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Abstract

This work presents a novel approach for detecting in-
liers in a given set of correspondences (matches). It does
so without explicitly identifying any consensus set, based
on a method for inlier rate estimation (IRE). Given such an
estimator for the inlier rate, we also present an algorithm
that detects a globally optimal transformation. We provide
a theoretical analysis of the IRE method using a stochas-
tic generative model on the continuous spaces of matches
and transformations. This model allows rigorous investi-
gation of the limits of our IRE method for the case of 2D-
translation, further giving bounds and insights for the more
general case. Our theoretical analysis is validated empir-
ically and is shown to hold in practice for the more gen-
eral case of 2D-affinities. In addition, we show that the
combined framework works on challenging cases of 2D-
homography estimation, with very few and possibly noisy
inliers, where RANSAC generally fails.

1. Introduction
The problem of image correspondence is a fundamental

problem in computer vision, as it arises as a primitive in
many tasks such as image retrieval, 3D reconstruction and
panorama stitching. While some works solve these types
of problems using direct methods [11, 5, 8], the vast major-
ity of recent methods use large sets of matching (pairs of)
points as their entry point, later discarding the content of the
images. This is largely due to the tremendous improvement
over the last decades in algorithms for detecting stable im-
age feature points and representing them by descriptors that
are designed for the task of matching [10, 13, 14].

The desired outcome of such a point matching process is
that a large portion of the matches is accurate, while only a
few of them (preferably none) can have arbitrarily bad er-
rors. These two groups of matches are called inliers and
outliers, respectively. The final step of image matching is
therefore to robustly detect the “true” transformation under-
lying the inliers while ignoring the outliers. In practice, this
is most commonly formulated as the consensus set maxi-
mization problem, where the goal is to find a maximal set
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Figure 1. Our approach is “orthogonal” to RANSAC, which
assumes a fixed error-threshold for inliers and then searches for
a model that maximizes the inlier rate Our method works in an
opposite order: the inlier rate of matches is first estimated from the
data and then, a model that minimizes the error of such a portion
of inliers is searched for.

of matches that agree on a model, up to some tolerance.
This work presents a different approach, as is illustrated

in Figure 1. The green curve is a cumulative error dis-
tribution of matches between a pair of images, under a
ground-truth transformation. In RANSAC (and any other
consensus-set-maximization approach), a fixed error thresh-
old is chosen and a model with a maximal number of inliers
within the threshold is searched for (depicted by vertical
red lines, for different thresholds). Our approach, on the
other hand, first estimates the true inlier rate of the matches
(about 70% in this example) and then searches for a model
with lowest possible match errors over the detected portion
of matches (depicted by the blue horizontal arrow).

The portion of inliers and the noise level of inlier
matches are generally unknown, and any a-priori choice of
error threshold is rather arbitrary. Our inlier rate estimation
(IRE) method makes a principled prediction based on min-
imizing an indicative quantity, denoted v(p), over any pos-
sible inlier rate p. v ’counts’ the number of transformations
(or portion of transformation space) that have a p-tile error
’similar’ to the best one possible. It turns out that v has a
very particular behavior around the true inlier rate, where it
attains a surprisingly clear minimum.

As a combinatorial metaphor of this phenomenon, con-
sider a bag with N balls, k of which are white, and the re-
maining N−k are black. In this metaphor, white and black
balls correspond, respectively, to inliers and outliers. Also,
a ’selection’ of balls represents a transformation and v is the
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number of ’good’ possible selections. One has an estimate
k̂ of k and wishes to pick k̂ balls with as many white ones as
possible. If k̂ is an underestimate of k, there are

(
k
k̂

)
many

options to do so. On the other hand, if k̂ is an overestimate
of k, all the k white balls must be selected along with k̂− k
additional black balls, for which there are

(N−k
k̂−k

)
options.

These two cases coincide at k = k̂, where the number of
options attains its minimum.

1.1. Prior work
A globally optimal solution for consensus set maximiza-

tion can be obtained by naı̈vely going through all possible
subsets of matches, a task of exponential magnitude. Nev-
ertheless, many heuristics for its efficient approximation or
full solution have been suggested in the literature, some
with theoretical guarantees. These works, at large, can be
divided into the following two categories.

RANSAC based techniques In RANSAC [4], the space
of parameters is explored by repeatedly selecting random
subsets of the matches for which a model hypothesis is fitted
and then verified. A recent comprehensive survey and eval-
uation of RANSAC techniques by Raguram et al. [16] also
suggests USAC – a uniform pipeline that combines several
of the known extensions (e.g. [2, 12, 3]) in addition to many
practical and computational considerations. USAC shows
excellent results on a variety of transformation groups (e.g.
Essential, Fundamental, Homography), in terms of accu-
racy, efficiency, and stability. Another interesting exten-
sion of RANSAC by Raguram et al. [17] claims to eliminate
the need of the inlier-threshold input of RANSAC without
harming exactness, at only a modest increase in runtime.

Global optimization techniques This line of works aims
at overcoming the unpredictability of RANSAC-based tech-
niques, which is due to their inherent random nature. Sim-
ilar to RANSAC, their formulation of consensus-set maxi-
mization uses a predefined inlier error threshold, which is a
clear disadvantage. Ollson et al. [15] presented an approach
based on theory from computational geometry. They give
an O(kη+1) polynomial time algorithm, for the case of k
matches and transformation space of η DoF. This method
could not be used in practice for spaces of more than a few
DoF. Li et al. [9] proposed a solution that formulates the
problem as a mixed integer program (MIP), which is gener-
ally NP-hard. However, they solve it exactly via relaxations,
using a tailored branch-and-bound (BnB) scheme that in-
volves solving a linear program at each node. While this
approach generalizes nicely to other domains [1, 19, 20],
unlike RANSAC it has not been shown to be efficient in
challenging real-life cases where the portion of inliers is
very small. The BnB scheme we propose involves much

simpler calculations (computing and sorting match errors)
and can be applied successfully on such challenging cases.

1.2. Contributions

This paper has three main contributions. First, a scheme
for efficiently sampling the space of transformations. Sec-
ond, an algorithm for finding the best transformation for a
set of matches, given the rate of inliers, with global guaran-
tees. This algorithm has low practical applicability without
our third, main, contribution - an algorithm (IRE) for esti-
mating the rate of inliers in a given set of matches, without
explicitly detecting them.

In addition, we present a rigorous analysis of the IRE al-
gorithm and validate our analysis in several settings. We
also show that our complete framework, which we term
GMD, can work on challenging data with accuracy com-
parable to the state-of-the-art.

2. Method
Our algorithm gets as input a set of matches between

a pair of images and a group of transformations to search
through. As opposed to common practice, our philosophy
is to first search for the rate of inliers (Section 2.3) and then
search for the transformation with the lowest possible error
over the specific rate of inliers (Section 2.2). These two
components of the algorithm rely on a sampling regime of
the space of transformations T (Section 2.1).

Preliminary definitions Let I1 and I2 be a pair of im-
ages, defined w.l.o.g. as 2D continuous entities on [0, 1]2.
A match m = (x1,x2) is an ordered pair of points x1 ∈ I1
and x2 ∈ I2 and thus we can denote the domain of matches
to be the product of image domains,M = [0, 1]2×[0, 1]2.

We denote by T a group of parametric transformations;
we are mainly interested in the typical groups of transfor-
mations between pairs of images (i.e. functions from R2

to R2), with different degrees of freedom (DoF), such as
Euclidean (3 DoF), Similarities (4 DoF), Affinities (6 DoF)
and Homographies (8 DoF). In some of the cases we would
like to further consider only a subspace of the group restrict-
ing, e.g., the maximum scale or the range of translation.

For any transformation t ∈ T and match m =
(x1,x2) ∈ M we define the error of the match m with
respect to t to be the Euclidean distance in I2:

err(t,m) = ‖x2 − t(x1)‖2 (1)

Furthermore, we define a “worst-case” distance between
any two transformations t1, t2 ∈ T ,

dT (t1, t2) = max
x1∈I1

‖t1(x1)− t2(x1)‖2. (2)

This distance measures how far apart can any source im-
age point be mapped by the two considered transformations.
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Figure 2. Construction of the sampling Sε : A Cartesian grid
(black points) with step size

√
2ε over the image I2 (black rectan-

gle) defines the sample. For a transformation to be a part of Sε,
it has to map all four corners of I1 to four points on the grid. An
example of a valid map is shown in green, and two non-valid maps
are shown in red.

The well-known Sampson error (see e.g. [6]) is obtained by
replacing the max in (2) with an average. dT can easily be
shown to be a metric, and will be used in the construction
of a sampling of T .

2.1. Efficient sampling of T

In what follows, we construct a nearly uniform sample
S of the transformation group T . For a given resolution
parameter ε > 0, we define a 2D Cartesian grid with step
size
√

2ε over the image I2 (or a padded version of it). The
sample Sε = {t1, . . . , tn} is simply the subset of transfor-
mations in T that map all four corners of I1 to distinct grid
points1 over I2, as is illustrated in Figure 2. Under the defi-
nition of the distance dT (2), the covering and packing radii
of Sε can be shown to be ε and ε/

√
2, respectively2, result-

ing in an ε-net. As is done in [8], the size of the ε-net can
be shown to be O(ε−η), for T with η DoF.

Another useful property of the sample Sε can be seen by
examining the Voronoi tessellation it induces on the space
T . For any match mj ∈ M and any ti ∈ Sε, the error
err(ti,mj) differs by at most ε from the error err(t,mj) of
any other transformation t in the Voronoi cell of ti. This
follows from dT (ti, t) < ε and the triangle inequality on
dT . Furthermore, this property holds for various statistics
over the match errors in M , such as the mean, median or
any other percentile.

2.2. Searching for an optimal transformation

The algorithm presented here finds an approximation
tmin for the optimal transformation t? ∈ T , given an esti-
mated inlier rate p̂. By optimal we mean that the mean of the
best p̂-tile of match errors of t? is the lowest possible over

1This requirement prevents usage for spaces that allow only “rigid”
rotations like similarity transforms, but it is easy to define an alternative
sampling for these cases, as is done in [7].

2This means that any two samples in Sε are at least
√

2ε apart and that
any t ∈ T has at least one sample in S that is at most ε away from it.

input: Inlier-rate estimate p̂; matches M ; resolution ε;
output: Estimate tmin of the best transformation t?

1. Construct a sample Sε of T (Section 2.1).
2. Compute an error matrix E, with entries
eij = err(ti,mj) for each ti ∈ Sε (rows) and each
mj ∈M (columns).

3. Sort each column of E by increasing error
(as a result every row represents a percentile p).

4. Replace each column by the cumulative average of
its entries (as a result each entry holds the average
of match errors from lower percentiles).

5. Extract from E the row ep̂, that corresponds to the
percentile p̂.

6. Find the transformation tmin, that attains the mini-
mal error in ep̂, denoted as rmin(p̂).

branch-and-bound extension
7. If ε is low enough: terminate and return tmin.
8. Discard all transformations (rows) that have

ep̂ > rmin(p̂) + ε.
9. Replace the remaining samples of Sε with their

children in Sε/2.
10. Set ε← ε/2 and go to step 2.

Algorithm 1: Finding the best transformation through
branch-and-bound (BnB).

all t ∈ T . To achieve this, we make use of the previously
mentioned sample Sε, and refine it only around promising
regions in a branch-and-bound (BnB) manner. This method
follows the lines of the template-matching method intro-
duced in [8], and is summarized as Algorithm BnB.

Since the procedure can be repeated in a recursive man-
ner, the error of the resulting tmin can approach arbitrar-
ily close to that of t?. In the BnB process, we are guar-
anteed to never discard the Voronoi cell that contains t?,
centered at some t ∈ Sε. This is due to the fact that the
error rmin(p̂) can not be lower than that of t by more than
ε. The complexity of one BnB iteration can be shown to be
O(kε−η + k log k), for k matches and T with η DoF.

2.3. Estimating the inlier rate

Since the inlier rate is seldom known in practice, we in-
troduce Algorithm IRE, a practical procedure that finds an
estimate p̂ of the “true” inlier rate p? in the set of matches
M . In order to do so, we introduce a quantity (denoted by
vε(p) in the algorithm) that depends on the sample density
ε and is a function of the inlier rate p. This quantity is very
easy to compute and the main insight of the paper, is that it
attains a minimum at the “true” inlier rate p?. In Section 3,
we give an extensive theoretical analysis of the existence of



input: Set of matches M ; Sample resolution ε
output: Estimate p̂ of the “true” inlier rate p?

1. Construct a sorted error matrix E
(steps 1-3 in Algorithm BnB).

2. Calculate a column vector rmin by taking the min-
imal error from each row of E.

3. Calculate a column vector vε(p) by counting the
number of entries in each row of E that are at most
ε more than their respective value in rmin.

4. Take p̂ to be the relative location of the minimal
value in vε(p).

Algorithm 2: Inlier Rate Estimation (IRE).

this minimum.
To understand the idea behind the method, for any inlier

rate p, think of the transformation tmin(p) - the one which
attains the minimal error over any p% of the matches. It
turns out that the closer p is to the true rate p?, the fewer
transformations there are with error “similar” to that of
tmin(p). Our measure vε(p) counts the number of trans-
formations that can explain p% of the matches with an error
that is within a tolerance of ε from that of tmin(p).

3. IRE Theoretic Justification

In this section we give the theoretical background behind
our IRE algorithm from Section 2.3. Our formulation of the
problem uses a generative model in which the set of matches
is drawn from a distribution, which generates both inliers
and outliers. The probabilistic properties of this model will
allow us to obtain bounds on the quantity vε and to assert
that it has a local minimum around the “true” inlier rate p?.

3.1. Generative model for matches

Our formulation of the distribution of matches fm be-
low, is governed by 3 main factors. First, the inlier rate p?,
which is the probability of a match to be an inlier rather than
an outlier. Second, the “true” transformation t? ∈ T which
is used to generate inlier matches. Finally, a maximal noise
magnitude r? that may be added to inlier locations.

A pair of matching points m = (x1,x2) ∈ M is drawn
from the distribution

fm(x1,x2) = f1(x1)f2(x2|x1), (3)

where first the point x1 is drawn according to some arbitrary
distribution3 f1(x1) on I1, followed by the point x2 which

3For example the distribution of occurrences of interest points in an
image. We ignore the case of inlier points that are mapped under t? outside
of I2, for which the inlier distribution should be zero.

is drawn from the conditional distribution

f2(x2|x1) = p? · fin(x2|x1) + (1−p?) · fout(x2|x1) . (4)

In our model, the inlier distribution fin(x2|x1) places x2

at the location t?(x1) in I2 and adds to it random noise with
maximal magnitude of r?, such that err(t?,m) ≤ r?. The
outlier distribution fout(x2|x1), places the point x2 at ran-
dom in I2. We assume w.l.o.g. that x2 is placed at distance
of at least r? from t?(x1) such that err(t?,m) > r?, since
otherwise such a match can be considered to be an inlier.

As is done in different formulations regarding distribu-
tions of inliers and outliers (e.g. in consensus set maxi-
mization problems), we will later make assumptions on the
kind of noise that is added to the inliers and on the specific
distribution of the outliers, both currently left unspecified.

3.2. Probabilistic interpretation of the model

Having defined a distribution of point matches, we can
now measure probabilities over match errors with respect to
some transformation t ∈ T . Specifically, we are interested
in the probability of a matchm to have an error below some
threshold r,

pt(r) = P{err(t,m) ≤ r} , (5)

where the probability is taken over the distribution fm of
matches m. Using this notation, it is now clear that the dis-
tribution fm (specifically f2) was defined so that pt?(r?) =
p?. The probability pt(r) can be computed by marginaliz-
ing over x1 ∈ I1,

pt(r) =

∫
x1∈I1

f1(x1)qt(r|x1) dx1 (6)

where qt(r|x1) is the conditional probability for a match
with a specific source point x1 to have an error less than r.
Substituting the distribution f2 defined in (4), yields

qt(r|x1) =

∫
Br(t(x1))

f2(x2|x1) dx2 (7)

where the integration domain is the Euclidean ball of radius
r centered at the target point t(x1) in the image I2.

It is worth while pointing out the fact that there is a
monotonic non-decreasing relation between the error radius
r and the probability pt(r): the higher the error threshold is
the higher the probability of a match error to be within the
threshold. This relation enables us to introduce an equiva-
lent term for the error radius r for which pt(r) = p,

rt(p) = min r s.t. pt(r) = p . (8)
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Figure 3. Characterizing the transformation t by the distance
dt from t?: For a specific point x1 ∈ I1, we look at its possible
target locations in I2. The blue ball Br?(t?(x1)) has probability
p? since it contains the inlier distribution entirely. Any transfor-
mation t is associated with a red ball Brmin(p)+δ(t(x1)). For t to
be in Ωδ(p) the red ball should contain a probability of at least p.

3.3. Inlier rate estimation

In this section, we formulate the probabilistic version of
Algorithm IRE. This includes, the definition of the continu-
ous counterparts of the vectors vε and rmin. We first define
rmin(p) to be the best attainable error for any transforma-
tion t ∈ T that “captures” matches with probability p,

rmin(p) = min
t∈T

rt(p).

It is easy to see that rmin(p?) = r?, and that this value is
achieved, possibly among others, by t? (otherwise the in-
liers are governed by some other, more prominent, transfor-
mation). To define the continuous counterpart of vε, we can
no longer use the sampling resolution ε. Instead, we define
an error tolerance δ. In Algorithm IRE we implicitly link
the two parameters by setting δ = ε, which is used through-
out our experiments; however, we stress that the exact rela-
tion between these parameters requires additional research.
For every p and δ > 0, we define

Ωδ(p) = {t ∈ T : rt(p) ≤ rmin(p) + δ}, (9)

as the subset of T of transformations t with error radius
rt(p) that is at most δ larger than the optimal radius rmin(p).
We take the normalized volume4 of the subset Ωδ(p) to be
our indicative quantity for estimating p?:

Vδ(p) = Vol(Ωδ(p)) /Vol(T ). (10)

We can now formulate our main claim regarding the be-
havior of our measure Vδ(p) around the true inlier rate p?:

Proposition 1. If both fin and fout are uniform distribu-
tions and T is the space of 2D translations, then

p? = argmin
p

Vδ(p) . (11)

4Technically, for the volume to be well-defined, the space of transfor-
mations has to be equipped with a measure, w.r.t. which the set Ωδ(p) is
measurable. For general Lie groups, a natural choice is the Haar measure,
which can be computed explicitly as the transformation of the volume form
in the group parametrization domain. It can be shown that Ωδ(p) is a Borel
set, and hence is measurable.
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Figure 4. Regions in the (r?, p?) plane where dmax(p) attains a
minimum at p?. Left: The region for δ � 1, the interior of the
region is colored in gray. Note that the minimum exists for a large
range of values of p? and r?. Right: Regions for large δ values
(interior not colored). The fact the the region is large even for large
values of δ give intuition on the performance with coarse sampling
of T . See Supplementary Materials for a detailed discussion.

Proof. Let us begin by spelling out the assumption of uni-
form fin and fout. For fin we assume that the target
points x2 of inlier matches are distributed uniformly in
Br?(t?(x1)), i.e., on a ball of radius r? around t?(x1). For
fout we assume that the target points x2 are distributed uni-
formly on the entire image, except Br?(t?(x1)). We denote
these two constant probability densities as ρin = (πr?2)−1

and ρout = (1− πr?2)−1, respectively.
The main advantage of assuming uniform distributions

is that probability calculations are reduced to area calcu-
lations. Specifically, looking at Figure 3, the probabil-
ity qt(rmin(p)+ δ |x1) is the one captured in the red ball
Brmin(p)+δ(t(x1)). The calculation can be broken down to
the inlier area (intersection between the red and blue balls)
weighted by ρin and the outlier area (the rest of the red ball)
weighted by ρout. It follows that qt(rmin(p)+δ |x1) depends
only on the distance dt = ‖t(x1) − t?(x1)‖2 between the
ball centers in I2, marked in green in Figure 3. Under the
necessary assumption that ρin · p? > ρout · (1 − p?), the
probability qt(rmin(p)+δ |x1) decreases as dt grows.

An equivalent way of looking at Ωδ(p) follows from the
definition of rt(p) in (8)

Ωδ(p) = {t ∈ T : pt(rmin(p)+δ) ≥ p} , (12)

which leads to a sufficient (but not necessary) condition for
a certain transformation t to be in Ωδ(p):

qt(rmin(p)+δ |x1) ≥ p, ∀x1 ∈ I1 . (13)

In other words, a ball of radius rmin(p)+δ centered around
t(x1) should contain a probability of at least p, for all x1.
In the case of 2D translations, the latter condition is also
necessary. To show that, we observe that dt is constant over
all x1 ∈ I1, and so is the probability qt(rmin(p)+δ |x1) that
depends on it. The expression for pt(r) in (6) yields pt(r) =
qt(r |x1) for every x1 regardless of f1, and condition (13)
holds iff t ∈ Ωδ(p). Since dt is constant over all x1 ∈ I1,
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Figure 5. Theoretical behavior of dmax(p), rmin(p) and Vδ(p)
for 2D translations for the case of p? = 20% (for a specific set-
ting of r? and δ). Dashed blue curve is the optimal error rmin(p),
and the solid blue line shoes the distance dmax(p) obtained by
solving (15). Green curve shows the volume Vδ(p). Left axis
corresponds to the two blue curves; right axis corresponds to the
green curve.

Ωδ(p) can be defined as

Ωδ(p) = {t : dT (t?, t) ≤ dmax(p)}, (14)

using the distance dT from (2), where dmax(p) denotes
the maximal distance dT at which inequality (13) still
holds. With this interpretation of Ωδ(p) being a ball of
radius dmax(p), its volume increases monotonically with
the radius, and therefore Vδ(p) attains a minimum at p? iff
dmax(p) does so.

To show the existence of the latter minimum, we study
the behavior of dmax(p) around p?. The probability
qt(rmin(p)+δ |x1) from (13) can be expressed as
qt(rmin(p)+δ |x1) = . . . (15)

ρin · p? · ψ(r?, rmin(p)+δ, dmax(p)) + . . .

ρout·(1−p?)·
[
π(rmin(p)+δ)2 − ψ(r?, rmin(p)+δ, dmax(p))

]
where ψ(r1, r2, d) is the intersection area of circles of ra-
dius r1 and r2 with centers at distance d (see Supplemen-
tary Materials for closed-form expressions of rmin and ψ).
The value of dmax(p) can be found by plugging inequal-
ity (13) into (15). By performing implicit differentiation on
the result, we show that dmax(p) attains a local minimum at
p = p? (refer to Supplementary Materials for the full deriva-
tion), for a large range of values of p? and r?, illustrated in
Figure 4.

The simple form of Ωδ(p) obtained in (14) for 2D trans-
lation leads to a closed-form expression for the normalized
volume, Vδ(p) = πdmax(p)

2
/Vol(T ), following (10). As

expected for a 2D group, the volume grows quadratically
with the radius. Figure 5 shows the (analytically computed)
quantities rmin(p), dmax(p) and Vδ(p) for 2D translations
as a function of p, for a specific setting of p?, r? and δ. As
expected, both dmax(p) and Vδ(p) attain a minimum at p?.

While Proposition 1 is limited to only one type of distri-
bution (uniform) and one type of transformations (2D trans-
lation), we conjecture that it holds for a much wider range
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Figure 6. Validating Vδ(p) in a synthetic 2D translation experi-
ment. We show the normalized volume Vδ(p) for different values
of δ (shown in % of image size). A good match between theoreti-
cal (dashed) and empirical (solid) curves is observed in the vicinity
of the true inlier rate p?. See text for details.

of settings and bring evidence for this in Sections 4.2 and
4.3. We discuss in Section 5 possible extensions to some
more complex real-life cases and their challenges.

4. Experimental Results
We present a series of three experiments that examine the

proposed method in a gradual manner, going from theoretic
to real-life cases.

4.1. 2D translation - Synthetic data

We first wish to validate the formula for Vδ(p) for the
case of 2D translations, presented right after the proof of
Proposition 1. Since the space of 2D translations has only
two DoF we can sample it densely, and obtain a close-to-
continuous approximation of the size Vδ(p). Figure 6 shows
results on a single instance of the problem generated accord-
ing to our model, with inlier rate p? = 8% and inlier noise
r? of 5% of the size of I2. We compare the volume Vδ(p) as
obtained from empirical measurements (solid lines) to the
theory (dashed lines) for several values of δ (color coded).
There is an evident match between theory and practice at a
certain interval around the true inlier rate p? (black dashed
line). The extent of this interval diminishes with the in-
crease in δ, a phenomenon we discuss in the Supplementary
Materials. In addition, note that all the curves attain a min-
imum at p?, as predicted by Proposition 1, even for high δ
values, in accordance with the solution regions in Figure 4.

4.2. 2D affine - Synthetic data

While our theoretic analysis was developed for a con-
tinuous space of transformations, in practice both Algo-
rithm BnB and Algorithm IRE rely on discrete samplings
Sε of the space T . The sampling density depends mainly on
memory and time considerations, and tends to be effectively
coarser for T with many DoF. In this experiment, we exam-
ine how our IRE method works under deteriorating sam-
pling resolutions on the 2D-Affine group (6 DoF). Coarse
sampling causes the method to deviate from the continuous
version in two ways. First, the calculation of rmin is an ap-
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Figure 7. Sensitivity to sampling of a synthetic 2D affine group
example. We show here results for two challenging examples.
Left example (low inlier rate p?): p? = 1% and r? = 1%. Right
example (high inlier noise r?): p? = 16% and r? = 8%. In
each example: The image I1 (top left) is mapped into image I2
by an affine transformation (solid black parallelogram in top right).
500 matches were generated according to our model with the men-
tioned p? and r? (inlier matches are in red). We calculate vε using
a sequence of step-sizes εi (color coded plots), and it is evident that
the location of the minimum (black cross) stays roughly around p?.

proximation of rmin(p); however, since Sε is an ε-covering
we incur an additive error of at most ε. Second, vε(p)/|Sε|
approximates the normalized volume Vδ(ε). The fact that
the sample is relatively uniform in the distance dt (Sε has
similar covering and packing radii), ensures that sample
counting approximates well the volume.

Figure 7 presents results on two instances of the exper-
iment, which were generated in a way similar to the previ-
ous 2D translation example. The first example is extreme
in terms of the inlier-rate and the other one is extreme in
terms of the inlier-noise. Each curve (color coded by sam-
ple density ε) shows our approximation vε(p)/|Sε| of the
normalized volume Vδ(ε). In both cases, at a range of sam-
pling resolutions, the minimum value is obtained at the true
inlier rate or relatively close to it. This stability of the IRE
algorithm under changes of the error tolerance δ is also in-
dicated in Figures 4 (right) and 6.

4.3. 2D homography - Real data

In this experiment, we test our algorithm on two datasets
containing very challenging image pairs, as the inliers are
noisy and their rate can fall well below 10%. We also com-
pare our results to USAC [16], a state-of-the-art RANSAC
method, with a publicly available implementation.

Datasets The first one was presented by Mikolajczyk et
al. [14], and was originally constructed to benchmark fea-
ture detectors and descriptors. Here we use 5 of the se-
quences - each containing 6 images where a planar object
undergoes a gradually increasing view point change. As
was suggested in the dataset, we use the pairs 1-2, 1-3, 1-
4, 1-5, 1-6, for which a ground-truth homography is pro-
vided. The second dataset was used by Raguram et al. [16]
to benchmark the USAC algorithm against other RANSAC
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Figure 8. Results on 2D homography with real data. In each row
we show Left: an image pair (from [16]); Middle: the prediction
p∗ (black dashed line) of Algorithm IRE as the minimal value of
vε(p); Right: The result of Algorithm BnB (black circle) and the
result of multiple USAC runs for different thresholds (red circles),
shown against the CDF (green curve) of match-errors w.r.t. the
ground-truth transformation.

methods. We use a portion of this dataset which includes
image pairs related by view-point change, described by a
homography. Since the USAC algorithm requires an inlier
error-threshold, we ran it for each integer threshold from 2
pixels (the recomended default) up to 30 pixels and took the
run of the lowest threshold for which the run succeeded. For
image pairs in [16] there was no ground truth provided, and
we created one manually. In both datasets, the ground-truth
is accurate up to 1 pixel, which is sufficient for comparison.

Implementation details For all images, we generated
correspondences based on matching SIFT descriptors, us-
ing the VLFeat library [18]. We used an initial sampling
resolution ε that equals a third of the minimal image di-
mension. Our Matlab implementation of Algorithm BnB
typically takes less than 10 seconds for an image pair on a
modest PC. The runtime of Algorithm IRE is negligible as
it reuses most of the calculations done in the former.

In this experiment, we applied two heuristics after step
6 of Algorithm BnB in order to accelerate it (without com-
promising the guarantees). First, we performed a depth-
first-search around tmin, possibly providing a lower rmin(p̂)
which allows us to discard more samples. This heuris-
tic is somewhat similar to the one used in [9]. Second,
we perform a local optimization of tmin by reweighted
least squares on the inliers. This heuristic may also lower
rmin(p̂), and is somewhat similar to the LO-RANSAC [3]
extension used in USAC. In addition, the local optimization
improves accuracy. The result is closer to the ground-truth
transformation (i.e. accurate in terms of Sampson error [6]).



Image pair
sequence method 1-2 1-3 1-4 1-5 1-6

bark GMD 1.56 3.45 2.53 1.14 2.36
USAC 1.55 3.49 2.53 1.15 2.35

graffiti GMD 0.54 1.53 1.45 6.55 fail
USAC 0.53 0.85 0.98 fail fail

graffiti 4 GMD 0.38 1.06 0.59 0.92 1.11
USAC 0.42 1.23 0.85 1.27 1.27

graffiti 5 GMD 0.75 1.23 2.00 2.51 6.63
USAC 0.62 1.51 2.03 2.52 fail

wall GMD 1.24 0.60 1.29 1.56 2.12
USAC 1.24 0.59 1.33 1.66 2.81

Table 1. Sampson error of homography estimation in five view-
points of four scenes from [14] (each row corresponds to a scene
and each column to a pair of images, with the strength of the view-
point transformation increasing from left to right). Errors are re-
ported w.r.t ground truth, which may be up to one pixel inaccurate.

Results Figure 8 shows results on three image pairs from
[16]. As can be seen in the middle column, the minimum
of vε(p) is prominent in all cases, and its location is close
to the “saturation” level of the (green) CDF of match errors
w.r.t. the ground-truth (shown on the right) - an indication
of the correctness of the detection. In addition, results for
USAC are shown by the red circles on the right for thresh-
olds in the interval [2,30] at steps of 3. Notice that in the
second row there are very few inliers with error < 2 and
therefore USAC with such a threshold fails. Our method is
less sensitive to the level inlier noise.

Table 1 compare the performance of our method (GMD)
to USAC [16], in terms of Sampson error (see e.g. [6]),
which compares to the ground truth transformation, over
5 viewpoint sequences from [14]. Both methods achieve
similar accuracy, where USAC fails on the 3 most difficult
pairs while we fail only on one. Our method is not claimed
to be generally more accurate than USAC. Specifically in
this experiment, error differences that are under one pixel
fall below ground truth accuracy.

We now focus on the two hardest sequences (graffiti,
graffiti-5) from [14]. Figure 9 shows a possible reason for
the failures on these scenes. Specifically looking at graffiti
1-6, there seem to be virtually no correct matching SIFT
features, and hence none of the methods is expected to
work. Our method manages to solve the rest of the cases,
despite the combination of high inlier noise and low inlier
rate. For these same two sequences, Table 2 shows the es-
timated inlier rates and match errors attained by both meth-
ods. It is evident that USAC generally achieves lower match
error as the noisiest inliers are discarded, a fact that may ex-
plain why it failed on extreme cases.

5. Discussion and Future Work

We have presented and new approach to detecting a
model from matches, where the rate of inliers is estimated
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Figure 9. Results on the two hardest sequences from [14]. Cu-
mulative match error w.r.t the ground-truth are shown (color coded
by pair number). As the view-point difference increases, the noise
of inliers increases and their rate decreases. Our results shown by
crosses in the respective colors.

first and only then the best transformation is searched for.
The method seems to perform very well in practice on chal-
lenging cases of homography estimation, even if the the-
oretic background is currently limited. We made two re-
strictive assumptions in Proposition 1, and while alleviating
these assumptions is deferred to future work, in what fol-
lows we briefly discuss the main implications.

The assumption of uniform fin and fout was rather prag-
matic to simplify the proof. Replacing the inlier (outlier)
distributions would only affect the first (second) term of
equation (15), where instead of a simple area calculation
multiplied by the uniform noise ρin (ρout), a more complex
integral would be used. For example, fin could be replaced
by the commonly assumed Gaussian noise.

The assumption of T being 2D translations is more fun-
damental, but we conjecture that it holds for a much wider
range of transformation groups, as suggested by our exper-
iments. Once this assumption is dropped, the proof must
involve calculating the value of pt(r) in (6), which can be
viewed as the expectation of qt(r|x1) over x1. The value
qt(r|x1) depends in turn on the distance dt, which now is
not constant and depends on x1. This desired property al-
leviated the need to make any assumptions on the probabil-
ity f1(x1) and made the “worst-case” analysis true for all
points x1. Nevertheless, a tight bound could be achieved by
a slightly more intricate “average-case” analysis, which we
leave for future work.

Image pair
sequence method 1-2 1-3 1-4 1-5 1-6

graffiti
GMD

99.8% 80.2% 36.6% 12.6%
fail

0.5±0.7 1.8±1.8 2.2±3.4 8.5±14

USAC
87.8% 36.6% 19.5%

fail fail0.5±0.3 0.7±0.3 1.1±0.6

graffiti 5
GMD

99.8% 99.2% 74.2% 31.6% 9.3%
0.6±0.6 0.9±0.8 1.4±1.5 3.0±4.9 6.3±11

USAC
89.2% 66.4% 33.6% 15.3%

fail0.5±0.3 0.6±0.3 0.7±0.3 1.5±0.7

Table 2. Inlier rates and match errors of homography estima-
tion on the graffiti and graffit-5 sequences from [14] using GMD
and USAC. For each method, the detected inlier rate is shown in
the first row, while the median±std of the inlier match errors is in
the second. USAC achieves lower errors and std values since less
matches are classified as inliers.



References
[1] J. Bazin, H. Li, I. S. Kweon, C. Demonceaux, P. Vasseur,

and K. Ikeuchi. A branch-and-bound approach to correspon-
dence and grouping problems. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 35(7):1565–1576, 2013.
2

[2] O. Chum and J. Matas. Matching with prosac-progressive
sample consensus. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 220–226. IEEE, 2005. 2

[3] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac.
In Pattern Recognition, pages 236–243. Springer, 2003. 2, 7

[4] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981. 2

[5] Y. HaCohen, E. Shechtman, D. B. Goldman, and D. Lischin-
ski. Non-rigid dense correspondence with applications for
image enhancement. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2011), 30(4):70:1–70:9, 2011.
1

[6] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003. 3, 7,
8

[7] S. Korman, R. Litman, S. Avidan, and A. Bronstein. Proba-
bly approximately symmetric: Fast rigid symmetry detection
with global guarantees. Computer Graphics Forum, 2014. 3

[8] S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-
match: Fast affine template matching. In CVPR, pages 2331–
2338. IEEE, 2013. 1, 3

[9] H. Li. Consensus set maximization with guaranteed global
optimality for robust geometry estimation. In Computer Vi-
sion, 2009 IEEE 12th International Conference on, pages
1074–1080. IEEE, 2009. 2, 7

[10] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 1

[11] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In IJCAI, vol-
ume 81, pages 674–679, 1981. 1

[12] J. Matas and O. Chum. Randomized ransac with sequential
probability ratio test. In Computer Vision, 2005. ICCV 2005.
Tenth IEEE International Conference on, volume 2, pages
1727–1732. IEEE, 2005. 2

[13] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-
terest point detectors. International journal of computer vi-
sion, 60(1):63–86, 2004. 1

[14] K. Mikolajczyk and C. Schmid. A performance evaluation of
local descriptors. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 27(10):1615–1630, 2005. 1, 7, 8

[15] C. Olsson, O. Enqvist, and F. Kahl. A polynomial-time
bound for matching and registration with outliers. In Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008. 2

[16] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm.
Usac: A universal framework for random sample consensus.

Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 35(8):2022–2038, 2013. 2, 7, 8

[17] R. Raguram and J.-M. Frahm. Recon: Scale-adaptive ro-
bust estimation via residual consensus. In Computer Vi-
sion (ICCV), 2011 IEEE International Conference on, pages
1299–1306. IEEE, 2011. 2

[18] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable
library of computer vision algorithms. http://www.
vlfeat.org/, 2008. 7

[19] J. Yang, H. Li, and Y. Jia. Go-icp: Solving 3d registration ef-
ficiently and globally optimally. In Computer Vision (ICCV),
2013 IEEE International Conference on, pages 1457–1464.
IEEE, 2013. 2

[20] J. Yang, H. Li, and Y. Jia. Optimal essential matrix estima-
tion via inlier-set maximization. In Computer Vision–ECCV
2014, pages 111–126. Springer, 2014. 2

http://www.vlfeat.org/
http://www.vlfeat.org/

