61 0.53 0.46 0.53

Table 1. Results on [22]: 270 pairs with ∆frame ∈
{25, 50, 100}. We compare our method (CoTM) to that
of [27] (DDIS). “-C” denote color features, “-D” denotes
deep features. We also run our method on a concatenated
feature vector of color and deep features (denoted “-DC”).
For the last two rows (-DU, -CU) we have computed the k-
means prototypes on an external image set, instead of com-
puting them per-image. As can be seen, performance does
not change much.

the heat map of CoTM is usually clean with a very strong
and localized peak at the correct location.

We repeated our experiment on the (larger) data set of
[22] and report results in Table 1. As can be seen, Talmi et
al. [27] outperforms us on color features and we outperform
them on deep features. Concatenating color and deep fea-
tures per pixel and using co-occurrence statistics we achieve
an AUC score of 0.69 which is the highest reported score on
this benchmark.

We have also evaluated the importance of prototypes
(i.e., the cluster centers of the k-means quantization step) on
performance. To this end, we have computed a universal set
of k-means prototypes from some external image dataset,
and used them instead of running k-means on each image.
Results are reported in Table 1 as CoTM-DU and CoTM-
CU. As can be seen, the accuracy does not change much.

Our method is fast, straightforward to implement and
does not require the use of Approximate Nearest Neighbor
packages. Our un-optimized MATLAB code takes on av-
erage 2.7 seconds to process a single template-image pair
using color features on an i7 Windows machine with 32GB
of memory. This excludes the k-means step that takes a
couple of seconds.

4.2. Evaluation of CoTM Embedding

Next, we evaluated the MDS embedding scheme for tem-
plate matching using Eq. 6 on the 105 data set. In partic-
ular we evaluate embedding into a 3 as well as 256 dimen-
sional space. Once we embed the template and image we
use the standard SSD error measure for template matching.
Detection results are summarized in Fig 6. We found that
Co-occurrence Embedding Template Matching (CoETM)

works better than the Best-Buddies-Similarity measure of
Dekel et al. [5]. Our method is simpler to implement and
faster to compute. The embedding can be done as a pre-
processing stage and the embedded images can be used in
existing template matching software.
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Figure 6. CoTM Embedding (CoETM): evaluation on [5]
shows that CoETM performs simillarly to CoTM.

To demonstrate the power of embedding we have cou-
pled it with the Lucas-Kanade registration algorithm and
evaluated it on the 105 data set. For each pair, we generated
an initial guess within half bounding box distance from the
ground truth. We used this guess to initialize a 4-level pyra-
mid LK algorithm. The exact same algorithm was tested on
color as well as embedded images. We used the same IoU
metric to measure success. For the embedding we use MDS
scheme of dimension 3.

Fig. 7 shows that LK with CoE (i.e., CoTM on embedded
images) converges to final bounding boxes that are better
than regular LK. Some example are shown in Fig. 8. In
particular, observe that the last example in the figure shows
LK with a 2D Translation+Rotation. It is not obvious how
to extend the work of Dekel et al. [5] or Talmi et al. [27] to
support such motion models.

We also run an out-of-the-box KCF tracker [11] on the
OTB dataset [30] and report results in Fig. 9. As can be
seen, using Co-occurrence embedding improves results by
about 10% with no modifications to the original KCF algo-
rithm. To accelerate run-time, we use only the first frame
in each sequence to compute the co-occurrence embedding
and apply it to the rest of the frames in that sequence.

4.3. Limitations

CoTM suffers from a number of limitations. First, we
found that co-occurrence on gray pixel values does not work
well. We also found that performance degrades when the
pixel values of the template occur frequently in the back-
ground. This is because in such cases background pixels are
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Figure 7. Template matching accuracy using LK: Evaluation
on [5]: 105 template-image pairs. LK with Co-occurrence em-
bedding (LK-CoE) outperforms regular LK.

Figure 8. Co-Occurrance Luckas Kanade: Left: template.
Center: result of regular LK. Dashed white rectangle is initial
guess. Blue rectangle is final result. Right: result of LK on embed-
ded images. Dashed white rectangle is initial guess. Red rectangle
is final result. Our result is far from the initial rectangle, indicating
that the basin of attraction is larger and the convergence is better.

not down-weighted. Finally, we have not addressed illumi-
nation changes and leave this for future research. Failure
examples are shown in Fig. 10. Many of these failure cases
can be mitigated by working on deep features.

5. Conclusions

We presented a new measure for pixel similarity that is
based on the co-occurrence statistics. Instead of measur-
ing the intensity difference between pixel values, we mea-
sure their co-occurrence score. Pixel values that co-occur
often are penalized less than pixel values that co-occur fre-
quently. This is because co-occurrence captures texture to
some degree. Hence, pixel values that come from the same
textured region probably have a high co-occurrence score.
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Figure 9. KCF Tracking: Evaluation on [31]: KCF with Co-
occurrence embedding (KCF-CoE) outperforms regular KCF.

Figure 10. Limitations: shows our failure cases. Left: template.
Right: query image. On the image we mark the ground truth lo-
cation in green and our detection results using color features and
deep features in yellow and red respectively.

Co-occurrence statistics captures global image statistics, as
opposed to local image statistics that are captured by vari-
ous patch representations. Combining co-occurrence statis-
tics (that capture global statistics) with deep features (that
capture local statistics) leads to state of the art results in
template matching on standard datasets.

We then suggest an embedding scheme that maps pixel
values in the input space to a new space such that pixel val-
ues that co-occur often are mapped to nearby points in the
embedded space. This allows any vision algorithm to en-
joy the power of co-occurrence statistics by working on the
embedded images, instead of the original ones. We demon-
strate the power of this embedding on the Lucas-Kanade
image registration algorithm and the Kernelized Correlation
Filter (KCF) tracker. Both algorithms enjoy a 10% boost in
performance just by working on the embedded images in-
stead of the original ones.
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