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AbstractÐWe consider the problem of reconstructing the 3D coordinates of a moving point seen from a monocular moving camera,

i.e., to reconstruct moving objects from line-of-sight measurements only. The task is feasible only when some constraints are placed on

the shape of the trajectory of the moving point. We coin the family of such tasks as ªtrajectory triangulation.º We investigate the

solutions for points moving along a straight-line and along conic-section trajectories. We show that if the point is moving along a

straight line, then the parameters of the line (and, hence, the 3D position of the point at each time instant) can be uniquely recovered,

and by linear methods, from at least five views. For the case of conic-shaped trajectory, we show that generally nine views are

sufficient for a unique reconstruction of the moving point and fewer views when the conic is of a known type (like a circle in 3D

Euclidean space for which seven views are sufficient). The paradigm of trajectory triangulation, in general, pushes the envelope of

processing dynamic scenes forward. Thus static scenes become a particular case of a more general task of reconstructing scenes rich

with moving objects (where an object could be a single point).

Index TermsÐStructure from motion, multiple-view geometry, dynamic scenes.

æ

1 INTRODUCTION

WE wish to remove the static scene assumption in
3D-from-2D reconstruction by introducing a new

paradigm we call trajectory triangulation that pushes the
envelope of processing dynamic scenes from segmentation
to 3D reconstruction.

Consider the situation in which a 3D scene containing a
mix of static and moving objects is viewed from a moving
monocular camera. The typical question addressed in this
context is that of ªsegmentationº: Can one separate the
static from dynamic in order to calculate the camera
ego-motion (and 3D structure of the static portion)? This
question is basically a robust estimation issue and has been
extensively (and successfully) treated as such in the
literature (cf. [9], [6]).

However, consider the next (natural) question in this
context: Can one reconstruct the 3D coordinates of a (single)
point on a moving object? The measurements available in
this context are line-of-sight only, thus, in a general situation
the task of reconstruction is not feasible, unless further
constraints are imposed. In order to reconstruct the
coordinates of a 3D point, the point must be static in at
least two views (to enable triangulation)Ðif the point is
moving generally then the task of triangulation is not
feasible. Note that the feasibility issue arises regardless of
whether we assume the ego-motion of the camera to be
known or not. Knowledge of camera ego-motion does not
change the feasibility of the problem.

We propose a stratified approach starting from a
straight-line trajectory (the simplest, yet very practical) up
to a general planar conic trajectory. The problem definition
is as follows (see Fig. 1):

Problem Definition 1 (Trajectory Triangulation). Consider
a 3D point moving along some unknown trajectory, where the
trajectory satisfies a parametric form (a straight-line or a conic
section). The moving point is seen by a moving camera (2D
projection) whose motion is general but known. The problem is
to reconstruct the 3D positions of the point, at each time
instant, from the known 2D matches across the views.

Note that, we have not placed constraints on the laws of
motion along the trajectory. The point can move arbitrarily
along the trajectory, thus, the only assumption/constraint
we are making is that the trajectory is either a 3D line or
conic section. The straight-line assumption is reasonable for
a range of applications as people, cars, and airplanes tend to
move largely along straight-lines and is also valid in general
situations for relatively small-time intervals (as an
approximation). The conic-section parametric form is the
next level up in the stratification hierarchy and, which,
provides a wider range of applications (albeit at the price of
careful considerations on numerical stability). Note that in
the problem definition we assumed knowledge of camera
ego-motion (projection matrices). We acknowledge the
difficulty of recovering the camera ego-motion in general
and under dynamic scene conditions, in particular, but
believe it to be reasonable in view of the large body of
theoretical and applied literature on the subject. Thus, we
treat the problem of ego-motion as a ºblack-boxº and a first
layer in a hierarchy of tasks that are possible in a
º3D-from-2Dº family of problems.

The case of conic-based trajectories is reminiscent to the
classic problem of orbit determination in astrodynamics
(cf. [3]). Orbit determination is about calculating the orbit
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(conic section, typically elliptic) of body A around body B
under a gravitational field. A branch of this problem
includes the determination of an orbit from directional
measurements only (lines of sight). However, the assump-
tion of motion under a gravitational field constrains not
only the shape of the trajectory (conic section), but also the
law of motion along the trajectoryÐin this case, the motion
is Keplerian, which is to say that equal areas are swept
during equal times.

Our work on determining a conic trajectory from line of
sight measurements (trajectory triangulation over conics)
differs from the classic work on orbit determination by that
the motion of the point along the trajectory is arbitrary. In other
words, the only assumption we make is about the shape of
the trajectory (conic section) while the motion of the point
along the trajectory is unconstrained.

The paper proceeds as follows: We start with the case of
straight-line trajectories (linear trajectory) and show that the
solution boils down to determining a unique linear-line-
complex from a set of five or more views. The algebraic
solution involves linear equations over the Plucker
coordinates of the trajectoryÐis remarkably simple and
practical. We then proceed to the case of conic trajectories
and we introduce two approaches for solving for the conic
parameters (the position of the plane on which the conic
resides and the location, shape, and type of the conic on that
plane) from line-of-sight measurements. Both methods
require nonlinear estimation techniques, but, are shown to
be practical through experimentation on real image
sequences. We end the paper with suggestion on future

research on the general topic of trajectory triangulation. Parts
of this work, as it evolved, have appeared in the meetings
found in [1], [10].

2 TRAJECTORY TRIANGULATION OVER STRAIGHT

LINES

Fig. 2 and Fig. 3 provide a sketch of the problem. A target
point is moving along some unknown straight-line in 3D
and is viewed by a number of cameras (or a moving single
camera) with known projection matrices. In other words,
the line-of-sights as rays in 3D are known (the position of
the target point along the line of sights is unknown). The
problem is to find the parameters of the 3D line from the
observations, and once that is known, it becomes a simple
problem (intersecting rays) to reconstruct the position of the
target at each time instant.

The first question to consider is how many views are
necessary for a unique solution for the parameters of the line? One
can easily show that four views in general provide two
solutions, thus, five views provide a unique solution. We
first address this issue geometrically and then algebraically,
as follows:

2.1 Geometric Interpretation

The geometric picture behind the problem of trajectory
triangulation over straight lines is a linear line complex, i.e., a
set of 3D lines that have a common intersecting line L. The
intersecting line is the straight-line trajectory of the moving
point (unknown) and the set of lines are the optical rays
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Fig. 1. (a) ªTrajectory Triangulationº along a line. A line is moving along a line while the camera is moving. (b) ªTrajectory Triangulationº along a

planar conic. A point is moving along a planar conic while the camera is moving.

Fig. 2. Three frames from a sequence in which the car is moving independently of the scene. The camera is moving to the right.



from the camera at each time instant (known). Let there be
k views of the moving point. The question, therefore, is
what is the minimal k that form a unique linear line
complex?

Clearly, if k � 2, we have infinite lines L intersecting the
two rays. For k � 3, for each point along the first ray there is
a unique line incident to it and to the other two rays (the
point and the second ray define a plane which intersects the
third ray uniquely)Ðhence, we still have infinite lines L
(see Fig. 4). For k � 4, three of the rays define a ruled
quadric (the collections of lines swept by the point moving
along the first ray, as considered above), which intersects
the fourth ray at two distinct pointsÐthus, we have two
solutions for L, and thus, for k � 5 we have a unique
solution.

The argument that one needs at least four lines for a
finite number of solutions for a common intersecting line is
well-known and is also used in graphics algorithms for
synthetic illumination and visibility computations (cf. [11]).

2.2 Solving for Plucker Representation

We wish to recover the piercing line L given k � 5 views,
known 3� 4 projection matrices (describing camera
motion) Mi and the projections pi, i � 1; . . . ; k of the moving
point along the line L.

Let P , Q be any two points on the line L, and let li be the
projection of L on view i. Clearly, p>i li � 0 because pi is
incident to the line li in the image plane. We can represent li
by the cross product of the projections of P and Q:

li � �MiP � � �MiQ�;
because Mi projects 3D points onto view i. A convenient
way to simplify this expression is to represent the line L

using Plucker coordinates: L � P ^Q which is a vector of

six components defined as follows:

L � P ^Q
� �1; Xp; Yp; Zp� ^ �1; Xq; Yq; Zq�
� �Xp ÿXq; Yp ÿ Yq;
Zp ÿ Zq;XpYq ÿ YpXq;

XpZq ÿ ZpXq; YpZq ÿ ZpYq�:

�1�

The Plucker representation of the line is defined up to

scale and is independent of the choice of P , Q. The entries of

the vector L are the 2� 2 minors of

1 Xp Yp Zp
1 Xq Yq Zq

� �
: �2�

The entries of L also satisfy a quadratic constraint

L1L6 ÿ L2L5 � L3L4 � 0;

for all Plucker coordinates. The space of all 3D lines is

therefore embedded in a five-dimensional projective space

and subject to a quadratic constraint (i.e., not every six tuple

corresponds to a real line). Thus, the six Plucker coordinates

describe a four parameter space which confirms basic

intuition that a 3D line could be parameterized by four

numbers (such as by slope and intercept on two standard

planes).
In [4], it was pointed out that by using the Plucker

representation one can readily transform Mi into a 3� 6

matrix ~Mi that satisfies a line projection matrix relation:

li � ~MiL, where L is represented by its six Plucker

coordinates. The rows of ~Mi are defined by the ^ (ªmeetº)
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Fig. 3. Illustration of Trajectory Triangulation. (a) Schematic illustration. A point moving along a 3D line and is projected on the image plane of a
moving camera. Since the 3D point is moving, one can not use triangulation to recover its coordinates. A sketch of this principle is seen in (b) where
the car is moving along a straight line while the camera is moving. The lines drawn from the car are the optical rays of a single point on the car as
seen by the moving camera.

Fig. 4. Figures (a) and (b) show that one can define infinite number of lines that intersect two or three given lines, respectively. Given three lines

(b), there is a unique intersecting line for every point along the first line, thus the set of intersecting lines form a ruled surface (quadric); the fourth line

(c) intersects the surface at two points, thus there are two intersecting lines for a general set of four lines.



operation (1) on the pairs of rows of Mi. (Mj stands for the

jth row of camera matrix M)

~M �
M2 ^M3

M3 ^M1

M1 ^M2

24 35: �4�

We have, therefore, established the following linear

constraint on the unknown Plucker vector L:

p>i ~MiL � 0

which is linear in the parameters of L. Thus, five views in

general provide a unique solution and more than five views

provide a least-squares solution. Generally, the rank of the

estimation matrix is five and L is the null space of the

estimation matrix.
The quadratic constraint comes into play when the rank

of the estimation matrix is four. This situation arises when

the number of views is four (as we have seen in the
previous section, we expect to have two solutions) or when
the camera center of projection traces a straight line during
camera motion. In these cases, we have a two-dimensional
null space spanned by v1; v2, thus, L � �1v1 � �2v2. The
scalars �1; �2 can be found up to a common scale from the
quadratic constraint (3), thus, we obtain a second-order
constraint on �1; �2 which provides two solutions for L.

The degenerate situations occur when the moving point
and the camera center trace trajectories that live in the same
ruled quadric surface. For example, when the camera center
traces a straight line coplanar with L, we have a rank
deficient situation (any line on that plane is a solution).

2.3 Multiple Points

So far, we have discussed the case of a single moving point
along a straight line viewed by a projective camera. On an
object moving along a straight-line path one may possibly
track a number of pointsÐthose would correspond to a
family of parallel lines. Note from (1), that, the coefficients
L1; L2; L3 denote the direction of the line L, thus, a set of k
parallel lines are determined by 3� 3k Plucker coordinates
(up to scale). For example, when two points are tracked
across four views, we have eight equations for a unique
solution for the two parallel lines. More views and/or more
points would give rise to an over-determined system of
equations. In practice, due to the proximity of the points
compared to the field of view of the camera, the added
equations would make a relatively small contribution to the
numerical stability of the systemÐbut in any case, if the
information exists (of multiple points on the straightly
moving object), it is worthwhile making use of it.

2.3.1 Reconstructing the 3D Point

Note that once the 3D line L is recovered, it is a simple
matter to reconstruct the actual 3D points as they were
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Fig. 5. Projecting the 3D line defined by the moving car on one of the

images of the sequence.

Fig. 6. The top row (a-1,a-2), shows the two extreme frames from a 30-frames sequence. We have computed the camera matrices of all the
30 frames using the chess-board. The bottom row (b-1,b-2), shows the recovered 3D line L as projected on the extreme two frames. The tip of the
nose of the moving doll was used for the tracking. The last 10 frames were not used in computing the 3D line, yet, the distance between the tracked
point and the projected 3D line L is about one pixel for all frames in the sequence.



moving in space, simply by intersecting each ray with the
line L. This is done as follows. Represent the line L as a
linear combination of two points

Q1 � �1; X; Y ; Z�; Q2 � �1; X � �X; Y � �Y ; Z � �Z�;
where ��X; �Y ; �Z� � �L1; L2; L3�, the first three compo-
nents of the line L, and X;Y ; Z can be solved from the
following set of linear equations:

L2 ÿL1 0
L3 0 ÿL1

0 L3 ÿL2

24 35 X
Y
Z

24 35 � L4

L5

L6

24 35: �5�

Next, find � such that the point Pi � Q1 � �Q2 satisfies
the equation pi �MiPi. Pi is the 3D position of the object at
time instant i.

3 TRAJECTORY TRIANGULATION OVER CONICS

The next level up in the stratification hierarchy, yet still
maintaining a simple solution, is when the target point in
moving along some unknown conic section in 3D. In this
case, we wish to recoverÐfrom measurements of line-of-
sight onlyÐeight parameters in general: Three for the
position of the plane on which the conic resides on, and five
for the conic itself. Once these parameters are recovered, the
3D coordinates of the moving point can be recovered by
intersecting the line-of-sight with the conic section.

We propose two methods for recovering the parameters.
The first method performs a 2D optimization (based on
conic fitting) on some arbitrary virtual common plane. The
method is very simple, but can only deal with general
conicsÐa priori constraints on the shape of the 3D conic
cannot be enforced due to the projective distortion from the
conic plane to the virtual common plane.

The second method is slightly more complex as the
optimization is performed in 3D (projective or Euclidean)
but enables the enforcement of a priori constraints on the
shape of the conic when the cameras are calibrated.

Numerical stability is greatly enhanced when a priori
information is integrated into the estimation process. We
will derive the second method for the case of calibrated
cameras and when the conic in 3D is a circle. The extension
to general conics follows in a straightforward manner, but
will not be derived here.

3.1 Method I: 2D Optimization on a Common Plane

We denote the 3D position of the moving point and the
camera matrix (projection matrix) at time i � 1 . . . k
by Pi � �Xi; Yi; Zi; 1�T and Mi � �Hi ; ti�, respectively. The
image measurements are, thus, pi �MiPi. Our goal is to
recover the 3D points Pi, given the uncalibrated camera
matrices Mi and the image measurements pi. This can be
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Fig. 7. Sketch of Method I. The true plane is shown in bold, the guessed
plane is shown with dashed lines. Choosing a different plane affects the
projection of the points on the first image (or common plane in general).
If the plane is not the correct one, then the points on the first image will
not form a conic.

Fig. 8. The original image sequence. (a), (b) and (c) are the first, middle
and last images, respectively in a sequence of 16 images. The camera is
moving mainly to the left, while the Lego cube traces a circle on the
turntable.



formulated as a nonlinear optimization problem in which

eight parameters are to be estimated. The three parameters

of the normal to the plane n and the five parameters of the

conic as defined (up to scale) by a symmetric 3� 3 matrix C.
Let the sought-after plane on which the conic resides on

be denoted by �. Let Ai be the 2D homography from image i

to some common arbitrary plane (image plane i � 1 if

M1 � �I; 0�) through the plane �, i.e., Aipi, i � 1; . . . ; k must

be a conic on the common plane (see Fig. 7). The following

relation must hold:

Ai � �k n k Hi � tin>�ÿ1:

Therefore, each view provides one (nonlinear) constraint:

p>i A
>
i CAipi � 0; i � 1; . . . ; k:

Since the total number of parameters are eight and each

view contributes one (nonlinear) equation, then eight views

are necessary for a solution (up to a finite-fold ambiguity)

and nine views for a unique solution. It is possible to solve

for n and C by means of numerical optimization, or to use

an interleaving approach described below:

1. Start with an initial estimate of n.
2. Compute p̂i � Aipi, where Ai � �k n k Hi � tin�ÿ1.
3. Fit a conic C to the points p̂i.

4. Search over the space of all possible n to minimize
the error term:

minnerr�C; p̂i��:

There are a number of points worth mentioning. The

minimization is over three parameters only due to Step 3 of

conic fitting. A large body of literature is devoted to conic

fitting and the numerical biases associated with this

problem (cf. [6], [2], [5]). The error term in Step 4 is also

an important choice: The algebraic error p>Cp between a

point p and a conic C is least recommended because of

numerical biases. In our implementation, for example, we

have chosen to minimize the distance to the polar line Cp,

i.e., err�C; p� � dist�Cp; p�. Finally, the search in Step 4 is

achieved (in our implementation) by Levenberg-Marquardt

optimization using numerical differentiation. Using Matlab,

the optimization step consists of simply calling the leastsq

function.
To summarize, this approach has the two advantages. It

is simple and is carried over the 2D plane only. The

disadvantages are, first, that the method does not facilitate a

priori constraints on the shape of the conic, and second, the

method involves a conic fitting (and evaluation) stage

which could be challenging on the numerical front.
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Fig. 9. Using 2D conic fitting (Method I) to recover the planar conic section. The results are shown by projecting the recovered planar conic (and the
3D points traced along the conic) on several refernce images from the sequence. (a) Shows the initial guess with the first image as the reference
image, (b), (c), and (d) shows the initial results of the 2D conic fitting when the reference image is the first, middle, and the last images of the
sequence, respectively. The resulting conic had an aspect ratio of 0:9, radius roughly 8 percent off, and orientation of the plane was 6o off.



3.2 Method II: Conic Fitting in 3D

In this method, the objective function is minimized in 3D
space and is designed such that it can express a priori shape
constraints, when available and when cameras are
calibrated. The general idea is that a conic in 3D is
represented by the intersection of the plane � and a quadric
surface. By defining a suitable coordinate system of the
quadric surface, one can obtain an eight parameter objective
function. In case of calibrated projection matrices and if a
priori information about the type of conic is given, say a
circle, then the quadric surface representation can be
simplified further. We will derive here, a special case in
which the sought-after conic is a circle in 3D.

In the case of a circle, we wish to represent the
arrangement of a sphere and a cutting plane. We expect
the total number of parameters to be six (three for n and
three for representing a circle in the plane), yet, a sphere is
defined by four parameters. Therefore, an additional
constraint is necessary and this is obtained by constraining
the plane � to coincide with the center of the sphere. The
details are below.

Let pi and Mi be the projection and camera matrices of
frame i � 1; . . . ; k, as defined previously. In case the
cameras are calibrated, then the projection matrices repre-
sent the mapping from an Euclidean coordinate system to
the image plane, i.e., Mi � Ki�Ri ; ui�, where Ri; ui are the
rotational and translational components of the mapping

and Ki is an upper-diagonal matrix containing the internal

parameters of the camera (focal length, aspect ratio, and

principle point). For our needs, since we assume Mi to be

known, we can still denote Mi by the composition

Mi � �Hi ; ti� as was done previously (thus, at this juncture

it doesn't really matter whether the camera is calibrated or

not). Let the 3D coordinates of the moving point P be

denoted (as before) by Pi � �Xi; Yi; Zi�T at time i � 1; . . . ; k.

We first represent Pi as a function of n as follows:

�ipi �MiPi: �6�
Which after substitution becomes:

�ipi � �Hi ti� Pi
1

� �
�7�

�iH
ÿ1
i pi � Pi �Hÿ1

i ti �8�
thus, Pi as a function of Mi and pi becomes:

Pi � �iHÿ1
i pi ÿHÿ1

i ti: �9�
Next, we know that the moving point resides on the plane

�, thus

Pin� 1 � 0: �10�
After substitution, we obtain
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Fig. 10. Using 3D sphere fitting (Method II) to recover a planar conic section. The results are shown by projecting the recovered planar conic (and the
3D points traced along the conic) on several reference images from the sequence. (a) Shows an extreme initial guess with the first image as the
reference image, (b), (c), and (d) shows the results of the 3D sphere fitting when the reference image is the first, the middle, and the last images of
the sequence, respectively. The resulting radius of the circular path was 5 percent off from the ground truth, and around 4o off in orientation.



�i � �H
ÿ1
i ti�Tnÿ 1

�Hÿ1
i pi�Tn

: �11�

Taken together, (9) and �i above, give rise to:

Pi �
Xi

Yi
n1Xi�n2Yi�1

ÿn3

24 35
in which Xi; Yi are functions of n (and Zi is eliminated by

being expressed as a function of Xi; Yi;n).
Let the center of sphere be at the coordinates Pc �

�Xc; Yc; Zc� and its radius R, thus, the points Pi satisfy the

constraint:

�Xi ÿXc�2 � �Yi ÿ Yc�2 � �Zi ÿ Zc�2 ÿR2 � 0 �12�
which can be written as,

�PT
i 1 �Q Pi

1

� �
: �13�

The 4� 4 symmetric matrix Q is given by:

Q �
1 0 0 q1

0 1 0 q2

0 0 1 q3

q1 q2 q3 q4

0BB@
1CCA;

where

q1 � Xc;

q2 � Yc;
q3 � Zc;
q4 � X2

c � Y 2
c � Z2

c ÿR2:

�14�

Since the center of the circle Pc is on the plane � we have:

Zc � n1Xc � n2Y c� 1

ÿn3
�15�

so we need to solve for the three parameters q1; q2; q4. Taken

together, each view provides one (nonlinear) constraint (12)

over six parameters n and q1; q2; q4. Thus, seven views are

necessary for a unique solution. As with Method I, it is

possible to solve for the system over six parameters or to

adopt an interleaving approach:

1. Start with an initial estimate of n.
2. Compute the point P̂ i from (9) and (11).

3. Solve for q1; q2; q4 (linear least-squares). Pc;R follow
by substitution.

4. Search over the space of all possible n to minimize
the error term:

minn; �dist�P̂ i; Pc� ÿR�2; i � 1; . . . ; k;

where the search is done using numerical optimization

(leastsq function of Matlab).

4 EXPERIMENTS

We have conducted a number of experiments on the

straight-line and conic trajectories.

4.1 Line Trajectory

We show the results of two of the experiments conducted.

In the first experiment Fig. 5, a sequence of seven images of

the moving car was taken with a moving camera (Fig. 5).

The static points in the scene were used to compute the

camera matrices and we have manually selected a point on

the car in the first image and have automatically tracked it

through the sequence. Then, we used the algorithm

presented in this paper to recover the parameters of the

3D line L. We then projected the line L on one of the images

(using the recovered camera matrix Mi).
In the second experiment, Fig. 6, we used a video

sequence of 30 frames. Again, the camera was moving an

object, a little doll, was moving as well. The camera matrices

Mi were recovered using the chess-board appearing in the

scene, and a point on the tip of the nose of the doll was

manually selected and automatically tracked along the

sequence. However, in this experiment we have used just

the first 10 even-numbered frames �2; 4 . . . ; 20� to recover

the 3D line L, which was then projected on all of the frames

of the sequence (using the corresponding Mi camera

matrices), thus showing the ability of the method to predict

the line on which the doll will appear in the last 10 frames.

The average distance between the tracked point and the

projected line was about one pixel. In addition, we have

used the chess-board in the scene to obtain a Euclidean

reconstruction and since we recovered the position of the

doll at each time instant, we were able to produce a virtual

movie where the camera moves freely in 3D space,

capturing the doll from different viewpoints at different

time instances.
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Fig. 11. Three images from a video sequence of 100 images. We manually track the tip of one of the wings of the propeller. The camera motion was

recovered from the static background.



4.2 Conic Trajectory

We have conducted a number of experiments on both

synthetic and real image sequences. We report here, a
typical example of a real image sequence experiment.

A sequence of 16 images was taken with a hand-held

moving camera viewing a small Lego piece on a turntable.

The Lego piece is therefore moving along a circular path.
The first, middle, and last images of the sequence are shown

in Fig. 8. The projection matrices were recovered from

matching points on the static calibration object (the folded
chess-board in the background). The corners of the chess-

board were the control points for a linear system for solving

for Mi for each image. The linear solution is not optimal,
but, was good enough for achieving reasonable results for

the trajectory triangulation experiments. A point on the
Lego cube was then (manually) tracked over the sequence

and its image positions pi was recorded.
We tested both Methods I and II. In general, the 3D-

based optimization (Method II) always converged from any
initial guess of n (the position of the plane �).Fig. 10a shows

the conic due to the initial guess that was used for this

experiment, for example. The 2D-based optimization
(Method I) was more sensitive to the initial guess of n,

and Fig. 9a shows a typical initial guess. The remaining

displays in Fig. 9 and Fig. 10 show the projection of the final

conic (following convergence of the numerical optimiza-

tion) on the first, middle, and last images of the sequence. In

Method II, the reconstructed points in 3D define a circle (as

it was constrained to begin with) of a radius 5 percent off

from the ground truth and around 4o in orientation. In

Method I, the resulting conic had an aspect ratio of 0:9

(recall that we solved for a general conic), radius roughly

8 percent off, and orientation of the plane was 6o off.
Another example (using Method I) is shown in Fig. 11,

Fig. 12 and Fig. 13. In this case, the moving point is the tip of
a rotating wing (on top of the hat) and it took 18 iterations
for convergence starting from some arbitrary position of the
conic plane. In this case, we do not have ground truth for
quantitative evaluation of accuracy, but the superimposed
images show a reasonable qualitative fit to the true path.

To summarize, both methods generally behave well in
terms of convergence from reasonable initial guesses.
Method II was much less sensitive to the initial guess
(converged in all our experiments) and generally produced
more accurate results. The superiority of Method II most
likely is a result of the added constraints which reduces the
number of parameters (from eight to six), but at the expense
of requiring calibrated cameras.
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Fig. 12. Convergence of the 2D conic fitting algorithm. (a) show the reprojection of all tracked points on a particular image, given the initial guess of

plane parameters. As the algorithm converges ((b)-(f)) the reprojected points form a conic. In this case, it took the algorithm 18 iterations to

converge.

Fig. 13. Result of the convergence. We show the reprojected points and the fitted conic super imposed on three of the original images in the

sequence.



5 SUMMARY AND FUTURE RESEARCH

We have introduced a new approach for handling scenes

with dynamically moving objects viewed by a monocular

moving camera. In a general situation, when both the

camera and the target are moving without any constrains,

the problem is not solvable, i.e., one cannot recover the 3D

position of the target even when the camera ego-motion is

known. We have proposed a stratified approach on

parametric trajectories and begun the hierarchy with

straight-line trajectories. In that case, we have shown that

the parameters of the path are uniquely solved given at

least five views of the moving target. We then addressed

second-order forms which are conic shaped trajectories. In

this context, we have introduced two methods. The first

method performs the optimization on some arbitrary virtual

plane and is very simple. However, it can only deal with

general conics onlyÐa priori constraints on the shape of the

3D conic cannot be enforced due to the projective distortion

from the conic plane to the virtual common plane. The

second method performs the optimization in 3D. The

advantage of the second method is that under calibrated

cameras it is possible to enforce a priori constraints on the

shape of the conic. For example, we have derived the

equations necessary for recovering a 3D circular path.
We believe that future work on the family of trajectory

triangulation tasks may include the following directions:

. Sliding-window linear or conic trajectory fitting. A
reconstruction of a generally moving point can be
decomposed onto smaller subproblems in case many
(dense) samples of the moving point are available
(like in continuous motion).

. A unification of static and dynamic reconstruction. It
is possible to estimate whether a point is static or
moving simply by the size of the kernel in the case of
linear trajectory triangulation. A one-dimensional
kernel corresponds to a straight-line path, whereas
higher dimensional kernels correspond to a single
point (static situation).

. The possibility of recovering both the camera ego-
motion and the trajectory (linear or conic) of the
point. The task is of a multi-linear nature (for the
linear trajectory triangulation) and thus, there may
be an elegant way of decoupling the system as is
done in the static case. Preliminary work in this
direction can be found in [8].

. Unifying second and first order trajectories. Cur-
rently, the methods for conic trajectory would fail for
a straight-line trajectory as a straight-line path is a
singular event for Methods I and II. It is possible,
however, to unify both straight and conic paths into
a single computational framework if one observes
the local tangent to the path along the image
sequence [7].

. Handling more complex trajectories by tracking
multiple points. If a sufficient number of points are
tracked on a rigid body than the full motion of the
object (relative to the camera ego-motion) can be
recovered. It may be interesting to investigate the
possible trajectory shapes when fewer points are
availableÐsuch as two points.
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