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Abstract. Multiple Hypothesis Video Segmentation (MHVS) is a method
for the unsupervised photometric segmentation of video sequences. MHVS
segments arbitrarily long video streams by considering only a few frames
at a time, and handles the automatic creation, continuation and termi-
nation of labels with no user initialization or supervision. The process
begins by generating several pre-segmentations per frame and enumer-
ating multiple possible trajectories of pixel regions within a short time
window. After assigning each trajectory a score, we let the trajectories
compete with each other to segment the sequence. We determine the
solution of this segmentation problem as the MAP labeling of a higher-
order random field. This framework allows MHVS to achieve spatial and
temporal long-range label consistency while operating in an on-line man-
ner. We test MHVS on several videos of natural scenes with arbitrary
camera and object motion.

1 Introduction

Unsupervised photometric video segmentation, namely the automatic labeling of
a video based on texture, color and/or motion, is an important computer vision
problem with applications in areas such as activity recognition, video analytics,
summarization, surveillance and browsing [1,2]. However, despite its significance,
the problem remains largely open for several reasons.

First, the unsupervised segmentation of arbitrarily long videos requires the
automatic creation, continuation and termination of labels to handle the free flow
of objects entering and leaving the scene. Due to occlusions, objects often merge
and split in multiple 2D regions throughout a video. Such events are common
when dealing with natural videos with arbitrary camera and object motion. A
complete solution to the problem of multiple-object video segmentation requires
tracking object fragments and handling splitting or merging events.

Second, robust unsupervised video segmentation must take into account spa-
tial and temporal long-range relationships between pixels that can be several
frames apart. Segmentation methods that track objects by propagating solu-
tions frame-to-frame [3,4] are prone to overlook pixel relationships that span
several frames.
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Fig. 1: Results from the on-line, unsupervised, photometric segmentation of a
video sequence with MHVS. Top: original frames. Bottom: segmented frames.
MHVS keeps track of multiple possible segmentations, collecting evidence across
several frames before assigning a label to every pixel in the sequence. It also
automatically creates and terminates labels depending on the scene complexity
and as the video is processed.

Finally, without knowledge about the number of objects to extract from
an image sequence, the problem of unsupervised video segmentation becomes
strongly ill-posed [5]. Determining the optimal number of clusters is a funda-
mental problem in unsupervised data clustering [5].

Contributions. MHVS is, to the best of our knowledge, the first solution to
the problem of fully unsupervised on-line video segmentation that can effectively
handle arbitrarily long sequences, create and terminate labels as the video is
processed, and still preserve the photometric consistency of the segmentation
across several frames.

Although the connections between tracking and video segmentation are well
discussed in e.g . [6,3,7,4,8], we present the first extension of the idea of deferred
inference from Multiple Hypothesis Tracking (MHT) [9,10] to the problem of
unsupervised, multi-label, on-line video segmentation. MHVS relies on the use of
space-time segmentation hypotheses, corresponding to alternative ways of group-
ing pixels in the video. This allows MHVS to postpone segmentation decisions
until evidence has been collected across several frames, and to therefore operate
in an on-line manner while still considering pixel relationships that span multiple
frames. This extension offers other important advantages. Most notably, MHVS

can dynamically handle the automatic creation, continuation and termination of
labels depending on the scene complexity, and as the video is processed.

We also show how higher-order conditional random fields (CRFs), which we
use to solve the hypothesis competition problem, can be applied to the problem
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Fig. 2: Left: MHVS labels a video stream in an on-line manner considering
several frames at a time. Right: For each processing window, MHVS generates
multiple pre-segmentations per frame, and finds sequences of superpixels (shown
as colored regions) that match consistently in time. Each of these sequences,
called a superpixel flow, is ranked depending on its photometric consistency and
considered as a possible label for segmentation. The processing windows overlap
one or more frames to allow labels to propagate from one temporal window to
the next.

of unsupervised on-line video segmentation. Here, we address two important
challenges. First, the fact that only a subset of the data is available at any time
during the processing, and second, that the labels themselves must be inferred
from the data. A working example of MHVS is illustrated on Fig. 1.

Previous work. Some of the common features and limitations found in
previous work on video segmentation include:

1. The requirement that all frames are available at processing time and can
be segmented together [6,11,12,13]. While this assumption holds for certain
applications, the segmentation of arbitrarily long video sequences requires the
ability to segment and track results in a continuous, sequential manner (we
refer to this as on-line video segmentation). Unfortunately, those methods
that can segment video in an on-line manner usually track labels from frame
to frame [3,7,4] (i.e., they only consider two frames at a time), which makes
them sensitive to segmentation errors that gradually accumulate over time.

2. The user is often required to provide graphical input in the form of scribbles,
seeds, or even accurate boundary descriptions in one or multiple frames to
initiate or facilitate the segmentation [14,11]. This can be helpful or even
necessary for the high level grouping of segments or pixels, but we aim for an
automatic method.

3. The assumption that the number of labels is known a priori or is constant
across frames [15,16,17,18,12,14] is useful in some cases such as foreground-
background video segmentation [18,12,14], but only a few methods can adap-
tively and dynamically determine the number of labels required to photo-
metrically segment the video. Such ability to adjust is especially important
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in on-line video segmentation, since the composition of the scene tends to
change over time.

Recently, Brendel and Todorovic [6] presented a method for unsupervised photo-
metric video segmentation based on mean-shift and graph relaxation. The main
difference between their work and MHVS is that our method can operate in an
on-line manner and consider multiple segmentation hypotheses before segment-
ing the video stream.

2 An overview of MHVS

The three main steps in MHVS are: hypotheses enumeration, hypotheses scoring,
and hypotheses competition.

A hypothesis refers to one possible way of grouping several pixels in a video,
i.e., a correspondence of pixels across multiple frames. More specifically, we
define a hypothesis as a grouping or flow of superpixels, where a superpixel
refers to a contiguous region of pixels obtained from a tessellation of the image
plane without overlaps or gaps. This way, each hypothesis can be viewed as a
possible label that can be assigned to a group of pixels in a video (see Fig. 2)

Since different hypotheses represent alternative trajectories of superpixels,
hypotheses will be said to be incompatible when they overlap; that is, when one
or more pixels are contained in more than one hypothesis. In order to obtain a
consistent labeling of the sequence, we aim for the exclusive selection of only one
hypothesis for every set of overlapping hypotheses (see an example in Fig. 3).

Depending on the photometric consistency of each hypothesis, we assign them
a score (a likelihood). This allows us to rank hypotheses and compare them in
probabilistic terms. The problem of enumeration and scoring of hypotheses is
discussed in Section 3. Once hypotheses have been enumerated and assigned
a score, we make them compete with each other to label the video sequence.
This competition penalizes the non-exclusive selection between hypotheses that
are incompatible in the labeling. In order to resolve the hypotheses competition
problem, MHVS relies on MAP estimation on a higher-order conditional random
field (CRF). In this probabilistic formulation, hypotheses will be considered as
labels or classes that can be assigned to superpixels on a video. Details about
this step are covered in Section 4.

For the segmentation of arbitrarily long video sequences, the above process of
hypotheses enumeration, scoring and competition is repeated every few frames
using a sliding window. By enumerating hypotheses that include the labels from
the segmentation of preceeding windows, solutions can be propagated sequen-
tially throughout an arbitrarily long video stream.

3 Enumeration and scoring of hypotheses

The enumeration of hypotheses is a crucial step in MHVS. Since the number of all
possible space-time hypotheses grows factorially with frame resolution and video
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Fig. 3: Two hypotheses that are incompatible. The hypotheses (shown in green
and red) overlap on the first two frames. The segmentation of the sequence should
ensure their non-exclusive selection. MHVS ranks hypotheses photometrically and
penalizes the non-consistent selection of the most coherent ones over time.

length, this enumeration must be selective. The pruning or selective sampling of
hypotheses is a common step in the MHT literature, and it is usually solved via
a “gating” procedure [19].

We address the enumeration and scoring of hypotheses in two steps. First,
we generate multiple pre-segmentations for each frame within the processing
window using segmentation methods from the literature, e.g ., [20], [21]. Then,
we match the resulting segments across the sequence based on their photometric
similarity. Those segments that match consistently within the sequence will be
considered as hypotheses (possible labels) for segmentation.

The above approach can be modeled with a Markov chain of length equal
to that of the processing window. This allows us to look at hypotheses as time
sequences of superpixels that are generated by the chain, with the score of each
hypothesis given by the probability of having the sequence generated by the
chain.

We formalize this approach as follows. Given a window of F consecutive
frames from a video stream, we build a weighted, directed acyclic graph G =
(V,E) that we denote as a superpixel adjacency graph. In this graph, a node
represents a superpixel from one of the pre-segmentations on some frame within
the processing window, and an edge captures the similarity between two tempo-
rally adjacent superpixels (superpixels that overlap spatially but belong to two
different and consecutive frames). Edges are defined to point from a superpixel
from one of the pre-segmentations on time t to a superpixel from one of the pre-
segmentations on t+ 1. Fig. 4 shows an illustration of how this graph is built.

The above graph can be thought as the transition diagram of a Markov chain
of length F [22]. In this model, each frame is associated with a variable that
represents the selection of one superpixel in the frame, and the transition prob-
abilities between two variables are given by the photometric similarity between
two temporally adjacent superpixels. By sampling from the chain, for example,
via ancestral sampling [22] or by computing shortest paths in the transition
diagram, we can generate hypotheses with strong spatio-temporal coherency.
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Fig. 4: Construction of the superpixel adjacency graph for the enumeration of
hypotheses (flows of superpixels). (a) For each processing window, MHVS gener-
ates P pre-segmentations on each frame. Each of them groups pixels at different
scales and according to different photometric criteria. The nodes in the graph
represent superpixels from some of the pre-segmentations on each frame, and
the edges capture the photometric similarity between two temporally adjacency
superpixels. (b) Two superpixels are considered to be temporally adjacent if they
overlap spatially but belong to two different and consecutive frames.

More specifically, for a given window of F frames, and the set of all super-
pixels V = {V1, . . . , VF } generated from P pre-segmentations on each frame, we
can estimate the joint distribution of a sequence of superpixels (z1, . . . , zF ) as

p (z1, . . . , zF ) = p (z1) ·
t=F∏
t=2

At−1,t
j,k , (1)

where the transition matrices At−1,t
j,k capture the photometric similarity between

two temporally adjacent superpixels zt−1 = j and zt = k, and are computed from
the color difference between two superpixels in LUV colorspace, as suggested
in [23]. In order to generate hypotheses that can equally start from any superpixel
on the first frame, we model the marginal distribution of the node z1 as a uniform
distribution. Further details about the generation of pre-segmentations and the
sampling from the Markov chain are discussed in Section 5.

Once a set of hypotheses has been enumerated, we measure their temporal
coherency using the joint distribution of the Markov chain. Given a set of L
hypotheses H = {H1, . . . ,HL}, we define the score function s : H → [0, 1] as:

s (Hk) = N1 · p (z1 = v1, . . . , zF = vF ) =

F∏
t=2

At−1,t
vt−1,vt , (2)

where (v1, . . . , vF ) is a sequence of superpixels comprising a hypothesis Hk and
N1 is the number of superpixels on the first frame.
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Fig. 5: We define our higher-order conditional random field on a sequence of fine
grids of superpixels S = {S1, . . . SF }. Each grid St is obtained as the superposi-
tion of the P tessellations that were generated for the enumeration of hypotheses.
The mapping gt takes superpixels vt from one of the pre-segmentations to the su-
perposition St. Each superpixel in St is represented in our CRF with a random
variable that can be labeled with one of the hypotheses {H1, . . . ,HL}.

Propagation of solutions The above approach needs to be extended to
also enumerate hypotheses that propagate the segmentation results from pre-
ceding processing windows. We address this problem by allowing our processing
windows to overlap one or more frames. The overlap can be used to consider the
superpixels resulting from the segmentation of each window when enumerating
hypothesis in the next window. That is, the set of pre-segmented superpixels
V = {V1, . . . , VF } in a window w, w > 1, is extended to include the superpixels
that result from the segmentation of the window w − 1.

4 Hypotheses competition

Once hypotheses have been enumerated and scored for a particular window of
frames, we make them compete with each other to label the sequence. We deter-
mine the solution to this segmentation problem as the MAP labeling of a random
field defined on a sequence of fine grids of superpixels. This framework allows us
to look at hypotheses as labels that can be assigned to random variables, each
one representing a different superpixel in the sequence (see Fig. 5).

Our objective function consists of three terms. A unary term that measures
how much a superpixel within the CRF grid agrees with a given hypothesis, a
binary term that encourages photometrically similar and spatially neighboring
superpixels to select the same hypothesis, and a higher-order term that forces
the consistent labeling of the sequence with the most photometrically coherent
hypotheses over time (See Fig. 6 for an illustration).

We formalize this as follows. For each processing window of F frames, we de-
fine a random field of N variables Xi defined on a sequence of grids of superpixels
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Fig. 6: The unary, pairwise and higher-order potentials, ψi, ψi,j and ψHk
, re-

spectively, control the statistical dependency between random variables Xl, each
one representing a different superpixel within the processing window.

S = {S1, . . . SF }, one for each frame. Each grid St is obtained as the superpo-
sition of the P pre-segmentations used for the enumeration of hypotheses, and
yields a mapping gt that takes every superpixel from the pre-segmentations to
the set St (see Fig. 5). The random variables Xi are associated with superpixels
from S , and take values from the label set H = {H1, . . . ,HL}, where each hy-
pothesis Hk is sampled from the Markov chain described in the previous section.

A sample x = (x1, . . . , xN ) ∈ H N from the field, i.e. an assignment of la-
bels (hypotheses) to its random variables, is referred to as a labeling. From the
Markov-Gibbs equivalence, the MAP labeling x∗ of the random field takes the
form:

x∗ = arg min
x∈H N

∑
c∈C

αcψc (xc) , (3)

where the potential functions ψc are defined on cliques of variables c from some
set C , and αc are weighting parameters between the different potentials. The
labeling xc represents the assignment of the random variables Xi within the
clique c to their corresponding values in x.

We next define three different types of potentials ψc (representing penalties
on the labeling) for our objective function in Eq. 3. The potentials enforce the
consistent photometric labeling of the sequence. The unary potentials favor the
selection of hypotheses that provide a high detail (fine) labeling of each frame.
The pairwise potentials encourage nearby superpixels to get the same label,
depending on their photometric similarity. Finally, the higher-order potentials
force the exclusive selection of hypotheses that are incompatible with each other.

Unary potentials. The mappings g = (g1, . . . , gF ) between the pre-segmen-
tations and the grids St (see Fig. 5) are used to define the penalty of assigning
a hypothesis xi to the random variable Xi representing the superpixel si as

ψi (xi) = 1− d (si, g (xi)) , (4)

where g (xi) represents the mapping of the superpixels within the hypothesis xi
to the set of superpixels S . The function d (a, b) measures the Dice coefficient
∈ [0, 1] on the plane between the sets of pixels a and b (the spatial overlap
between a and b), and is defined as d (a, b) = 2|a ∩ b|/ (|a|+ |b|). Since the set
of superpixels {S1, . . . SF } represents an over-segmentation on each frame (it
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is obtained from a superposition of tessellations), the unary potential favors
labelings of the sequence with spatially thin hypotheses, i.e. those with the
highest overlap with superpixels on the CRF grid, in the Dice-metric sense.

Pairwise potentials. We define the following potential for every pair of
spatially adjacent superpixels si, sj in each frame:

ψi,j (xi, xj) =

{
0 if xi = xj

b (i, j) otherwise,
(5)

where b (i, j) captures the photometric similarity between adjacent superpixels,
and can be obtained by sampling from a boundary map of the image. The above
potential guarantees a discontinuity-preserving labeling of the video, and penal-
izes label disagreement between neighboring superpixels that are photometrically
similar [24]. A discussion on the choice of b (i, j) is given in Section 5.

Higher-order potentials. As mentioned in Section 2, we penalize the non-
exclusive selection of hypotheses that are incompatible with each other. To do
this, we design a higher-order potential that favors the consistent selection of
the most photometrically coherent hypotheses over time. The notion of label
consistency was formalized by Kohli et al . in [25] and [26] with the introduction
of the Robust Pn model, which they applied to the problem of supervised multi-
class image segmentation. Here, we use this model to penalize label disagreement
between superpixels comprising hypotheses of high photometric coherency. For
each hypothesis Hk, we define the following potential:

ψHk
(xk) =

{
Nk (xk) 1

Qk
s(Hk) if Nk (xk) ≤ Qk

s(Hk) otherwise,
(6)

where xk represents the labeling of the superpixels comprising the hypothesisHk,
and Nk (xk) denotes the number of variables not taking the dominant label (i.e.,
it measures the label disagreement within the hypothesis). The score function
s (Hk) defined in the previous section measures the photometric coherency of the
hypothesis Hk (see Eq. 2). The truncation parameter Qk controls the rigidity of
the higher-order potential [25], and we define it as:

Qk =
1− s (Hk)

max
m∈[1,L]

(1− s (Hm))
· |c|

2
. (7)

The potential ψHk
with the above truncation parameter gives higher penalties to

those labelings where there is strong label disagreement between superpixels that
belong to highly photometrically coherent hypotheses (the more photometrically
coherent a hypothesis is, the higher the penalty for disagreement between the
labels of the CRF superpixels comprising it). See Fig.7(a) for an example.

Labeling. Once we have defined unary, binary and higher-order potentials
for our objective function in Eq. 3, we approximate the MAP estimate of the CRF

using a graph cuts solver for the Robust Pn model [25]. This solver relies on a
sequence of alpha-expansion moves that are binary, quadratic and submodular,
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Fig. 7: (a) Higher-order penalty (y-axis) as a function of label disagreement
within a hypothesis (x-axis) for two overlapping hypotheses H1 and H2, with H1

being more photometrically coherent than H2. The potential ψH1
strongly penal-

izes any label disagreement within H1, while ψH2
tolerates significantly higher

label disagreement within H2. (b) The colored circles represent superpixels that
were labeled in the preceding processing window (each color being a different la-
bel). The groupings l1, l2 and l3 are the result of the MAP labeling within the
current processing window. Depending on the selection of γ1 and γ2 (see text),
l1 and l2 are considered as new labels or mapped to the label depicted in red.

and therefore exactly computable in polynomial time [25]. From the association
between variables Xi and the superpixels in S, this MAP estimate also yields
the segmentation of all the pixels within the processing window.

Handling mergers and splits. The implicit (non-parametric) object bound-
ary representation provided by the random field [24] allows MHVS to easily han-
dle merging and splitting of labels over time; when an object is split, the MAP

labeling of the graph yields disconnected regions that share the same label. Since
labels are propagated across processing windows, when the parts come back in
contact, the labeling yields a single connected region with the same label. The
automatic merging of object parts that were not previously split in the video
is also implicitly handled by MHVS. This merging occurs when the parts of an
object are included within the same hypothesis (i.e. one of the pre-segmentations
groups the parts together).

In order to create new labels for parts of old labels, when the parts become
distinguishable enough over time to be tracked, a final mapping of labels is
done before moving to the next processing window. We handle this scenario by
comparing the spatial overlap between new labels (from the current processing
window) and old labels (from the preceding processing window). We check for
new labels l that significantly overlap spatially with some old label p, but barely
overlap with any other old label q. We can measure such overlaps using their
Dice coefficients, and we denote them by γp and γq. Then, if γp > γ1 and γq < γ2,
∀q 6= p, for a pair of fixed parameters γ1, γ2 ∈ [0, 1], we map the label l to p,
otherwise l is considered a new label (see Fig. 7(b) for an example).
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5 Experimental results

Most previous work on unsupervised photometric video segmentation has fo-
cused on the segmentation of sequences with relatively static backgrounds and
scene complexity [4,6,12,16]. In this paper, however, we show results from ap-
plying MHVS to natural videos with arbitrary motion on outdoor scenes. Since
existing datasets of manually-labeled video sequences are relatively short (often
less than 30 frames), and usually contain a few number of labeled objects (often
only foreground and background), we collected five videos of outdoor scenes with
100 frames each, and manually annotated an average of 25 objects per video
every three frames. The videos include occlusions, objects that often enter and
leave the scene, and dynamic backgrounds (see Figs. 1 and 8 for frame examples).

We compared MHVS with spatio-temporal mean-shift (an off-line method,
similar to [13]), and pairwise graph propagation (an on-line method with frame-
to-frame propagation, similar to [4]). In both methods we included color, texture
and motion features. For the test with mean-shift, each video was processed in
a single memory-intensive batch. For our MHVS tests, F was set to 5 frames
to meet memory constraints, but values between 3 and 10 gave good results in
general. The size of the processing window was also observed to balance MHVS’s

ability to deal with strong motion while preserving long-term label consistency.
We used an overlap of one frame between processing windows and generated
P = 30 pre-segmentations per frame using the gPb boundary detector introduced
by Maire et al . [21], combined with the OWT-UCM algorithm from [27].

As mentioned in Section 3, hypotheses can be obtained via ancestral sam-
pling [22] (i.e. sampling from the conditional multinomial distributions in the
topological order of the chain), or by computing shortest paths in the transition
diagram from each superpixel on the first frame to the last frame in the window
(i.e. computing the most likely sequences that start with each value of the first
variable in the chain). We follow this second approach. Neither guarantees that
every CRF superpixel is visited by a hypothesis. In our implementation, such
CRF superpixels opt for a dummy (void) label, and those that overlap with the
next processing window are later considered as sources for hypotheses. The pa-
rameters αe weighting the relative importance between the unary, pairwise and
higher-order potentials in Eq. 3 were set to 10, 2 and 55, respectively, although
similar results were obtained within a 25% deviation from these values. The
pairwise difference between superpixels b (i, j) was sampled from the boundary
map generated by OWT-UCM and the parameters γ1 and γ2 that control the
mapping of new labels to old labels were set to 0.8 and 0.2, respectively.

We measured the quality of the segmentations using the notion of segmen-
tation covering introduced by Arbeláez et al . in [27]. The covering of a human
segmentation S by a machine segmentation S′, can be defined as:

C (S′ → S) =
1

N

∑
V ∈S
|V | · max

V ′∈S′
d (V, V ′) (8)

where N denotes the total number of pixels in the video, and d (V, V ′) is the
Dice coefficient in 3D between the labeled spatio-temporal volumes V and V ′
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Method Video 1 Video 2 Video 3 Video 4 Video 5

MHVS (multi-frame on-line) 0.62 0.59 0.45 0.54 0.42
Graph propagation (pairwise on-line) 0.49 0.37 0.36 0.39 0.34
Mean-shift (off-line) 0.56 0.39 0.34 0.38 0.44

Table 1: Best segmentation covering obtained with MHVS, pairwise graph prop-
agation and mean-shift across five outdoor sequences that were manually anno-
tated. Frame examples from Video 1 are shown in Fig. 1, and from Videos 2 to
5 in Fig. 8, top to bottom. Higher segmentation coverings are better.

within S and S′, respectively. These volumes can possibly be made of multiple
disconnected space-time regions of pixels. Table 1 shows the values of the best
segmentation covering achieved by each method on our five videos.

6 Discussion and future work

In our tests, we observed that sometimes labels have a short lifespan. We at-
tribute this to the fact that it is difficult to find matching superpixels in pre-
segmentations of consecutive frames. The use of multiple pre-segmentations per
frame was introduced to alleviate this problem, and further measures, such as the
use of “track stitching” methods (e.g . see [28]) could help reduce label flickering
in future work.

Running time. The unary, pairwise and higher-order potentials of Eq. 3
are sparse. Each random variable (representing an over-segmented superpixel)
overlaps few other hypotheses. No overlap makes the unary and higher-order
terms associated with the hypothesis zero. The pre-segmentations, enumeration
of hypotheses and measuring of photometric similarities between superpixels can
be parallelized, and each processing window must be segmented (Eq. 3 solved)
before moving to the next processing window. With this, in our tests, MHVS run
on the order of secs/frame using a Matlab-CPU implementation.

Conclusions. MHVS is, to the best of our knowledge, the first solution to
the problem of fully unsupervised on-line video segmentation that can segment
videos of arbitrary length, with unknown number of objects, and effectively man-
age object splits and mergers. Our framework is general and can be combined
with any image segmentation method for the generation of space-time hypothe-
ses. Alternative scoring functions, to the ones presented here, can also be used
for measuring photometric coherency or similarity between superpixels.

We believe our work bridges further the gap between video segmentation
and tracking. It also opens the possibility of integrating the problem of on-line
video segmentation with problems in other application domains such as event
recognition or on-line video editing. Future work could include extensions of
MHVS based on on-line learning for dealing with full occlusions and improving
overall label consistency.
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Fig. 8: Top to fourth row: Results from the on-line, unsupervised, photometric
segmentation of four video sequences of varying degrees of complexity with MHVS.
The examples show MHVS’s ability to adjust to changes in the scene, creating and
terminating labels as objects enter and leave the field of view. Fourth and fifth
row: Comparison between MHVS (fourth row) and pairwise graph propagation
(similar to [4]) (fifth row). The frames displayed are separated by 5-10 frames
within the original segmented sequences.
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