
Photo Sequencing

Tali Basha1, Yael Moses2, and Shai Avidan1

1 Tel Aviv University, Tel Aviv 69978, Israel
2 The Interdisciplinary Center, Herzliya 46150, Israel
{talib, avidan}@eng.tau.ac.il, yael@idc.ac.il

Abstract. Dynamic events such as family gatherings, concerts or sports
events are often captured by a group of people. The set of still images
obtained this way is rich in dynamic content but lacks accurate temporal
information. We propose a method for photo-sequencing – temporally or-
dering a set of still images taken asynchronously by a set of uncalibrated
cameras. Photo-sequencing is an essential tool in analyzing (or visual-
izing) a dynamic scene captured by still images. The first step of the
method detects sets of corresponding static and dynamic feature points
across images. The static features are used to determine the epipolar
geometry between pairs of images, and each dynamic feature votes for
the temporal order of the images in which it appears. The partial orders
provided by the dynamic features are not necessarily consistent, and we
use rank aggregation to combine them into a globally consistent tem-
poral order of images. We demonstrate successful photo sequencing on
several challenging collections of images taken using a number of mobile
phones.

1 Introduction

In group photography a group of people takes pictures of some dynamic event
such as concert, sports event or a family gathering. The photos are often taken
within a short time interval of one of the event highlights, using what is probably
the most popular means of photography today – cellphones. The question that
motivates our study is whether it is possible to visualize and analyze the dynamic
content of the scene using a set of still images collected by the group. An essential
tool required for this purpose is recovering the temporal order of the images as
demonstrated by many computer vision methods that use one or more video
sequences. Clearly, temporal order is available when all images are taken from the
same camera as in a video sequence. Alternatively, when two or more sequences
are taken, temporal order can be recovered using video synchronization methods.
In our case, however, the only temporal information available is given by the
phones’ imprecise clocks. We propose a method for recovering the temporal order
of a set of still images of an event taken at roughly the same time, and term this
problem photo sequencing.

The input to our method is a set of still images captured by asynchronous
and uncalibrated mobile phones (or other digital cameras) that are co-located

2 Tali Basha, Yael Moses, and Shai Avidan

in space and time. Such a set can be extracted using the inaccurate cellphone
time-stamp associated with each image. It is important to note that video syn-
chronization methods are not applicable here because each camera may provide
only one still image.

The photo sequencing problem could be directly solved if the 3D structure
of the dynamic scene were known. However, recovering the 3D structure of a dy-
namic scene often requires prior knowledge about the 3D structure or the motion
of objects, and a very large number of images, which we do not assume to have.
Our goal is to compute photo sequencing without recovering the 3D structure of
the scene. To do so, we assume that at least two images are taken from roughly
the same location by the same camera. This assumption is reasonable because
people often take more than one image of an interesting moment in the event,
without moving much. We further assume that within the short time interval,
there are enough features that move approximately along straight lines. This
assumption is needed to model the problem but in practice points can deviate
considerably from the linear motion model.
Algorithm Outline: Consider a 3D scene point moving along a linear trajec-
tory, and captured by a set of cameras, at different time steps. Imagine sampling
the 3D locations along the point trajectory, at the same time steps it was cap-
tured by the set of cameras. The spatial order of these 3D locations along the
trajectory implicitly induces the temporal order of the images (see Fig. 1(a)).
Our method avoids recovering the sampled 3D locations of a dynamic scene
point by computing its projections to the reference image. To do so, we extract
and match sets of static and dynamic features between each of the images and
a reference image (see Fig. 1(b)). Using the fundamental matrices (computed
by the static features), each set of corresponding dynamic features is projected
onto the reference image. These projections preserve the spatial order along the
3D trajectory of the scene point, and hence provide the partial time order of the
subset of images.

The resulting partial orders, computed from each dynamic feature are not
necessarily consistent because of matching errors, large deviation of some of the
features from linear motion, and noise. One of the challenging problems we have
to solve is to compute a full temporal order, i.e., an order of all input images,
which is as consistent as possible with the computed partial orders. This problem
is equivalent to the rank aggregation problem, which is known to be NP-hard for
the most general case [1]. We first rely on geometric constraints to clean up the
data, and construct a directed graph that represents the pairwise temporal orders
defined by the dynamic features. If the graph contains no loops (i.e., it is a DAG)
then a simple polynomial algorithm to recover a directed Hamiltonian path can
be used. However, the graph often contains cycles. In this case computing the
Hamiltonian path is NP-hard, hence we use a Markov chain approximation to
solve the problem [1]. This solution was shown to perform well on ranking search
results of multiple search engines.
Contributions: Our method offers a solution to the novel photo sequencing
problem – recovering the temporal order of a set of static images of a dynamic

Photo Sequencing 3

a b

Fig. 1. (a) The order of the sampled location of a 3D point moving along a straight line
implicitly induces the order of the corresponding images: t(I3) < t(I1) < t(I4) < t(I2).
(b) Static & dynamic features of the Boats dataset: the detected corresponding features
of I1 and I2 (taken from roughly the same position) are marked over the reference
image, I1; blue are I1 features (static and dynamic); red are the corresponding static
features of I2, and green are the corresponding dynamic features of I2.

event. The method’s robustness is based on a rank aggregation algorithm that
aggregates noisy measurements to overcome inconsistencies.

Possible applications of photo sequencing include visualizing and analyzing
dynamic content content from a set of still images. A temporally coherent pre-
sentation of a set of images taken from different viewpoints or time instances of
a given event is one example. In addition it may be used to generalize different
computer vision tasks that uses videos to a set of still images such as object
tracking, segmentation, or any other analysis of the dynamic content from a set
of still images. These applications, which are beyond the scope of this paper,
arise naturally when people share their images and are willing to extract the
best out of the shared images.

2 Related Work

Temporal alignment of visual data has been studied extensively in the context of
video synchronization. Synchronization methods for aligning a pair of sequences
include correlating motion signatures computed from a set of successive frames
(e.g., [2]), aligning tracked trajectories of features or objects visible in both videos
(e.g., [3–5]), aligning all the frames (e.g., [3, 6]), assuming linear combination
between the objects’ views under orthographic projection (e.g.,[7]), assuming a
low-rank of non-rigid moving objects (e.g., [8]), using tri-focal tensor-based rela-
tions when at least 3 videos are considered for spatial matching of points or lines
(e.g.,[9]). Other synchronization methods attempt to bypass the computation of
spatial correspondence in these methods, by using spatio-temporal feature statis-
tics (e.g., [10]), or temporal signals defined over corresponding epipolar lines [11].
Geometric constraints were used by other synchronization methods for aligning
multiple video sequences (e.g., [12]) or for achieving sub frame accuracy (e.g.,
[13]). In both methods the intersections of the trajectory of dynamic features
with the epipolar lines of corresponding features in the other images were used

4 Tali Basha, Yael Moses, and Shai Avidan

a b

Fig. 2. (a) The projection of the trajectory, Li, of the point P i, forms the line `i on
image I1. The feature points pi

1(t1), pi
2(t2), in image I1, and pi

k(tk) in image Ik, are
corresponding dynamic features. The line `i intersects the epipolar line (in yellow),
which corresponds to pi

k . The intersection point, pi1(tk), is the projection of P i onto
I1 at time step tk. The spatial order of pi

1(t1), pi
2(t2), and pi

1(tk), along `i, defines
the temporal order between I1, I2 and Ik; (b) the computation on real images: the
projected trajectory, `i, in cyan; the epipolar line in yellow; the intersection in red.

to define order. None of these methods consider the inconsistent ordering that
may be caused by different choices of features (e.g., matching trajectories). More-
over, all the above methods use successive frames in each of the videos in order to
compute the synchronization. However, we assume here that the cameras might
provide only a single image. Such synchronization methods are not applicable
for temporal ordering of the images considered in this paper.

Several methods address the problem of non-rigid shape and motion recov-
ery from a set of still images when temporal order is not used directly. These
methods assume that point correspondences are given and the motion of the
objects is restricted. A method for reconstructing the 3D coordinates of a point
moving along a straight line and captured by a moving camera was proposed
in [14]. They use trajectory triangulation and show that a linear solution exists
if the camera parameters are known. If the camera parameters are unknown, it
is still possible to reconstruct the 3D coordinates of points moving on planes
[15]. Trajectory triangulation was later extended using polynomial representa-
tions [16]. In our case, it is sufficient to have each feature matched in only 4,
instead of 5 images, and a weaker calibration is required, that is, only the funda-
mental matrix between each image and the reference image is needed. Moreover,
our method proposes a way to overcome the inconsistent ordering obtained by
different features and allows to deviate from the linear motion assumption.

A different class of methods use factorization to deal with dynamic scenes [17].
These methods assume that the correspondence between features in a large num-
ber of images can be obtained. Furthermore, they assume that the deformation
of a 3D shape can be represented by a linear combination of shape-bases, which
often restricts the number of independently moving objects. Hence, by increas-
ing the rank of the observation matrix, the non-rigid components of motion are
captured by additional eigenvectors. This was later extended by [18, 19]. Indeed
the solutions to these methods may result in photo sequencing. However, they
are limited to restricted scenes, require features to be matched across a large
number of images, which is not required by our method.

Photo Sequencing 5

1st Image 6th Image (reference) 12th Image 15th Image

a b c d

e f g h

Fig. 3. Boats: First row (a-d): four of the fifteen input images, ordered by our method;
(b) is the reference; the detected dynamic features are marked in red points over the
images. Second row: for evaluation purpose each boat is framed by hand and colored
in the same color in all images. (f) the reference; each of the images (a), (c) and
(d) were aligned to the reference; (e),(g),(h) the aligned images of (a), (c) and (d),
respectively, are shown over the reference (f).

Large numbers of images uploaded to the Internet are used for various appli-
cations such as 3D reconstruction, visualization, and recognition of static scenes
(see review by Snavely et al.[20]). This is often referred to as community pho-
tography and assumes that images are co-located in space but not necessarily in
time. Therefore, only the static regions of the scene are considered. In our case,
the set of still images are co-located both in space and in time, and we focus on
extracting the temporal information. We believe that future work will combine
photo sequencing with community photography leading to new ways to analyze
the dynamic regions of the scenes.

A method for temporally aligning still images that span many years was
suggested by Schindler et al. [21]. Their solution is based on analyzing changes
and occlusions of the viewed 3D static scene. Our method deals with a dynamic
scene captured in a short time interval and is based on motion.

Recently, a method for navigating in a collection of videos of a dynamic
scene, e.g., a music performance, was proposed by [22], but they use a collection
of casually captured videos rather than still images as we do.

3 The Method

Consider a dynamic scene captured by N images {Ik}N
k=1, taken at different time

steps within a small time interval. Our goal is to determine the temporal order
in which the images were taken. This is equivalent to finding a permutation on
the image indices, σ : {1, ..., N} → {1, ..., N}, such that

t(Iσ(1)) ≤ t(Iσ(2))... ≤ t(Iσ(N)), (1)

where t(Ik) is the time at which image Ik was taken and σ(i) indicates the
temporal rank of image i. We assume that two of the images are taken from

6 Tali Basha, Yael Moses, and Shai Avidan

a b

Fig. 4. (a) Slide dataset: The detected static and dynamic features corresponding
features of I1 and I2 are marked over the reference image, I1; blue are I1 features; red
and green are I2 static and dynamic features, respectively; on the right is a close-up
of the region where the children appear. (b) The detected static and dynamic features
for the Basketball dataset.

approximately the same position. Without loss of generality, let I1 and I2 be
these images, and I1 be the reference image.

3.1 Temporal Order Voting

We first extract and match features from all input images (see Sec.3.3 for details).
The detected features are classified into static and dynamic features (i.e., projec-
tions of static or dynamic scene points, respectively). To do so, we first classify
the matched features in I1 and I2. In these images, each pair of matched static
features should be approximately in the same location. Thus, the static features
are easily detected by thresholding the Euclidean distance between matched
features, and the dynamic features are the remaining ones. An example of the
classified features is shown in Fig. 1(b).

We then match features between the reference image, I1, and each image, Ik.
The static and dynamic features in Ik are taken to be those that are matched
to static and dynamic features of I1, respectively. The static features are used
to compute the fundamental matrix, Fk, between I1 and Ik (we use the BEEM
algorithm [23]); the dynamic features are used to determine the temporal order
of the images, as explained next.
Ordering by a Single Set of Dynamic Features: Let pi

1 ∈ I1 be a dynamic
feature in the reference image (homogeneous coordinates), and Si be the set of
its corresponding features in a subset of the images. The set Si consists of the
projections of a scene point P i at different time steps. For simplicity, we assume
that P i moves along a line Li (see Fig. 1), and its projection to the reference
image is given by `i. The set of features Si defines a set of epipolar lines in I1
which intersect the line `i. The spatial order of these intersection determines
the temporal order, σi, of the corresponding images, since it is identical to the
spatial order of the 3D positions of P i along Li (see Fig. 2).

Formally, let P i(tk) denote the 3D position of P i at tk, the time image Ik
was captured. The feature set Si is given by: Si = {pi

k(tk) | k ∈ ni}, where
ni ⊆ {1, ..., N} is the subset of image indices. From the matching process, we
have direct access to the projection of P i(tk) to image Ik, namely pi

k(tk).

Photo Sequencing 7

(a) Canon SD940 IS (b) iPhone 4 (c) Galaxy SII (d) iPhone 4

(e) Galaxy SII (f) iPhone 4 (g) iPhone 4 (h) BlackBerry Torch

Fig. 5. Slide: Eight of the images ordered by our method (left-to-right, top-to-bottom).
The dynamic features are overplayed on the images in red. (d) and (f) refer to I1 and
I2, respectively.

Our goal now is to compute the projections of the set of points P i(tk) onto
the reference, I1. That is, we compute pi

1(tk) for each k ∈ ni. The point pi
1(tk)

is given by the intersection of the line `i and the corresponding epipolar line:
`ik = Fkp

i
k(tk) (see Fig. 2(b)).

The line `i is defined by the two corresponding points, pi
1(t1) and pi

2(t2).
That is, `i = pi

1(t1) × pi
2(t2). Note that pi

1(t2) ≈ pi
2(t2) since both points were

captured roughly from the same position. Putting it all together, we have that:

pi
1(tk) = `i × `k

i = (pi
1(t1)× pi

2(t2))×
(
Fk p

i
k(tk)

)
. (2)

This equation degenerates if the epipolar line, `ik, coincides with `i. We detect
this case by measuring the angle between the two lines, and removing such points
from further processing.

Finally, the spatial order of the mapped features along the line `i is computed.
Formally, the intersection point, pi

1(tk), can be presented by:

pi
1(tk) = pi

1(t1) + αk(pi
2(t2)− pi

1(t1)). (3)

The computed temporal order, represented by a permutation, σi, is obtained by
sorting the computed values {αk | k ∈ ni}.

It is worth noting that instead of recovering the 3D structure of the dynamic
scene, we perform all calculations in the image plane of the reference image I1.
This allows us to match features in a smaller number of images than required
for full 3D reconstruction, use weaker calibration (fundamental matrices with
respect to the reference image instead of all pairs of images), and clearly avoid
additional noise that may be introduced into the 3D reconstruction. As it turns
out, the algorithm described above is still applicable when the linear motion
assumption is violated. This is because all we care about is the order of the
intersections of the epipolar lines and the projection of the real trajectory. If
this is not satisfied, then an incorrect order is produced by this feature. However,
since the information from all features is aggregated, it is expected that few such
errors will not affect the result. This is indeed demonstrated by our experiments.

8 Tali Basha, Yael Moses, and Shai Avidan

Finally, our method will not work if all epipolar lines are parallel and the object
moves along the epipolar line direction. In this case, the intersections of the
epipolar lines with the projection of the real trajectory is expected to be noisy.

3.2 A Full Temporal Order

Each dynamic feature defines a set Si that give rise to a partial temporal order,
σi, of a subset ni of the images. These partial orders are often conflicting due to
noise and matching errors. Such errors are unavoidable in practice. (For example,
in one of our experiments only 23 out of 67 features agreed with the correct order,
and none of them produced a full order of the set). Our goal is to compute a
full order, σ, that is consistent, as much as possible, with the partial orders.
This problem is known as the rank aggregation problem, and has been studied
mostly in the areas of social choice and voting theory. Aggregation of partial
temporal orders must be performed even if the 3D locations of each feature are
fully recovered.
Objective: Formally, the widely accepted objective to minimize in rank aggre-
gation is the number of pairwise disagreements between the full order, σ, and
each of the input permutations, σi. Specifically, the distance between σ and an
input permutation, σi, is measured by the Kendall distance:

K(σ, σi) = |{(l,m) | l,m ∈ ni, σ(l) < σ(m), σi(l) > σi(m)}|. (4)

Therefore, our objective is to find σ∗ such that:

σ∗ = argmin
σ

ND∑
i

K(σ, σi), (5)

where ND is the number of detected dynamic feature sets.
Minimizing this objective function, known as the Kemeny optimal aggrega-

tion, was proven to be NP-hard in the number of images, even when the number
of input permutations (feature sets) is only four [1]. We adopt the Markov chain
approximation of [1] that was shown to work well in Web ranking applications.
Graph Representation: Let G = (V,E) be a weighted graph where the
nodes in V correspond to the N images to be ordered, and the weight of an
edge (i, j) ∈ E corresponds to the probability that image Ii was captured before
image Ij , Pr(t(Ii) < t(Ij)).

If all partial orders are consistent with each other then G is a DAG. In this
case the problem reduces to topological sort that can be found in polynomial
time. (A topological sort is finding a linear ordering of the vertices such that,
for every edge (i, j), i comes before j in the ordering.) In addition, if the set
of partial orders defines a complete order, then the topological sort results in a
Hamiltonian path. It can be easily shown that the order defined by this path is
optimal with respect to the Kendall distance (Eq. 5).

In reality, the partial orders are not consistent, and G will contain cycles,
(e.g., Fig. 9). Unfortunately, it is impossible to compute a topological sort in
this case. One alternative is to find and remove cycles (i.e., edges) from the

Photo Sequencing 9

graph before running the topological sort. However, choosing which edges to
remove is non-trivial. A well established alternative is to treat the graph G as
a Markov chain system. That is, a memoryless random process that moves at
each time step from one state to another.
Rank Aggregation by Markov Chain: A Markov chain system is defined by
a set of states, and a (non-negative) transition matrix M that specifies the prob-
abilities of moving from one state to another. In our case, the states correspond
to graph nodes (i.e., images) and the transitions between states correspond to
edge weights: Mij = Pr(t(Ii) < t(Ij)). We compute these probabilities using
the computed partial orders, σ1, σ2, ..., σND

(see 3.3 for details).
Let us consider a random walk on this chain (graph), where the first state

is chosen according to a uniform distribution across all states (nodes). If the
chain describes a consistent full order between the images (G is a DAG), the
walk will end in the steady state at an absorbing state (the graph sink), i.e., the
state that corresponds to the image captured last. In case there is no sink in G,
then the random walk will end in a strongly connected component of G (In a
strongly connected subgraph, a directed path exists between each pair of nodes.).
This connected component, which we name sink-component, contains the state
corresponds to the last captured image.

Formally, let x be a N × 1 vector that describes the probabilities of being at
each of the states (images). Then Mx will be the probability distribution over
the states in the next time step, and after k steps the distribution will be given
by Mkx. A random walk on this graph, with a initial uniform distribution x, will
converge to the eigenvector y = My. The eigenvector can be computed directly
or using power iterations. In case node i is a sink of G (and not part of a cycle),
then the i entry of y equals 1, and the remaining entries are equal zero. If G has
a sink-component, then y will have non-zero entries only in the sink-component
nodes.

Given this analysis we run power iterations until a steady state is reached.
Then, we take the state with the highest probability to be the last element in the
current set (latest image). After removing it from the chain, the computation
is repeated until all nodes are ordered. Removing the state with the highest
probability is the heuristic part of the algorithm. Empirically, this formulation
was shown to work for Web ranking applications [1], and we found it to work
for Photo Sequencing as well.

The connectivity (transitivity) of the chain allows us to infer relations be-
tween pairs of images that were not explicitly ordered in any of the partial orders.
This lets us aggregate all available information. If the graph G contains more
than one sink, the order between the sinks cannot be determined (it does not
matter if there are cycles in the graph or not). This situation is unlikely to occur
in our case if every pair of images is ordered by at least one feature.

3.3 Implementation Details

Detect and match features: Our method is insensitive to the way static
and dynamic features are detected and matched, as long as enough features

10 Tali Basha, Yael Moses, and Shai Avidan

a b c d

Fig. 6. (a) The reference image, I1, overlayed with the detected corresponding features
between I1 and I2 (taken by an approximately static camera): blue are I1 features, and
red and green are the I2 static and dynamic features, respectively; (b) the image to
the right is a close-up of the man region; (c),(d) overlay images: the first and last
ordered images (see Fig.7.(a),(h)), are aligned to the reference image, and shown semi-
transparently over it.

are available. We compute the fundamental matrices (using [23]) using SIFT
features that were detected in the static regions. However, we found that it is
difficult to match SIFT descriptors of dynamic features because of the non-rigid
transformations of moving objects. To overcome this challenge, we first find a
dense correspondence between each image and the reference image, using the
Non-Rigid Dense Correspondence (NRDC) algorithm [24]. Then, we use the
Harris corner detector to detect feature locations and use only features with
high confidence mapping, where the confidence is defined by NRDC.
Computing the transitivity matrix M: The number of images to be ordered
in our case is relatively small, so we explicitly compute the N×N matrix M from
the estimated permutations, σ1, σ2, ..., σn. Each permutation, σi, votes for the
order of pairwise images in its subset. The pairwise votes from all permutations
are collected in a N×N auxiliary voting matrix, V, where Vij is the voting score
for t(Ii) < t(Ij). The weight of the votes of each permutation is proportional to
its cardinality, and is given by: |ni|/N . Thus, a permutation that includes all N
images has the highest voting weight.

An incorrect order produced by a single feature can already result in a cycle in
the graph defined by V . Hence, we remove edges by choosing a single direction
between each pair of nodes by comparing Vij and Vji. We set the weight of
the votes to reflect the votes and their relative impact. That is, the weight is
proportional to the support and oppose voting of the edge direction: Vij > Vji,
we set Mij = 1 −Vji/Vij . We normalize the rows of M to 1 because M is a
stochastic matrix.

4 Results

We generated four challenging datasets of outdoor scenes. The images were cap-
tured from different viewpoints, without calibration or a controlled setup, by
various cameras (including Apple iPhone 4, Samsung Galaxy SI/SII, Blackberry,
and Canon PowerShot SD940 IS). Hence, matching features across images is very
challenging. In particular, we found that SIFTs features cannot be correctly

Photo Sequencing 11

(a) iPhone 4 (b) Galaxy SI (c) iPhone 4 (d) iPhone 4

(e) Galaxy SI (f) iPhone 4 (g) Galaxy SI (h) Galaxy SI

Fig. 7. Skateboard: Eight of the input images ordered by our method (left-to-right,
top-to-bottom). The dynamic features are marked in red. The yellow and cyan frames
are the first and last ordered images, respectively.

matched in the dynamic regions (see Sec. 3.3). Another challenge for sequencing
each of the datasets is the large search space for possible solutions, that is N !/2,
where N is the number of images. In these datasets N is between 9-15. We tested
our method on each of the four datasets without assuming a priori knowledge
about the scene.

To evaluate the results of photo sequencing, the ground truth temporal order
is required. However, manually ordering still images is difficult (even more than
manual video synchronization). Hence, we captured video sequences instead of
still images with each phone/camera. This allowed us to compute the ground
truth of the data. The input to our method is a set of extracted still images
from the sequences. However, our algorithm was not provided with this temporal
information.

In each experiment, we choose two images, I1 and I2, taken approximately
from the same location, with known relative order. This is the only assumption
made regarding the order of the input images or the camera locations. The
following datasets were considered:

Boats: This dataset consists of 15 images extracted from sequences taken by
hand-held mobile phones (iPhone 4). Ten images were taken by one phone, and
the other 5 were taken from different locations by the other phone. The detected
dynamic and static features of I1 and I2, are shown in Fig. 1(b). Four of the input
images (1st, 6th, 12th and 15th), arranged in the order computed by our method,
are shown in Fig. 3(a-d). The dynamic features are marked in red in each image.
Note that the dynamic features may be different from image to image due to the
difference in viewpoints and capturing time (as Fig. 3 shows). For example, the
features detected in Fig. 3(a) and Fig. 3(d) belong to different objects, (e.g., see
the right-hand boat). As can be seen, it is hard to visually determine the correct
temporal order. Therefore, to verify our results, we aligned the three images,
Fig. 3(a,c,d), to the reference, Fig. 3(b), using the static features. Fig. 3(e-h)
shows the aligned images, semi-transparently, over the reference image. The

12 Tali Basha, Yael Moses, and Shai Avidan

(a) 2nd Image (b) 5th Image (c) 6th image (d) 7th image

Fig. 8. Basketball: Four of the eight input images, ordered by our method (left-to-
right); the detected dynamic features are marked in red points over the images.

resulting locations of three boats in the aligned images are shown in the colored
frames. These locations agree with the recovered order.

The number of dynamic feature sets is 66, and only 22 of which fully agreed
with the correct order. In addition, the obtained graph contain a cycle. A sub-
graph that contains the strongly connected component of the cycle (with 7 nodes
marked in red) is presented in Fig. 9. Therefore, this experiment demonstrates
the necessity of using rank aggregation and the robustness of our photo sequenc-
ing algorithm to aggregate multiple inconsistent partial orders into a globally
consistent one.

Slide: The Slide dataset consists of ten images extracted from sequences cap-
tured by five different cameras: Samsung Galaxy SII, BlackBerry, iPhone 4 (two
phones), and Canon PowerShot SD940 IS. Several cameras were mounted on a
tripod, and the rest were hand-held. The detected features are shown in Fig. 4(a).
In Fig 5 we present eight of the input images, arranged in the recovered order.
The correct order of the images can be visually verified by the positions of the
children along the slide. A closer look at Fig. 5(g)-(h) will reveal some incorrect
dynamic features (e.g., the dynamic features detected in the background of (h)).
However, since most of the detected features are correct, our method was able
to recover the correct order.

Skateboard: The Skateboard dataset consists of nine images, extracted from
sequences captured by a pair of hand-held mobile phones (iPhone 4 & Smasung
Galaxy SI). The dynamic and static features of I1 and I2, are shown in Fig. 6(a).
A closer look shows that the corresponding static features (blue and red points)
in I1 and I2 are not exactly at the same position (since the phone was hand-
held). Since we threshold the distance between the features, we can handle slight
movement between the two images. Fig. 7 shows eight of the input images,
arranged in the temporal order computed by our method. As Fig. 7 shows, the
viewpoints of the images are very different. Thus, we align the first and last
ordered images (see Fig. 3(a) and Fig. 3(h), respectively) to the reference image.
Fig. 6(c-d) shows the aligned images semi-transparently over the reference image.
The resulting locations of the man in the aligned images are shown in the cyan
and yellow frames. As can be seen, the man in the cyan frame indeed appears
before the reference, whereas the yellow frame in Fig. 6(d) appears after.

Basketball: This dataset contains eight images extracted from sequences taken
by a pair of mobile phones (iPhone 4), mounted on a tripod. The detected
features are shown in Fig. 4(b). As Fig. 8 shows, we can correctly order the

Photo Sequencing 13

Fig. 9. The directed subgraph computed for the Boats dataset. The strongly connected
nodes are marked in red. The correct detected order of the nodes is shown in red. Note
that the incorrect edge that close a cycle is (13, 6).

photos even though the dynamic feature points move in different directions (see
Fig. 8), and follow a natural trajectory that is not necessarily linear. The correct
order of the images can be visually verified by following the motion of the arm
of the girl throwing the basketball.

In all four datasets the number of dynamic feature sets were between 61 to
200, while only about 40% of them fully agreed with the correct order. However,
the pairwise voting was sufficient in three of the datasets to obtain a graph
without cycles. Our method successfully obtained the correct order despite the
difference in viewpoint, colors, resolution and aspect ratio between the images.

5 Conclusions and Future Work

Photo Sequencing orders a set of images in the correct temporal order. This
is useful in real world scenarios when a group of people captures still photos
of some dynamic event at approximately the same time. We believe that photo
sequencing in a general setup will allow the development of novel computer vision
and graphics applications for dynamic scenes from a set of still images.

We proposed a geometry-based method which aggregates partial orders of the
images computed from a set of dynamic features. We make several assumptions
to model the problem which let us reduce temporal order to the order of line
intersections in the image plane. However, our algorithm is quite insensitive
to some of these assumptions as the only thing matters is the order of the
intersections and not their actual location. In particular, we found that our
algorithm can handle cases in which the reference camera moves to some extent
and the motion of dynamic features considerably deviate from a linear trajectory
(as demonstrated in our experiments). Further relaxing the assumptions made
by our method clearly remains for future work.

Acknowledgments.
This work was supported in part by an Israel Science Foundation grant no.
1556/10 and 930/12, and European Community grant PIRG05-GA-2009-248527.

14 Tali Basha, Yael Moses, and Shai Avidan

References

1. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: International Conference on World Wide Web. (2001)

2. Dexter, E., Pe’rez, P., Laptev, I.: Multi-view synchronization of human actions
and dynamic scenes. In: BMVC. (2009)

3. Caspi, Y., Irani, M.: Spatio-temporal alignment of sequences. PAMI (2002)
4. Tresadern, P., Reid, I.: Synchronizing image sequences of non-rigid objects. In:

BMVC. Volume 2. (2003) 629–638
5. Whitehead, A., Laganiere, R., Bose, P.: Temporal synchronization of video se-

quences in theory and in practice. In: WMVC. (2005)
6. Sand, P., Teller, S.: Video matching. In: ACM (TOG). (2004)
7. Wolf, L., Zomet, A.: Correspondence-free synchronization and reconstruction in a

non-rigid scene. In: VMODS. (2002)
8. Zelnik-Manor, L., Irani, M.: Degeneracies, dependencies and their implications in

multi-body and multi-sequence factorizations. In: CVPR. (2003)
9. Lei, C., Yang, Y.: Tri-focal tensor-based multiple video synchronization with sub-

frame optimization. IEEEIP (2006)
10. Yan, J., Pollefeys, M.: Video synchronization via space-time interest point distri-

bution. In: ACIVS. (2004)
11. Pundik, D., Moses, Y.: Video synchronization using temporal signals from epipolar

lines. In: ECCV. (2010)
12. Pádua, F.L.C., Carceroni, R.L., Santos, G.A.M.R., Kutulakos, K.N.: Linear

sequence-to-sequence alignment. PAMI (2010)
13. Meyer, B., Stich, T., Magnor, M., Pollefeys, M.: Subframe temporal alignment of

non-stationary cameras. In: BMVC. (2008) 103–112
14. Avidan, S., Shashua, A.: Trajectory triangulation: 3d reconstruction of moving

points from a monocular image sequence. PAMI (2000)
15. Shashua, A., Wolf, L.: Homography tensors: On algebraic entities that represent

three views of static or moving planar points. ECCV (2000)
16. Kaminski, J.Y., Teicher, M.: A general framework for trajectory triangulation.

JMIV (2004)
17. Torresani, L., A.Hertzmann, Bregler, C.: Nonrigid structure-from-motion: Esti-

mating shape and motion with hierarchical priors. PAMI (2008)
18. Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-

to-fine low-rank structure-from-motion. In: CVPR. (2008)
19. Llado, X., Del Bue, A., Agapito, L.: Non-rigid 3d factorization for projective

reconstruction. In: BMVC. (2005)
20. Snavely, N., Simon, I., Goesele, M., Szeliski, R., Seitz, S.: Scene reconstruction

and visualization from community photo collections. Proc. IEEE Special Issue on
Internet Vision (2010)

21. Schindler, G., Dellaert, F.: Probabilistic temporal inference on reconstructed 3d
scenes. In: CVPR, IEEE (2010) 1410–1417

22. Ballan, L., Brostow, G., Puwein, J., Pollefeys, M.: Unstructured video-based ren-
dering: Interactive exploration of casually captured videos. ACM (TOG) (2010)

23. Goshen, L., Shimshoni, I.: Balanced exploration and exploitation model search for
efficient epipolar geometry estimation. In: ECCV. (2006)

24. HaCohen, Y., Shechtman, E., Goldman, D., Lischinski, D.: Non-rigid dense corre-
spondence with applications for image enhancement. SIGGRAPH (2011)

