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Abstract
Fast-Match is a fast algorithm for approximate tem-

plate matching under 2D affine transformations that min-
imizes the Sum-of-Absolute-Differences (SAD) error mea-
sure. There is a huge number of transformations to consider
but we prove that they can be sampled using a density that
depends on the smoothness of the image. For each poten-
tial transformation, we approximate the SAD error using a
sublinear algorithm that randomly examines only a small
number of pixels. We further accelerate the algorithm us-
ing a branch-and-bound scheme. As images are known to
be piecewise smooth, the result is a practical affine tem-
plate matching algorithm with approximation guarantees,
that takes a few seconds to run on a standard machine. We
perform several experiments on three different datasets, and
report very good results. To the best of our knowledge, this
is the first template matching algorithm which is guaranteed
to handle arbitrary 2D affine transformations.

1. Introduction
Image matching is a core computer vision task and tem-

plate matching is an important sub-class of it. We pro-
pose an algorithm that matches templates under arbitrary
2D affine transformations. The algorithm is fast and is guar-
anteed to find a solution that is within an additive error of
the global optimum. We name this algorithm: FAsT-Match.

Template matching algorithms usually consider all pos-
sible translations. They differ in the way they discard irrel-
evant translations (see Ouyang et al. [15] for a comprehen-
sive survey of the topic). Template matching under more
general conditions, which include also rotation, scale or 2D
affine transformation leads to an explosion in the number of
potential transformations that must be evaluated.

Fast-Match deals with this explosion by properly dis-
cretizing the space of 2D affine transformations. The key
observation is that the number of potential transformations
that should be evaluated can be bounded based on the
assumption that images are smooth. Small variations in
the parameters of the transformation will result in small
variations in the location of the mapping, and because of
the image smoothness assumption, the Sum-of-Absolute-
Difference (SAD) error measure will not change much.

Given a desired accuracy level δ we construct a net of
transformations such that each transformation (outside the
net) has an SAD error which differs by no more than δ from
that of some transformation in the net. For each transforma-
tion within the net we approximate the SAD error using ran-
dom sampling. When δ is small the net size becomes large
and we apply a branch-and-bound approach. We start with
a sparse net, discard all transformations in the net whose er-
rors are not within a bound from the best error in the net and
then increase the sampling rate around the remaining ones.

It is instructive to contrast Fast-Match with classical di-
rect methods, such as Parametric Optical Flow (OF) [11].
OF methods improved considerably over the years and are
the building blocks of many computer vision applications.
However, at their core OF are solving a nonlinear optimiza-
tion problem and as such they rely on an initial guess and
might be trapped in a local minimum. Fast-Match, on the
other hand, does not rely on an initial guess and is guaran-
teed to find an approximation to the global optimum.

To overcome the limitations of OF there is a growing
focus on feature based methods, such as SIFT [10]. Such
methods assume that feature points can be reliably detected
and matched in both the image and the template so that there
are enough potent matches to estimate the global 2D affine
transformation, perhaps using RANSAC [4]. Despite the
large body of work in this field, the process can fail, espe-
cially if there are not enough distinct features in the tem-
plate or the image. See Figure 1 for illustrations.

OF is clearly less practical when the size of the template
is considerably smaller than the size of the image because
it does not have a good initial guess. In such cases we can
use feature point matching to seed the initial guess of an
OF algorithm. However, it is increasingly difficult to detect
distinct feature points as the size of the template decreases.
Fast-Match does not suffer from this problem.

Fast-Match has some disadvantages when compared to
other techniques. OF techniques can reach subpixel accu-
racies which Fast-Match cannot. Of course, Fast-Match’s
solution can later be refined using OF techniques. Another
limitation is when dealing with images where the impor-
tant information is sparse, e.g., diagrams and text. In such
cases Fast-Match treats background pixels as if they are as
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Figure 1. Shortcomings of current methods: Left: Direct Meth-
ods (OF) require (good) initialization. They find the correct tem-
plate location (green parallelogram) given a close enough initial-
ization (dashed green parallelogram), but might fail (converge to
solid red parallelogram) with a less accurate initialization (dashed
red parallelogram). Right: Indirect Methods (feature based) re-
quire (enough) distinct features. They typically will not detect
a single matching feature in such an example. Fast-Match solves
both these cases.

important as foreground pixels, potentially achieving good
SAD error at the expense of good localization, in contrast
to feature based techniques. Finally, Fast-Match may fail
on highly textured images, as the guarantees only hold for
smooth images.

While strictly speaking, Fast-Match minimizes the SAD
error and our experiments validate this, we also show that
minimizing SAD error serves as a proxy to finding the loca-
tion of the template and we show results to this effect. Of-
ten, even when the size of the template is small, Fast-Match
can still find the correct match, whereas feature based meth-
ods struggle to detect and match feature points between the
template and the image.

We present a number of experiments to validate the pro-
posed algorithm. We run it on a large number of images
to evaluate its performance on templates of different sizes,
and in the presence of different levels of degradation (JPEG
artifacts, blur, and gaussian noise). We also test Fast-Match
on the data sets of Mikolajczyk et al. [12, 13]. Finally, we
report results on the ZURICH Buildings data-set [19].

2. Background
Our work grew out of the template matching literature

which we review next. Since Fast-Match can be used for
image matching as well we include a short reference of it.
The topic of Image Matching is vast and reviewing it is be-
yond the scope of this paper.

Template Matching Evaluating only a subset of the pos-
sible transformations was considered in the limited context
of Template Matching under 2D translation. Alexe et al.
[1] derive an upper bound on appearance distance, given
the spatial overlap of two windows in an image, and use it
to bound the distances of many window pairs between two
images. Pele and Werman [16] ask ”How much can you
slide?” and devise a new rank measure that determines if
one can slide the test window by more than one pixel.

Extending Template Matching to work with more gen-

eral transformations was also considered in the past. Fuh et
al. [6] proposed an affine image model for motion estima-
tion, between images which have undergone a mild affine
deformation. They exhaustively search a range of the affine
space (practically - a very limited one, with only uniform
scale). Fredriksson [5] used string matching techniques
to handle also rotation. Kim and Araújo [7] proposed a
grayscale template matching algorithm that considers also
rotation and scale. Yao and Chen [23] propose a method
for the retrieval of color textures, which considers also vari-
ations in scale and rotation. Finally, Tsai and Chiang [21]
developed a template matching method that considers also
rotation, which is based on wavelet decompositions and ring
projections. The latter three methods do not provide guar-
antees regarding the approximation quality of the matching.

Another related work is that of Tian and
Narasimhan [20], that estimate the parameters of a
dense deformation field. Unlike our method, which works
in appearance space, their method minimizes the distance
from the target transformation in parameter space.

Image Matching Methods Image matching algorithms
are often divided into direct and feature-based methods.

In direct methods, such as Lukas-Kanade [11], a para-
metric Optic-Flow mapping is sought between two images
so as to minimize the Sum-Of-Squared Difference between
the images. See the excellent review by Baker et al. [2].

Alternatively, one can use feature-based methods such as
SIFT [10], or its variant ASIFT [14] which is designed to be
affine invariant. In this scenario, interest points are detected
independently in each image and elaborate image descrip-
tors are used to represent each such point. Given enough
corresponding feature points it is possible to compute the
global affine transformation between the images. This ap-
proach relies on the assumption that the same interest points
can be detected in each image independently and that the
image descriptors are invariant to 2D affine transformations
so that they can be matched across images.

Other related work Our work is also inspired by tech-
niques from the field of sublinear algorithms. The use of
sublinear algorithms in image processing was advocated by
Rashkodnikova [17] and followed by Tsur and Ron [18] as
well as by Kleiner et al. [8].

3. The Main Algorithm
3.1. Preliminaries

We are given two grayscale images I1 and I2 of dimen-
sions n1×n1 and n2×n2 respectively, with pixel values in
the range [0, 1].1 We will refer to I1 as the template and to
I2 as the image. The total variation of an image I , denoted

1The algorithm is not restricted to square images but we discuss these
for simplicity throughout the article
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by V(I), is the sum over the entire image of the maximal
difference between each pixel p and any of its eight neigh-
bors q ∈ N(p) (we omit the dependence on I as it is always
clear from the context). That is,

V =
∑
p∈I

max
q∈N(p)

|I(p)− I(q)| .

We deal with affine transformations in the plane that have
scaling factors in the range [1/c, c] for a fixed positive con-
stant c. Such a transformation T can be seen as multiplying
the pixel vector by a 2×2 non-singular matrix and adding a
”translation” vector, then rounding down the resulting num-
bers. Such a transformation can be parameterized by six
degrees of freedom.

Let ∆T (I1, I2) be the (normalized) sum of absolute dif-
ferences (SAD) distance between two images I1, I2 with
respect to a transformation T that maps pixels p ∈ I1 to
pixels in I2. More formally:

∆T (I1, I2) =
1

n12

∑
p∈I1

|I1(p)− I2(T (p))| .

If p is mapped out of I2’s area then the term |I1(p) −
I2(T (p))| is taken to be 1. We wish to find a transforma-
tion T that comes close to minimizing ∆T (I1, I2). The
minimum over all affine transformations T of ∆T (I1, I2)
is denoted by ∆(I1, I2). A crucial component of our algo-
rithm is the net of transformations. This net is composed of
a small set of transformations, such that any affine transfor-
mation is ”close” to a transformation in the net. Namely, the
`∞ distance between two transformations T and T ′ quanti-
fies how far the mapping of any point p in I1 according to
T may be from its mapping by T ′. Mathematically,

`∞(T, T ′) = max
p∈I1
‖T (p)− T ′(p)‖2 ,

where the ‖ · ‖2 is the Euclidean distance in the target im-
age plane. Note that this definition does not depend on the
pixel values of the images, but only on the mappings T and
T ′, and on the dimension n1 of the source image I1. The
key observation is that we can bound the difference between
∆T (I1, I2) and ∆T ′(I1, I2) in terms of `∞(T, T ′) as well
as the total variation V of I1. This will enable us to con-
sider only a limited set of transformations, rather than the
complete set of affine transformations. We now describe
the construction of such a set.

For a positive α, a net of (affine) transformations T =
{Ti}li=1 is an α-cover if for every affine transformation T ,
there exists some Tj in T , such that `∞(T, T ′j) = O(α).
The net we use for our algorithm is a δn1-cover of the set
of affine transformations, where δ ∈ (0, 1] is an accuracy
parameter which is an input of the algorithm. The number
of transformations in the net grows as a function of δ. In [9]
we show how to construct such a net Nδ , of size Θ

(
1
δ6 ·

(n2

n1
)2
)

and prove that it is a δn1-cover.

3.2. Algorithm Description

We describe a fast randomized algorithm that re-
turns, with high probability, a transformation T such that
∆T (I1, I2) is close to ∆(I1, I2). The algorithm examines
the transformations in the net Nδ . We give provable guar-
antees for the quality of approximation. These guarantees
are given as a function of the net’s parameter δ and of the
total variation V of I1.

Algorithm 1 Approximating the Best Transformation

Input: Grayscale images I1, I2 and a precision parameter δ
Output: A transformation T

• Create a net Nδ/2 that is a (δn1)/2-cover of the set of
affine transformations

• For each T ∈ Nδ/2 approximate ∆T (I1, I2) to within
precision of δ/2. Denote the resulting value dT

• Return the transformation T with the minimal value dT

In Step 1 of the algorithm we give a sublinear approxi-
mation of ∆T (I1, I2), that is presented in subsection 3.3.

We proceed to bound the difference between the qual-
ity of the algorithm’s result and that of the optimal trans-
formation in terms of two parameters - V and δ, where
δ also controls the size of the net and hence determines
the running time. We first establish the following theorem
which helps to bound the difference between ∆T ′(I1, I2)
and ∆T (I1, I2) for a general affine transformation T ′ and
its nearest transformation T on the net.

Theorem 3.1 Let I1, I2 be images with dimensions n1 and
n2 and let δ be a constant in (0, 1]. For a transformation T ′

let T be the closest transformation to T ′ in a δn1-cover. It
holds that: |∆T ′(I1, I2)−∆T (I1, I2)| ≤ O

(
δ · Vn1

)
.

The proof of Theorem 3.1 can be found in [9] . To get
an intuition of why it holds, consider the degenerate case
of vertical translations. Let T be a translation by k pixels
and T ′ by k + 1. Now consider the value of |∆T ′(I1, I2)−
∆T (I1, I2)|. Every pixel p = (x, y) in I1 is mapped by
T to the same location that the pixel p′ = (x, y − 1) is
mapped to by T ′. Thus the difference between ∆T ′(I1, I2)
and ∆T (I1, I2) is bounded by the total sum of differences
between vertically neighboring pixels in I1. The sum of
these differences relates linearly to the total variation of I1.
Likewise, when the translations are by k pixels and by k +
δn1 pixels - the change in the SAD is bounded by the total
variation multiplied by δn1. After normalizing by the size
of I1 we get the bound stated in the theorem.

Thm. 3.1 and the use of a δn1-cover lead directly to the
theoretical bound on Alg. 1’s accuracy:
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Theorem 3.2 Algorithm 1 returns a transformation T such
that |∆T (I1, I2)−∆(I1, I2)| ≤ O

(
δ · Vn1

)
holds with high

probability. The total runtime (and number of queries) is
Õ
(

(n2

n1
)2 · 1/δ8

)
. 2

Smooth vs. General Images Many natural images have
small total variation (see, e.g., [22]). We measured the
total variation of 9500 random templates from the Pascal
dataset [3]. Our results indicate that most images in the
database sampled have a small total variation (O(n1) for
n1 × n1 templates). Some data and a discussion of these
measurements can be found in [9].

This smoothness property of natural images, together
with Theorem 3.2, implies that Algorithm 1 is guaranteed
to provide an additive approximation of O(δ), for a given
precision parameter δ.

3.3. Approximating the Distance dT (I1, I2)

We now turn to describe the sublinear algorithm which
we use in Step 1 of the algorithm to approximate
∆T (I1, I2). This dramatically reduces the runtime of Al-
gorithm 1 while having a negligible effect on the accuracy.
The idea is to estimate the distance by inspecting only a
small fraction of pixels from the images. The number of
sampled pixels depends on an accuracy parameter ε and not
on the image sizes.

Algorithm 2 Single Transformation Evaluation

Input: Grayscale images I1 and I2, a precision parameter ε
and a transformation T
Output: An estimate of the distance ∆T (I1, I2)

• Sample m = Θ(1/ε2) values of pixels p1 . . . pm ∈ I1.

• Return dT =
∑m
i=1 |I1(pi)− I2(T (pi))|/m.

Claim 3.1 Given images I1 and I2 and an affine trans-
formation T , Algorithm 2 returns a value dT such that
|dT − ∆T (I1, I2)| ≤ ε with probability 2/3. It performs
Θ(1/ε2) samples.

The claim holds using an additive Chernoff bound. Note
that to get the desired approximation with probability 1− η
we perform Θ(log(1/η)/ε2) samples.

Photometric Invariance: An adaptation of Algorithm 2
allows us to deal with linear photometric changes (adjusting
brightness and contrast). We calculate the optimal change
for the points sampled every time we run Single Transfor-
mation Evaluation by normalizing each sample by its mean
and standard-deviation. This adjustment allows us to deal
with real life images at the cost of little additional time.

2The symbol Õ hides (low order) logarithmic factors

Figure 2. Branch-and-Bound Analysis. One stage of the branch-
and-bound scheme. For simplicity the space of transformations is
in 1D (x-axis) against the SAD-error (y-axis). Vertical gray lines
are the sampling intervals of the net. Dots are the samples. Hor-
izontal dotted lines are SAD errors of: Black (Optimal transfor-
mation, which is generally off the net), Red (best transformation
found on the net), Green (closest-to-Optimal transformation on the
net) and Blue (threshold). Only areas below the (blue) threshold
are considered in the next stage. The choice of the threshold is
explained in the text.

4. The Branch-and-Bound Scheme
To achieve an additive approximation of O(δ) in Algo-

rithm 1 we must test the complete net of transformations
Nδ , whose size is Θ( 1

δ6 · (
n2

n1
)2). Achieving a satisfactory

error rate would require using a net Nδ where δ is small.
The rapid growth of the net size with the reduction in the
value of δ (linear in 1/δ6) renders our algorithm impracti-
cal, despite the fact that our testing of each transformation is
extremely efficient. To overcome this difficulty, we devise
a branch-and-bound scheme, using nets of increasing res-
olution while testing small fractions of the transformations
in the rapidly growing nets. This improvement is possible
with virtually no loss in precision, based on our theoretical
results. As a result, the number of transformations we test in
order to achieve a certain precision is reduced dramatically.

We describe next the branch-and-bound scheme. The
pseudo-code appears below as Algorithm 3 (Fast-Match).
In each stage, Algorithm 1 is run on a subset S of the net
Nδ . Figure 2 gives an illustration of transformations ex-
amined by the algorithm and their errors (in particular Opt
- the optimal, Best - the best examined, and Closest - the
closest on the net to opt). We denote by e(Opt) the error
of opt and similarly for best and closest. We wish to rule
out a large portion of the transformation space before pro-
ceeding to the next finer resolution net, where the main con-
cern is that the optimal transformation should not be ruled
out. Had we known e(Closest), we could have used it as a
threshold, ruling out all transformations with error exceed-
ing it. We therefore estimate e(Closest) based on the re-
lations between e(Opt), e(Best) and e(Closest). On one
hand, e(Best) − e(Opt) = O(δ) (following Theorem 3.2)
and on the other hand, e(Closest)− e(Opt) = O(δ) (by the
construction of the net and following Theorem 3.1). It fol-
lows that e(Closest)− e(Best) = O(δ) hence e(Closest) <
e(Best)+O(δ). Using a large set of data, we estimated con-
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stants α and β, such that e(Closest) < e(Best) +α · δ+β)
holds for 97% of the test samples. This learned function
L(δ) = α · δ + β is used in Step 2c of Algorithm 3, for the
choice of the points that are not ruled out, for each net reso-
lution. In specific cases where the template occurs in much
of the image (e.g. flat blue sky patch), we limit the size of
Qi so that the expanded Si+1 will fit into RAM.

Algorithm 3 Fast-Match: a Branch-and-Bound Algorithm

Input: Grayscale images I1, I2, a precision parameter δ∗

Output: A transformation T .

1. Let S0 be the complete set of transformations in the
net Nδ0 (for initial precision δ0)

2. Let i = 0 and repeat while δi > δ∗

(a) Run algorithm 1 with precision δi, but consider-
ing only the subset Si of Nδi

(b) Let TBesti be the best transformation found in Si

(c) Let Qi = {q ∈ Si : ∆q(I1, I2) −
∆TBest

i
(I1, I2) < L(δi)}

(d) Improve precision: δi+1 = fact · δi (by some
constant factor 0 < fact < 1)

(e) Let Si+1 = {T ∈ Netδi+1
: ∃q ∈

Qi s.t. `∞(T, q) < δi+1 · n1}

3. Return the transformation TBesti

5. Experiments and conclusions
We present the performance of our algorithm in three ex-

periments. In the first experiment each template is extracted
from an image and matched back to it. In the second, the
template is extracted from one image and matched to an-
other, that is related to it geometrically by a homography.
In the third experiment the template is taken from one im-
age of a scene and is mapped to an entirely different image
of the same scene.3

Evaluating the performance of the algorithm: Fast-
Match, when evaluating a transformation, estimates the
SAD error. A better measure of the correct mapping is
the overlap error, which quantifies the overlap between the
’correct’ location and mapped location of the template in the
image (green and magenta quadrilaterals in Figure 3). We
use the overlap error to evaluate performance in the first two
experiments (where ’ground truth’ location is available).
The overlap error is defined (following, e.g., Mikoalyciz et
al [12, 13]) to be: 1 minus the ratio between the intersection
and the union of the regions.

3the source-code is available at: www.eng.tau.ac.il/

˜simonk/FastMatch

Figure 3. Example from a Fast-
Match Run Top: The template
(shown enlarged for clarity), with the
152 pixels that Fast-Match samples.
Bottom: Target image, with origin of
the template (ground truth location)
in green and a candidate area it is
mapped to in magenta.

5.1. Exp. I: Affine Template Matching

In this large scale experiment, we follow the method-
ology used in the extensive pattern matching performance
evaluation of Ouyang et al. [15]. We use images from
the Pascal VOC 2010 data-set [3], which has been widely
used for the evaluation of a variety of computer vision tasks.
Each pattern matching instance involves selecting an im-
age at random from the data-set and selecting a random
affine transformation, which maps a square template into
the image (the mapped square being a random parallelo-
gram). The parallelogram within the image is then warped
(by the inverse affine transformation) in order to create the
square template. See Figure 3 for an example.

We test the method on different template sizes, where the
square template dimensions are between 10% and 90% of
the minimum image dimension. For each such size, we cre-
ate 200 template matching instances, as described above. In
Table 1 we report SAD and overlap errors of Fast-Match for
the different template sizes. Fast-Match achieves low SAD
errors, which are extremely close to those of the ground-
truth mapping. The ground-truth errors are at an average of
4 graylevels (not zero), since interpolation was involved in
the creation of the template. As can be seen, Fast-Match
does well also in terms of overlap error. In the following
experiments, we measure success only in terms of overlap
error.

Template Dimension 90% 70% 50% 30% 10%
avg. Fast-Match SAD err. 5.5 4.8 4.4 4.3 4.8
avg. ground truth SAD err. 4.1 4.1 4.0 4.4 6.1
avg. Fast-Match overlap err. 3.2% 3.3% 4.2% 5.3% 13.8%

Table 1. Fast-Match Evaluation: SAD and Overlap errors.
SAD errors are in graylevels (in [0,255]). Low SAD error rates
are achieved across different template dimensions (10% to 90%).
Fast-Match guarantees finding an area with similar appearance,
and this similarity translates to a good overlap error, correctly lo-
calizing the template in the image. Fast-Match SAD error is com-
parable to that of the ground truth. See text for details.

Comparison to a feature based approach We examine
Fast-Match’s performance under 3 types of image degrada-
tions: additive white gaussian noise, image blur and JPEG
distortion. We show its performance under varying template
sizes at different levels of such degradations. We compare
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its performance to that of ASIFT [14] - a state of the art
method which is a fully affine invariant extension of SIFT,
for extracting feature point correspondences between pairs
of related images. Since ASIFT (without additional post-
processing for transformation recovering) and Fast-Match
cannot be directly compared due to their different output
types4, we define for ASIFT a success criterion which is
the minimal requirement for further processing: Namely, it
is required to return at least 3 correspondences, which are
fairly close to being exact - the distance in the target image
between the corresponded point and the true corresponding
point must be less than 20% of the dimension of the tem-
plate. The success criterion for Fast-Match is an overlap
error of less than 20%. This is an extremely strict criterion,
especially for templates mapped to small areas - See a vari-
ety of examples, below and above this criterion, in [9]. As is
claimed in Mikolajczyk et al. [13], an overlap error of 20%
is very small since regions with up to 50% overlap error can
still be matched successfully using robust descriptors.

We consider 2 different template dimensions which are
50% and 20% of the minimal dimension of the image. For
each such size, we repeat the template matching process de-
scribed above. We consider 6 degradation levels of each
type (applied to the target image), as follows: Image blur-
ring with gaussian kernels with STD of {0,1,2,4,7,11} pix-
els, additive gaussian noise with STDs of {0,5,10,18,28,41}
greylevels and finally - JPEG compression with quality pa-
rameter (in Matlab) set to {75,40,20,10,5,2}5.

The comparison of the above success rates of ASIFT
and Fast-Match is presented in Figure 4. This experiment
validates our claim that unlike feature-based methods (e.g.
ASIFT) our method can handle smaller and smaller tem-
plates (10% in each image dimension - which translate to
30x30 templates). In addition, Fast-Match is fairly robust
with respect to noise and JPEG compression and even more
robust to blur in comparison with ASIFT 6. Table 2 shows
the algorithm’s average runtimes for several templates sizes,
run on a single cpu of an Intel i7 2.7 MHz processor.

5.2. Exp. II: Varying Conditions and Scene Types

In the second experiment we examine the performance
of Fast-Match under various imaging conditions and on dif-
ferent scene types. We test our algorithm on a dataset by
Mikoalyciz et al [12, 13], originally used to evaluate the
performance of interest-point detectors and descriptors. The
data set is composed of 8 sequences of images, 6 images

4Unlike our method, such feature based methods do not directly pro-
duce a geometric mapping. These can be found, based on good quality
sets of matching points, using robust methods such as RANSAC [4] by
assuming a known geometric model that relates the images (e.g. affine).

5Note that in the 3 distortion types, the lowest degradation level is
equivalent to no degradation at all

6ASIFT is based on SIFT, which has been shown in [12] to be promi-
nent in its resilience to image blur, with respect to other descriptors.

Template Dimension 90% 70% 50% 30% 10%
ASIFT 12.2 s. 9.9 s. 8.1 s. 7.1 s. NA
Fast-Match 2.5 s. 2.4 s. 2.8 s. 6.4 s. 25.2 s.

Table 2. Runtimes on different template sizes: Average run-
times (in seconds) over 100 instances for each template dimen-
sion. Fast-Match is much faster in general. As opposed to ASIFT,
Fast-Match’s runtime increases with the decrease of template di-
mension. The reason is twofold: 1] The size of our net grows lin-
early in the image-area/template-area ratio. 2] Smaller templates
are more common in the image and hence the Branch-And-Bound
enhancement becomes less effective.

each: Blur (2), a combination of rotation and zooming (2),
viewpoint change (2), JPEG compression (1) and light con-
ditions (1). In each sequence the degradation increases,
e.g., in a blur sequence, from entirely unblurred extremely
blurred. Unlike the first experiment, here the template is
taken from one image and searched for in a different one,
related by a homography (rather than an affinity), increas-
ing the difficulty of the task.

Each experiment is conducted as follows: We first
choose a random axis-aligned rectangle in the first image,
where the edge sizes are random values between 10% and
50% of the respective image dimensions. We then use Fast-
Match to map this template to each of the other 5 images in
the series. We perform 50 such experiments for which the
success rates are given in Table 3. The success criterion is
identical to the first experiment (i.e. overlap error < 20%)
7. The sequences of images (with an example of a single
experiment for each) are shown in Figure 5.

Seq. \ Distortion Level 1 2 3 4 5
Zoom + Rotation (Bark) 100% 100% 87.5% 97.5% 87.5%
Blur (Bikes) 100% 100% 100% 100% 100%
Zoom + Rotation (Boat) 100% 100% 75% 87.5% 55%
Viewpoint change (Graffiti) 95% 95% 87.5% 90% 85%
Brightness change (Light) 97.5% 100% 100% 100% 97.5%
Blur (Trees) 100% 100% 100% 97.5% 100%
JPEG compression (UBC) 97.5% 100% 100% 100% 100%
Viewpoint change (Wall) 100% 100% 100% 5% 0%

Table 3. Percent of successful matches (overlap error< 20%) per
sequence and degradation level. Several examples appear in Fig. 5.

We achieve high success rates across the dataset, with the
exception of the higher degradation levels of the ’Wall’ and
’Boat’ sequences. Note that, the smaller the template area
in the target image, the more demanding the overlap error
criterion becomes8. This is relevant especially to the zoom
sequences. The ’Wall’ images are uniform in appearance
and this makes it difficult to translate good SAD error to
correct localization. The results of Experiment II can not

7Note that because we are approximating a projective transformation
using an affine one (which means matching a general quadrilateral using a
parallelogram), the optimal overlap error may be far greater than 0.

8This issue has been extensively discussed in [13].
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(a) template dimension of 50% (b) template dimension of 20%
Figure 4. Performance under different template sizes and image degradations. Analysis is presented for two different template
dimensions: (a) 50% and (b) 20% of image dimension. In each, the x-axis stands for the increasing levels of image degradation, ranging
from 0 (no degradation) to 5 (highest). The y-axis stands for the success rates of Fast-Match and ASIFT. Fast-Match is capable of handling
smaller and smaller template sizes, while the feature based method ASIFT, deteriorates significantly as template dimension decreases. Like
ASIFT, Fast-Match is fairly robust to the different image degradations and is even more robust to high levels of image blur than ASIFT
(σ = 4/7/11 pixels). See text for details.

be compared with those of [12] as they do not deal directly
with template or image matching. In this experiment too,
Fast-Match deals well with photometric changes as well as
the blur and JPEG artifacts.

5.3. Exp. III: Matching in Real-World Scenes

In the third experiment, we present the algorithm’s per-
formance in matching regions across different view-points
of real-world scenes. We use pairs of images from the
Zurich buildings dataset [19]. As done in the second ex-
periment, we choose a random axis-aligned rectangle in the
first image, where the edge sizes are random values between
10% and 50% of the respective image dimensions. This
dataset is more challenging for the performance of the al-
gorithm, as well as for experimentation: The template typi-
cally includes several planes (which do not map to the other
image under a rigid transformation), partial occlusions and
changes of illumination and of viewpoint.

As there is no rigid transformation between the images,
we evaluated the performance of fast match on 200 images
visually. On 129 of these we found that the mapping pro-
duced by the algorithm was good, in the sense that it corre-
sponded almost exactly to what we judged as the best map-
ping. In most of the remaining cases producing a good map-
ping from the given template was impossible: On 40 of the
images, the location corresponding to the template was not
present in the other image, or that the template spanned sev-
eral planes which can not be mapped uniquely. In 12 of the
images the location that the template was a photograph of
was occluded by some outside element, such as a tree. In
only 19 of the images was locating the template possible,
and the algorithm failed to do so. Examples of good map-
pings can be found in Figure 6. Examples of cases where a
good match was not found appear in Figure 7. The results
on the entire dataset appear in [9].

Figure 5. A typical experiment for each of the Mikolajczyk [13]
sequences. In the leftmost image - the area marked in blue is
the input given to Fast-Match. In each of the remaining images
a blue parallelogram indicates the mapping produced by Fast-
Match, while a green quadrilateral marks the ground truth.

Conclusions We presented a new algorithm, Fast-Match,
which extends template matching to handle arbitrary 2D
affine transformations. It overcomes some of the shortcom-
ings of current, more general, image matching approaches.
We give guarantees regarding the SAD error of the match
(appearance related) and these are shown to translate to sat-
isfactory overlap errors (location related). The result is an
algorithm which can locate sub-images of varying sizes in
other images. We tested Fast-Match on several data sets,
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Figure 6. Zurich Dataset [19] - Good Examples: In the blue rect-
angle on the left of each pair of images is the template presented
to Fast-Match. In the blue parallelogram on the right is the re-
gion matched by the algorithm. Note that also for some of the
non-affine mappings Fast-Match gives a good result.

Figure 7. Zurich Dataset [19] - the remaining: Failures (row
1), Occlusions (row 2), Template or Target template is out of
plane/image (row 3)

demonstrating that it performs well, being robust to differ-
ent real-world conditions. This suggests that our algorithm
can be suitable for practical applications. An interesting di-
rection for future research is to apply similar methods to
more diverse families of transformations (e.g. homogra-
phies) and in other settings, such as matching of 3D shapes.
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