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Abstract—Computer-generated (CG) images have achieved high levels of realism. This realism, however, comes at the cost of long
and expensive manual modeling, and often humans can still distinguish between CG and real images. We introduce a new data-driven
approach for rendering realistic imagery that uses a large collection of photographs gathered from online repositories. Given a CG
image, we retrieve a small number of real images with similar global structure. We identify corresponding regions between the CG
and real images using a mean-shift cosegmentation algorithm. The user can then automatically transfer color, tone, and texture from
matching regions to the CG image. Our system only uses image processing operations and does not require a 3D model of the scene,
making it fast and easy to integrate into digital content creation workflows. Results of a user study show that our hybrid images appear

more realistic than the originals.

Index Terms—Image enhancement, image databases, image-based rendering.

1 INTRODUCTION

HE field of image synthesis has matured to the point

where photo-realistic computer-generated (CG) im-
ages can be produced with commercially available soft-
ware packages (e.g., RenderMan and POV-Ray). How-
ever, reproducing the details and quality of a natural im-
age requires a considerable amount of time by a skilled
artist. Even with large budgets and many man-hours of
work, it is sometimes surprisingly easy to distinguish
CG images from photographs.

CG images differ from photographs in three major
ways. First, color distributions of CG images are often
overly saturated and exaggerated. Second, multi-scale
image statistics, such as histograms of filter outputs
at different scales, rarely match the statistics of pho-
tographs. Finally, CG images often lack details (e.g., high
frequencies, texture, and noise) and consequently look
look too pristine.

To improve realism in computer graphics, rather than
introduce more detailed geometric models and complex
textures, this work proposes a new rendering pipeline
that leverages a large collection of photographs. Large
image collections can be readily acquired from photo-
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sharing sites, such as Flickr, and such collections have
been the basis for data-driven methods for improving
photographs [1]. This work demonstrates that large im-
age collections can be used in the context of computer
graphics to synthesize realistic imagery without the need
for complex models.

CG2Real takes a CG image, retrieves and aligns a
small number of similar photographs from a database,
and transfers the color, tone, and texture from the real
images to the CG image. A key ingredient in the system
is a mean-shift cosegmentation algorithm that matches
regions in the CG image with regions in the real images.
After cosegmentation, we transfer real-image textures
to the CG image and perform local color and tone
transfers between image regions. Local transfers offer an
improvement in quality over global transfers based on
histogram matching. Color and tone transfers are com-
pletely automatic, and texture transfer can be controlled
by adjusting a few parameters. In addition, all operations
are reasonably fast: an average computer can run the
cosegmentation and all three transfer operations in less
than 15 seconds for a 600 x 400 pixel image.

CG2Real is useful in a variety of artistic scenarios. In
its current form, the system can synthesize natural scenes
using a database of outdoor images. The CG image
is used as a template that gets filled in with realistic
textures. The user can also choose to preserve structures
in the CG image. For example, a user working on a
3D model may wish to render it with a photorealistic
background. This problem occurs in architectural mod-
eling where an architect has a detailed model for a house
but not for the surroundings. In this scenario, CG2Real
can be configured to preserve the rendered model and



Fig. 1. Given an input CG image (left), our system finds the most similar photographs (not shown) to the input image.
Next, the system identifies similar regions between the CG image and photographs, transfers these regions into the
CG image (center), and uses seamless compositing to blend the regions. Finally, it transfers local color and gradient
statistics from the photographs to the input image to create a color and tone adjusted image (right).

synthesize a background using real image textures (e.g.,
grass, trees, and sky). CG2Real allows a user to control
the amount of image content to be replaced by real
textures, enabling artists to create hybrid images and
enabling researchers to study the cues important to the
perception of realism.

The primary contribution of this paper is a novel data-
driven approach for rendering realistic imagery based
on a CG input. Within this system, several individual
operations also further the state of the art, including (1)
an improved image search tuned for matching global
image structure between CG and real images; (2) an
image cosegmentation algorithm that is both fast and
sufficiently accurate for color and tone transfer; and (3)
methods for local transfer of color, tone, and texture
that take advantage of region correspondences. As a
final contribution, we describe several user studies that
demonstrate that our hybrid images appear more real-
istic than the originals, providing insight into the cues
that people use to distinguish CG from real.

2 PREvViOUs WORK

The appearance of a computer-generated image can be
improved by adding realistic texture. In their seminal
work, Heeger and Bergen [2] proposed a novel approach
for synthesizing textures. Their method starts with a
random noise image and iteratively adjust its statistics
at different scales to match those of the target texture,
leading to new instances of the target texture. This
approach was later extended by De Bonet [3] to use
joint multi-scale statistics. Alternatively, one can take an
exemplar based approach to texture synthesis. This idea
was first illustrated in the work of Efros and Leung [4]
and was later extended to work on patches instead
of pixels [5], [6]. The image analogies framework [7]
extends non-parametric texture synthesis by learning a
mapping between a given exemplar pair of images and
applying the mapping to novel images. Freeman et al. [8]
proposed a learning-based approach to solve a range

of low-level image processing problems (e.g., image
super-resolution) that relies on having a dictionary of
corresponding patches that is used to process a given
image.

Unfortunately, these approaches require correspon-
dence between the source and target images (or patches),
a fairly strong assumption that cannot always be satis-
fied. Rosales et al. [9] relaxed this assumption by framing
the problem as a large inference problem, where both
the position and appearance of the patches are inferred
from a pair of images without correspondence. While
the results look convincing for a variety of applications,
the specific problem of improving realism in CG images
was not addressed.

Instead of requiring corresponding images (or patches)
to learn a mapping, one can take a global approach
that transfers color or style between images. Reinhard
et al. [10] modified the color distribution of an image to
give it the appearance of another image. They showed
results on both photographic and synthetic images. Al-
ternatively, Pitié et al. [11] posed color transfer as a prob-
lem of estimating a continuous N-dimensional transfer
function between two probability distribution functions
and presented an iterative non-linear algorithm. Bae
et al. [12] used a two-scale nonlinear decomposition
of an image to transfer style between images. In their
approach, histograms of each layer were modified in-
dependently and then recombined to obtain the final
output image. Finally, Wen et al. [13] demonstrated a
stroke-based interface for performing local color transfer
between images. In this system, the user provides the
target image and additional input in the form of stroke
pairs.

We build on and extend this line of work with several
important distinctions. First, the works discussed so far
do not consider how the model images are chosen, and
instead assume that the user provides them. We believe
a system should be able to obtain model images with
a minimum of user assistance. Given a large collection
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Fig. 2. An overview of our system. We start by querying a large collection of photographs to retrieve the most similar
images. The user selects the k closest matches and the images, both real and CG, are cosegmented to identify similar
regions. Finally, local style transfer algorithms use the real images to upgrade the color, tone, and/or texture of the CG

image.

of photographs, we find images with similar global
structure (e.g., trees next to mountains below a blue sky).
Because the photographs are semantically and contextu-
ally similar to the CG image, we can find corresponding
regions using cosegmentation, and thus can more easily
apply local style transfer methods to improve realism.

Recently, several authors have demonstrated the use
of large collections of images for image editing oper-
ations. The system of Hays and Efros [1] uses a large
collection of images to complete missing information
in a target image. Their system retrieves a number of
images that are similar to the query image and uses
them to complete a user-specified region. We take a dif-
ferent approach by automatically identifying matching
regions and by stitching together regions from multiple
images. Liu et al. [14] perform example-based image
colorization using images from the web that is robust to
illumination differences. However their method involves
image registration between search results and input and
requires exact scene matches. Our approach instead uses
an image search based on image data, and our transfers
only assume similar content between CG input and real
search results. Finally, Dale et al. [15] show that large
image collections can be used to find context-specific
priors for images and demonstrate the utility of these
priors for global corrections to exposure, contrast and
white balance. In this work, we consider CG images
as input and address local transfers of color, tone and
texture.

In work based on annotated image datasets, Lalonde
and Efros [16] use image regions drawn from the La-
belMe database [17] to populate the query image with
new obijects. Johnson et al. [18] allow the user to cre-
ate novel composite images by typing in a few nouns
at different image locations. A similar system called
Sketch2Photo [19] takes sketches with text labels and
synthesizes an image from the sketch. These systems

rely on image annotations to identify image regions
and region correspondences. They can produce decent
results when replacing well-defined objects, but are more
difficult to use for replacing image regions that cannot
be defined by a simple search term. In contrast, our
approach uses an image-based search descriptor with an
automatic cosegmentation algorithm for identifying local
regions and inter-region correspondences.

Researchers have also studied the characteristics of
natural versus synthetic images. For example, in digital
forensics, Lyu and Farid [20] examine high-order image
statistics to distinguish between synthetic and natural
images. Lalonde and Efros [21] use color information
to predict if a composite image will look natural or
not. Others have focused solely on learning a model for
the statistics of natural images [22], [23]. These works
suggest that natural images have relatively consistent
statistical properties and that these properties can be
used to distinguish between synthetic and natural im-
ages. Based on this observation, our color and tone
transfer algorithms work statistically, adjusting color and
gradient distributions to match corresponding distribu-
tions from real images.

3 IMAGE AND REGION MATCHING

Fig. 2 shows an overview of our system. First, we
retrieve the IV closest real images to the query CG image.
The N images are shown to the user, who selects the %
most relevant images; typically, N = 30 and k = 5. Next,
we perform a cosegmentation of the k real images with
the CG image to identify similar image regions. Once
the images are segmented, the user chooses among three
different types of transfer from the real images to the
CG image: texture, color and tone. We find that all three
types of style transfer can improve the realism of low-
quality CG images.



3.1 Image Database

Our system leverages a database of 4.5 million natural
images crawled from the photo-sharing site Flickr using
keywords related to outdoor scenes, such as ‘beach’,
‘forest’, ‘city’, etc. Each image, originally of Flickr’s large
size with a maximum dimension of 1024 pixels, was
downsampled to approximately 75% its original size and
stored in PNG format (24-bit color) to minimize the
impact of JPEG compression artifacts on our algorithms.

Similar to other work that uses large image collec-
tions [1], [24], we chose to focus on a specific scene
class; in our case, outdoor scenes. We have found that
the performance of our system improves with larger
database sizes, and while it is straightforward to build a
large database for a targeted image class, it is still com-
putationally impractical to build a large database that
densely samples the space of imagery. While our tech-
niques could work on other scene types (e.g., indoor),
the variability would require a much larger database to
yield usable matching images [15].

To search the database for matching images, we need
an efficient, yet descriptive, image representation. The
gist scene descriptor [25] is one choice of representation
that has been used successfully for image matching
tasks [1]. The gist descriptor uses histograms of Gabor
filter responses at a single level. We used gist in an
early implementation of our system and were not fully
satisfied with the results. In a recent study, Gabor-based
descriptors, such as gist, were out-performed by SIFT-
based descriptors for texture classification [26], justifying
our decision to use a more detailed image representation.

Our representation is based on visual words, or quan-
tized SIFT features [27], and the spatial pyramid match-
ing scheme of Lazebnik et al. [28]. This approach has
been shown to perform well for semantic scene classi-
fication and for finding context-specific priors for real
images [15]. To build a descriptor robust to differences
between CG and real images, we use a descriptor with
significant spatial resolution that favors global structural
alignment and we use small visual word vocabularies to
coarsely quantize appearance.

Specifically, we use two vocabularies of 10 and 50
words and grid resolutions of 1 x 1, for the 10-word
vocabulary, and 1 x 1, 2 x 2, 4 x 4, and 8 x 8, for the
50-word vocabulary, for a final pyramid descriptor with
4260 elements. This representation has some redundancy,
since a visual word will occur multiple times across
pyramid levels. The weighting scheme specified by the
pyramid match kernel [29] accounts for this; it also
effectively provides term-frequency (tf) weighting. We
also apply inverse document frequency (idf) weighting
to the pyramid descriptor.

In addition, we represent a rough spatial layout of
color with an 8 x8 downsampled version of the image in
CIE L*a*b* space (192 elements). Since the search is part
of an interactive system, we use principal component
analysis (PCA) to reduce the descriptor dimensionality

Fig. 3. Results from our cosegmentation algorithm. In
each row, the CG image is shown on the left and two
real image matches, on the right. Note that in all cases,
segment correspondences are correct, and the images
are not over-segmented.

to allow for an efficient in-core search. We keep 700
elements for the pyramid term and 48 for the color
term and L2-normalize each. The final descriptor is the
concatenation of the spatial pyramid and color terms,
weighted by « and (1 — «), respectively, for a € [0, 1].
Similarity between two images is measured by Euclidean
distance between their descriptors.

For low quality CG images, texture is only a weak
cue, so smaller o values achieve a better balance of color
versus texture cues. We found that presenting the user
with 15 results obtained with a = 0.25 and 15 with
a = 0.75 yielded a good balance between the quality
of matches, robustness to differences in fidelity of CG
inputs, and time spent by the user during selection. We
use a kd tree-based exact nearest-neighbor search, which
requires about 2 seconds per query on a 3 GHz dual-core
machine.

While more complex than gist [25], we find that our
descriptor consistently returns better images for the
same query image. To quantify the improvement in
search results, we conducted a user study where the
users were asked to judge the top 20 search results
from each algorithm. The full details of this study are
described in Section 6.2.

3.2 Cosegmentation

Global transfer operations between two images, such
as color and tone transfer, work best when the images
have similarly-sized regions, e.g., when there are similar
amounts of sky, ground, or buildings. If the images
have different regions, or if one image contains a large
region that is not in the other image, global transfers can
fail. Similar to Tai et al. [30], we find that segmenting
the images and identifying regional correspondences
before color transfer greatly improves the quality and
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Fig. 4. Transferring image color using cosegmentation. On the left are CG images and real images that serve as
color models; white lines are superimposed on the images to denote the cosegmentation boundaries. On the right are
results from two color transfer algorithms: a global algorithm based on N-dimensional histogram matching [11], and our
local color transfer algorithm. In the top example, the global result has a bluish color cast. In the bottom example, the
global result swaps the colors of the building and the sky. Local color transfer yields better results on both examples.

robustness of the results. But in contrast to their work,
we use cosegmentation to segment and match regions
in a single step. This approach is better than segmenting
each image independently and matching regions after
the fact because the content of all images is taken into
account during cosegmentation and matching regions
are automatically produced as a byproduct [31].

The cosegmentation approach of Rother et al. [31] uses
an NP-hard energy function with terms to encode both
spatial coherency and appearance histograms. To opti-
mize it, they present a novel scheme that they call trust-
region graph cuts. It uses an approximate minimization
technique to obtain an initial estimate and then refines
the estimate in the dual space to the original problem.

While our goal is similar to that of Rother et al., we
use the simple approach of Dale et al. [15] that is based
on the mean-shift framework [32]. We define a feature
vector at every pixel p that is the concatenation of the
pixel color in L*a*b* space, the normalized x and y
coordinates at p, and a binary indicator vector (ig, . .., %)
such that i; is 1 when pixel p is in the j*" image and 0
otherwise. Note that the problem of segmenting a set
of related images is different from the problem of seg-
menting video—there is no notion of distance across the
image index dimension as there is in a video stream (i.e.,
there is no time dimension). Thus, the final components
of the feature vector only differentiate between pixels
that come from the same image versus those that come
from different images.

The distance between feature vectors at pixels p; and
p2 in images I; and I}, is a weighted Euclidean distance:

o2de(I;(p1), Ix(p2))?
+ 02ds(p1,p2)® + 030(j — k), (1)

d(p1,Ij,p2, I)* =

where d.(I;(p1),Ix(p2)) is the L*a*b* color distance be-
tween pixel p; in image I; and pixel p; in image I, and
ds(p1,p2) is the spatial distance between pixels p; and
p2. The delta function encodes the distance between the
binary components of the feature vector.

The scalars o, o5 and o in Eqn. 1 serve as weights to
balance the color, spatial, and binary index components.
The default values are o, = 0.4, 05, = 0.5 and o, = 0.1,
and we find that the weights and the mean-shift band-
width parameter do not need to be adjusted for individ-
ual image sets to achieve the types of segmentations that
are useful to our color and tone transfer algorithms.

A disadvantage of mean-shift is that it can be costly
to compute at every pixel of an image without using
specific assumptions about feature vectors or kernel [33].
Since we are after coarse regional correspondences, we
reduce the size of the image by a factor of 8 along each
dimension and use a standard mean-shift algorithm with
the feature vectors described above. We then upsample
the cosegmentation maps to full resolution using joint
bilateral upsampling [34].

In Fig. 3, we show three cosegmentation results, each
with three images (one CG, two real). In the first two
cases, the algorithm segments the images into sky and
non-sky. In the last case, the images are segmented into
three regions: ground, sky, and water. In all cases, the
segment correspondences are correct, and although our
color and tone transfer algorithms are robust to it, the
images have not been over-segmented.

4 LoOCAL STYLE TRANSFER OPERATORS

After cosegmentation, we apply local style transfer op-
erations for color, tone and texture.
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Fig. 5. Transferring image tone. From left to right: an input CG image, a real image that will serve as a color and tone
model, the result of region-based transfer of subband distributions, and close-up view of before and after tone transfer.

4.1 Local Color Transfer

The simplest style transfer is color transfer, where colors
of the real images are transferred to the CG image by
transferring the statistics of a multi-dimensional his-
togram. This method was shown to work quite well for
color transfer between real images, but it often fails when
applied to CG images. The main difficulty is that the
color histogram of CG images is typically different from
the histogram of real images—it is much more sparse
(fewer colors are used). The sparsity and simplicity of the
color distributions can lead to instability during global
transfer where colors are mapped arbitrarily, as shown
in the bottom row of Fig. 4.

We mitigate these problems by a combination of joint-
bilateral upsampling and local color transfer. We down-
sample the images, compute the color transfer offsets
per region from the lower resolution images, and then
smooth and upsample the offsets using joint bilateral
upsampling. Working on regions addresses the problem
of images that contain different proportions of colors and
joint bilateral upsampling smooths color transfer in the
spatial domain.

Within each sub-sampled region, our color transfer
algorithm uses 2D histogram matching on the a* and b*
channels, and 1D histogram matching on the L* channel.
The advantage of histogram matching methods is that
they do not require per pixel correspondences, which
we do not have. Unfortunately, unlike 1D histogram
matching, there is no closed form solution for 2D his-
togram transfer. We use an iterative algorithm by Pitié
et al. [11] that projects the 2D histogram onto random
1D axes, performs standard 1D histogram matching,
and reprojects the data back to 2D. The algorithm typ-
ically converges in fewer than 10 iterations. We found
that marginalizing the distributions and performing the
remapping independently for the a* and b* channels
produces inferior results.

In Fig. 4, we show two examples of color transfer.

From left to right, we show the original CG images, the
real images used as color models, the results of global N-
dimensional color transfer (in L*a*b* space), and results
of our region-based transfer. In the top example, the
global algorithm produces a blue color cast over the
entire image because the real image has significantly
more sky than the CG image. In the bottom example, the
house and sky are influenced by the opposite regions in
the model image: the house becomes blue and the sky
becomes a neutral gray. These problems are avoided by
local color transfer.

4.2 Local Tone Transfer

In addition to transferring the color histogram from the
photographs to the CG image we are also interested in
adjusting gradient histograms at different scales. To this
end, we apply a method similar to Bae et al. [12] to
match filter statistics of the luminance channel of the
CG image to the photographs. Our method, however,
transfers detail locally within cosegmentation regions
and uses a 4-level pyramid based on a quadrature mirror
filter [35] instead of a bilateral filter.

Our tone transfer algorithm is similar to the algorithm
for color transfer. First, we decompose the luminance
channel of the CG image and one or more real images
using a QMF pyramid. Next, we use 1D histogram
matching to match the subband statistics of the CG im-
age to the real images in every region. After transferring
on subbands, we model the effect of histogram transfer
on subband signals as a change in gain:

si(p) = 9i(p)si(p), )

where s;(p) is the level i subband coefficient at pixel p,
and s}(p) is the corresponding subband coefficient after
regional histogram matching, and g;(p) is the gain. Gain
values greater than one will amplify detail in that sub-
band and gain values less than one will diminish detail.



To avoid halos or other artifacts, we employ the gain-
scaling strategies described by Li et al. [36] to ensure
that lower subbands are not amplified beyond higher
subbands and that the gain signals are smooth near zero-
crossings.

The results of color and tone transfer are shown in
Fig. 5. As can be seen, the appearance of the CG image
changes subtly. Since color and tone transfers do not
fundamentally change the structure of the image, they
can be used even when the image matches returned from
the database are poor or when the CG image is already
close to being photorealistic.

4.3 Local Texture Transfer

In addition to color and tone transfer, we also transfer
texture from photographs, which improves realism espe-
cially for low-quality CG images. This is different from
texture synthesis, where the goal is to synthesize more of
the same texture given an example texture. In our case,
we do not want to reuse the same region many times
because this often leads to visual artifacts in the form
of repeated regions. Instead, we rely on the k similar
photographs we retrieved from the database to provide
us with a set of textures to help upgrade the realism of
the CG image.

We start local texture transfer by aligning the CG
image with the real images. Transferring texture on a
region-by-region basis, as was done for color and tone,
does not work well because region boundaries do not
always correspond to strong edges in the image. As a
result, slightly different textures can be transferred to
neighboring regions, leading to noticeable visual arti-
facts. To reduce these artifacts, we align multiple shifted
copies of each real image to the different regions of the
CG image and transfer textures using graph-cut. The
result is a coherent texture transfer that respects strong
scene structure.

We perform the region-based alignment as follows.
For each cosegmented region in the CG image, we use
cross-correlation of edge maps (magnitudes of gradients)
to find the real image, and the optimal shift, that best
matches the CG image for that particular region. We
repeat the process in a greedy manner until all regions
in the CG image are completely covered. To reduce
repeated textures, we only allow up to c shifted copies of
an image to be used for texture transfer (typically ¢ = 2).

Once the alignment step is over we have a set of
ck shifted real images that we can now use for texture
transfer. We model the problem as label assignment over
a Markov Random field (MRF) and solve it using graph
cuts. The set of labels at each pixel location consists of
up to ck + 1 labels, corresponding to c¢ shifted versions
of each of the k real images, as well as a copy of the CG
image, in case no matching texture was found. We look
for the best label assignment to optimize an objective
function C(L) that consists of a data term Cy over all
pixels p and an interaction term C; over all pairs of pixels

Fig. 6. CG image (upper left) with regions transferred
from three reference photographs (upper right to lower
right). The composite after Poisson blending and color
and tone transfer (bottom left).

D, q. Specifically:
C(L)=> Calp,L(p)) + > _Ci(p.q. L(p), L(g)) (3

p.q

where the data penalty term Cy(p, L(p)) that measures
distance between a 3 x 3 patch around pixel p in the CG
image and a real image is given by:

Ca(p, L(p)) = aa1De(p, L(p)) + a2Dy(p, L(p))
+azDi(p, L(p)) - 4)

The term D.(p, L(p)) is the average distance in L*a*b*
space between the 3 x 3 patch centered around pixel p
in the CG image and the patch centered around pixel
p in the image associated with label L(p). Similarly,
Dy(p, L(p)) is the average distance between the magni-
tudes of the gradients of the patches. Note that both of
these terms are zero when the label L(p) corresponds to
the CG image.

The region label term D;(p, L(p)) in Eqn. 4 controls
the error of transferring textures between different coseg-
mentation regions and also provides an error for choos-
ing the original CG image as a source of texture:

v L(p) = CG label
0 pand L(p) from same region (5)
1 otherwise

If the distance of all the real images is greater than
a7y, the graph-cut algorithm will prefer keeping the CG
texture.

The weights in Eqn. 4 balance the contributions of the
three terms and they are normalized, ), «; = 1. The
default values of 0.2, 0.7, and 0.1 give more weight to
the gradient term than the other terms, but these weights
can be adjusted by the user.

The interaction term C;(p,q, L(p), L(q)) in Eqn. 3 is
zero if the labels L(p) and L(g) are the same, and a



constant modulated by a blurred and inverted edge map
of the CG image otherwise. Specifically:

0 L(p) = L(q
Cira. L) 20 = { Ny i
where M (p) is zero near strong edges in the CG image
and near 1 in smooth regions. The scalar X affects the
amount of texture switching that can occur. For low
values of ), the algorithm will prefer small patches of
textures from many images and for high values of A the
algorithm will choose large blocks of texture from the
same image. The typical range of this parameter is 0.1
to 0.4.

Once the graph cut has determined the label assign-
ment per pixel (i.e., the image from which to transfer
texture), we copy gradients from the selected image into
the CG image and then reconstruct the image by solving
Poisson’s equation with Neumann boundary constraints.
To minimize reconstruction errors near region bound-
aries, we use a mixed guidance field, selecting the gra-
dient based on its norm [37].

An example of texture transfer from three real images
to a CG image is shown in Fig. 6. The input CG image is
shown in the upper left and two matches returned from
our database are shown in the upper right; we allowed
two shifted copies of each real image (¢ = 2). Gradients
were copied from the real images into the CG image in
regions specified by the graph-cut. The resulting image,
after color and tone adjustment, is shown in the lower
left.

(6)

5 RESULTS

Figs. 9 and 11 show results generated by our system for
a number of different scenes. These examples include
city scenes and various landscapes—e.g., forest, meadow,
lake, and beach. To generate these results, we applied all
three stages of our system, transferring texture first and
then altering the color and tone of the input CG images
to match the real images. We perform texture transfer
first because gradient-domain manipulations can cause
color shifts that deviate from natural colors. The color
and tone transfer steps correct these unnatural colors by
shifting them towards colors in the real images.

In our system, color and tone transfer operations are
completely automatic. And for the examples shown in
Fig. 11, texture transfer only requires the user to specify
a few parameters. The most important parameters are -y
and ), described in Section 4.3. The parameter ~ controls
the preference of the algorithm between real and CG
textures. Setting this parameter to a high value will
cause the algorithm to recreate the CG image, as best
it can, with only real patches. Setting it to a low value
will cause the algorithm to only choose real patches if
they are close to the CG patch, otherwise preserving
the original patch. The \ parameter controls the size
of the transferred texture patches. Because all transfer
operations are reasonably fast, these parameters can be
adjusted to synthesize different versions of an image.

As shown in Figs. 6 and 11, many natural scenes
can be synthesized using an automatic approach. These
scenes are primarily composed of stationary textures,
and the global structure of the image is conveyed by the
composition, boundaries, and scale of the textures within
each image. For scenes with more structure, however,
such as the examples in Fig. 7(a) and (b), automatic
texture transfer can fail. For these scenes, differences in
perspective, scale, and scene geometry between the CG
input and real matches can lead to objectionable artifacts
in the final result. These problems are due to the fact that
our MRF-based texture transfer makes local decisions,
which are based solely on 2D image data. Therefore
properties of the image that are strongly dependent on
the geometry of the original scene can be mishandled.

Fortunately, a few operations are sufficient to extend
our method to a larger class of scenes, including those
with significant structure. In particular, we can use the
spidery mesh of Horry et al. [38] or simple planar ho-
mographies to correct major structural differences. Once
warped, texture transfer proceeds as in Sec. 4.3.

In Fig. 9, the real images were warped to align ge-
ometry before texture transfer. In the top row, the road
from a real image was warped using the spidery mesh
tool to more closely match the road of the CG image.
Trees, mountains, and the sky from other (unwarped)
image matches were added to produce the final result.
In the second row, textures of buildings were warped
by specifying planes in both the real and CG images.
The color and tone of the image was also modified to
match a real image (not shown). In the bottom row, the
user adjusted the blending mask within the red lines to
preserve the dashed line in the center of the road.

In some cases, a user may not want a region of the
image to be modified substantially. For example, if the
user has spent hours editing a 3D model they probably
want the model to appear exactly as they have designed
it. In these cases, the user can specify an alpha mask
and the system will operate outside the mask. In this
scenario, the system provides an easy way to synthesize
a realistic background for a 3D model. Two examples of
3D models with backgrounds synthesized by our system
are shown in Fig. 8.

6 EVALUATION

We conducted a user study to evaluate the effectiveness
of our system. From a set of 10 example CG images we
generated 10 CG2Real results automatically, i.e., with-
out manual adjustments. A third set of 10 images was
selected from the real photographs used to enhance the
corresponding CG2Real results.

Twenty subjects, between 20 and 30 years old, par-
ticipated in the user study. They were paid $10 for
their time. Each participant viewed a sequence of 10
images drawn from the set of 30. Each test sequence was
selected randomly, with the constraint that the sequence
contained at least 3 images from each category, and that



(c)

Fig. 7. Failure cases. (a & b) The texture transfer algorithm does not account for viewpoint or geometric differences
between objects in the source images. As a result, images of structured scenes are difficult to blend without user
interaction. (c) Differences in scale can also lead to unrealistic composites. The cows from the image in Fig. 4 appear
to be the size of mice because the texture is at the wrong scale.

Fig. 8. Realistic backgrounds for CG models. In some
cases, a user may not want regions of the image replaced.
The user can specify an alpha mask (middle row) and
the system will operate outside the mask, thus creating a
realistic context for a rendered model (bottom).

multiple instances of images from the same example did
not appear in the sequence. Participants were instructed
to identify each image as ‘real’ if they felt that the
image was captured by a camera and ‘fake’ if they felt it
was generated by a computer program. They were also
informed that their responses would be timed but that
they should respond accurately rather than quickly.

Here we report a number of findings. With unlimited
viewing time, the subjects classified:

e 97% of the CG images as fake;

o 52% of the CG2Real images as fake;

o 17% of the real images as fake.

As can be seen, users were able to identify 97% of the
CG images as fake and and this number was reduced to
52%, indicating that some of the CG2Real images were
considered real. With only 5 seconds of viewing, the
subjects classified

o 82% of the CG images as fake;
o 27% of the CG2Real images as fake;
o 12% of the real images as fake.

In this case, most of the CG images were still identified
as fake, but more of the CG2Real images were consid-
ered real. These results suggest that our color, tone and
texture transfer give an initial impression of realism, but
with unlimited viewing time, inconsistencies, such as
scale and perspective differences, become apparent.

Fig. 10(a) shows the complete results. It describes the
percentage of images marked as fake as a function of
maximum response time.

6.1 Realism vs. Size

What cues are viewers using to distinguish CG from
real? To begin to answer this question, we repeated the
real vs. fake discrimination task at various scales. By
changing the size of the images, we change the amount
of high-frequency information, and our goal was to
quantify the effect of this information on the perception
of realism.

We presented three sets of images (CG, CG2Real, and
Real) and we fixed the presentation time at five seconds.
We varied the image width in powers of two from 32 to
512 pixels and asked the viewer to identify the images as
‘real’ or "fake’ using the same definitions as the previous
study.

We used the 30 images from the previous study (10
of each type) and collected 20 responses per image at 5
different sizes. Due to the size of this study (30 x 5 x
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(b)

Fig. 9. CG2Real results on structured scenes. (a) Images of structured scenes are difficult to blend without user
interaction. (b) The spidery-mesh tool (top) and rectangle tool (middle) were used to align geometry. In the last row
of (b), a scribble tool was used to modify the mask produced by our texture transfer algorithm (the modifications are

outlined). (c) Final results using edited textures.

20 = 3000 responses), we used Amazon’s Mechanical
Turk [39]. Mechanical Turk is an online marketplace for
human intelligence tasks. Requestors can publish tasks
and the rate they are willing to pay per task; workers can
browse for tasks they are willing to perform. We divided
the study into experiments by image size, collecting
20 responses for each image in each experiment. The
average time per experiment was twelve minutes and
the average number of contributing workers was thirty-
nine.

The results are shown in Fig. 10(b). At 32 pixels, most
images were labeled as ‘real,” though there was some
ability to distinguish between the three types of images
even at this scale. As the image size increased, the task
became easier, though the ability to detect a CG image
as fake increased more dramatically with size than the
ability to detect a CG2Real image (based on the slope of
the curves between 32 and 256 pixels). In addition, the
viewer’s confidence in real images increased after 128
pixels—they mislabeled fewer real images as fake. This

study suggests that high frequencies contribute to the
perception of realism in CG images, though they do not
account for all of it.

In our system, we apply three types of transfer and
the previous experiments have established that all three
of these operations together improve realism for CG
images. But how much realism is due to texture transfer
and how much is due to color and tone transfer? To
address this question, we ran another Mechanical Turk
task showing images for five seconds and asking viewers
to label the images as real or fake. For this experiment,
we introduced CG2Real images without texture transfer
(only color and tone), but kept the other parameters of
the experiment the same. We found that 69% of color and
tone images were classified as fake, which is between
the results for CG and CG2Real (full pipeline) found
in previous studies. This result suggests that color and
tone transfer improve realism somewhat, but most of the
gain shown in Figs. 10(a) and 10(b) comes from texture
transfer.
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6.2 Search Descriptors

As we mentioned in Section 3.1, we originally used the
gist descriptor for image search but were not satisfied
with the results. We found that the spatial pyramid
descriptor consistently returned better matches, but we
sought to quantify this observation. We used Mechanical
Turk again for this task but with a different experimental
setup.

We selected 50 CG images from our collection at ran-
dom and performed queries on the same image database
using two different descriptors: our spatial pyramid
descriptor and gist. We hired 10 workers per image for
a total of 1000 tasks (50 inputs x 10 workers per input
x 2 descriptors).

In a given task, we presented the user with a CG
image and twenty image matches. Users were instructed
to “select all images that were good matches to the query
image.” There were additional instructions to clarify that
a good match is an image that depicts a similar scene.
Users responded via checkboxes, and their responses
were not timed.

Here we consider a match “good” if 3 or more users
(out of 10) considered it so. Across 50 images, at this
30% acceptance threshold, the spatial pyramid descriptor
returned an average of 4.6 good matches per image,
while gist returned 1.7 good matches per image.

7 LIMITATIONS

In general, our system is only as good as the database of
photographs upon which it is built. We have found that
a database of 4.5 million images yields around 4 good
matching images for CG landscapes, but more images
would be required to match more complex scenes. In
future work, we hope to increase the database size to
determine how the number of matching images and
the match quality affect the final result. We also hope
to expand the database to include a wider variety of
photographs, including indoor images. But even with

more images, texture transfer may fail to be realistic
if there are geometric or perspective differences or if
the scale is incorrect, Fig. 7(c). Some of these examples
can be improved with texture warping, Fig. 9, and it is
possible that an appropriate warp could be determined
automatically in some cases.

8 CONCLUSIONS

Our system takes a radically different approach to syn-
thesizing photorealistic CG images. Instead of adding
geometric and texture details or using more sophisti-
cated rendering and lighting models, we take an image-
based approach that exploits the growing number of real
images that are available online. We transfer realistic
color, tone, and texture to the CG image and we show
that these transfers improve the realism of CG images.
To improve upon these results, future work will have to
consider other operations, perhaps perspective and scale
adjustments. While we have found that high frequencies
in real-image texture contribute to perceived realism,
what other cues are people using to distinguish CG
from real? Are they high or low-level? Future work on
this problem could provide valuable insight into the
mysteries of human vision.
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