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Abstract

We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained

on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into

a strong classifier using AdaBoost. The strong classifier is then used to label pixels in the next frame as either

belonging to the object or the background, giving a confidence map. The peak of the map, and hence the new

position of the object, is found using mean shift. Temporal coherence is maintained by updating the ensemble with

new weak classifiers that are trained on-line during tracking. We show a realization of this method and demonstrate

it on several video sequences.

Index Terms

AdaBoost, Visual Tracking, Video Analysis, Concept Learning.
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I. I NTRODUCTION

Visual tracking is a critical step in many machine vision applications such as surveillance [22], driver

assistance systems [1] or human-computer interactions [3]. Tracking finds a region in the current image

that matches the given object, but if the matching function takes into account only the object, and not

the background, then it might not be able to correctly distinguish the object from the background and the

tracking might fail.

We treat tracking as a classification problem and train a classifier to distinguish the object from the

background. This is done by constructing a feature vector for every pixel in the reference image and

training a classifier to separate pixels that belong to the object from pixels that belong to the background.
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Given a new video frame we use the classifier to test the pixels and form a confidence map. The peak of

the map is where we believe the object moved to and we use mean shift [6] to find it.

If the object and background do not change over time then training a classifier when the tracker is

initialized would suffice, but when the object and background change their appearance then the tracker

must adapt accordingly. Temporal integration is maintained by constantly training new weak classifiers

and adding them to the ensemble of weak classifiers. The ensemble thus achieves two goals. Each weak

classifier is tuned to separate the object from the background in a particular frame and the ensemble as

a whole ensures temporal coherence.

The overall algorithm proceeds as follows. We maintain an ensemble of weak classifiers that is used to

create a confidence map of the pixels in the current frame and run mean-shift to find its peak, and hence

the new position of the object. Then we update the ensemble by training a new weak classifier on the

current frame and adding it to the ensemble.

Ensemble tracking extends traditional mean-shift tracking in a number of important directions. First,

mean-shift tracking usually works with histograms of RGB colors. This is because gray-scale images do

not provide enough information for tracking and high-dimensional feature spaces can not be modeled with

histograms due to exponential memory requirements. By switching to general machine learning classifiers,

ensemble tracking avoid both pitfalls. It can handle gray-scale images, by introducing local neighborhood

information, and it does not suffer from exponential memory explosion because it is no longer restricted

to working with histograms, as it can work with any type of classifier. Second, ensemble tracking gives a

principled manner in which the classifiers are integrated over time. This is in contrast to existing methods

that either represent the foreground object using the most recent histogram, or some ad-hoc combination

of the histograms of the first and last frames.

In addition, the proposed method offers several advantages. It breaks the time consuming training

phase into a sequence of simple and easy to compute learning tasks that can be performed on-line. It can

automatically adjust the weights of different classifiers, trained on different feature spaces. It can also
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integrate off-line and on-line learning seamlessly. For example, if the object class to be tracked is known

then one can train several weak classifiers off-line on large data sets and use these classifiers in addition to

the classifiers learned on-line. Also, integrating classifiers over time improves the stability of the tracker

in cases of partial occlusions or illumination changes. Finally, on a higher level, one can view ensemble

tracking as a method for training classifiers on time-varying distributions.

II. BACKGROUND

Ensemble learning techniques combine a collection ofweakclassifiers into a singlestrong classifier.

AdaBoost [13], for example, trains a weak classifier on increasingly more difficult examples and combine

the result to produce a strong classifier that is better than any of the weak classifiers.

Treating tracking as a binary classification problem was already considered in the past. Linet al.

[20] suggest an adaptive discriminative generative model where a Fisher Linear Discriminant function is

constantly evaluated to discriminate the object from the background. A similar approach was taken by

Nguyenet al. [21]. Comaniciuet al. [6] adopt this approach to their mean-shift algorithm, where colors

that appear on the object are down-weighted by colors that appear in the background. This was further

extended by Collinset al. [5] that use on-line feature selection to switch to the most discriminative color

space from a set of different color spaces.

Temporal integration methods include particle filtering [16] to properly integrate measurements over

time, theWSL tracker [17] that maintains short-term and long-term object descriptors that are constantly

updated and re-weighted using on-line-EM, and the incremental sub-space approach [15] in which an

adaptive sub-space is constantly updated to maintain a robust and stable object descriptor.

It is instructive to compare these methods to ours. TheWSL and incremental sub-space methods can

be viewed asgenerativemethods that aim to explain the foreground object while ignoring the background.

Also, these methods are template based, meaning that they maintain spatial integrity of the object and

thus are especially suited for handling rigid objects. Ensemble tracking, on the other hand, maintains

an implicit representation of the foreground and the background, through the use of the classifiers. In
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addition, ensemble tracking works on a pixel level so global spatial relationships are not maintained. This

is useful when the object deforms or undergoes severe appearance changes. Particle filtering maintains a

probability distribution function over state space (i.e. what are the locations the object can be and what are

the probabilities associated with each such hypothesis). This means that particle filtering can be used in

conjunction with ensemble tracking, where the latter is used to form the measurements (i.e. the confidence

map) that are used by the former.

A similar problem, termed “concept drift”, is considered in the data mining literature where the goal

is to quickly scan large volumes of data and learn a concept (“object” in computer vision jargon). As

the concept might drift the classifier must adapt as well. For example, [18] present “dynamic weighted

majority” as a method to track concept drift for data mining applications, while [4] add change detection

to concept drift to detect abrupt changes in the concept, much in the spirit of theWSL tracker [17].

The work most closely related to ours is that of [5] that use on-line feature selection to find the best

feature space to work in. We extend their work in a number of important ways. First, our classification

framework automatically weights the different features, as opposed to the discrete nature of feature

selection. Second, we depart from histograms as means for generating the confidence map for mean-

shift, meaning we can work with high-dimensional feature spaces, as opposed to the low-dimensional

feature spaces often used in the mean-shift literature. Finally, our ensemble tracking technique gives a

general way of adaptively building discriminant functions over time varying distributions.

III. E NSEMBLE TRACKING

Ensemble tracking constantly updates a collection of weak classifiers to separate the foreground object

from the background. The weak classifiers can be added or removed at any time to reflect changes in

object appearance or incorporate new information about the background. Hence, we do not represent an

object explicitly, instead we use an ensemble of classifiers to determine if a pixel belongs to the object

or not.

Each weak classifier is trained on positive and negative examples where, by convention, we term
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examples coming from the object as positive examples and examples coming from the background as

negative examples. The strong classifier, calculated using AdaBoost, is then used to classify the pixels in

the next frame, producing a confidence map of the pixels, where the classification margin is used as the

confidence measure. The peak of the map is where we believe the object is, and we use mean shift to

find it. Once the detection for the current frame is completed we train a new weak classifier on the new

frame, add it to the ensemble, and repeat the process all over again. Figure 1 gives an overview of the

system, a general algorithm is given in Algorithm 1.

Another way to look at ensemble tracking is to consider it as a method for building, and maintaining,

a discriminant function over time varying distributions. In this case we deal with distributions of object

and background pixels, but ensemble tracking can be used in other scenarios as well.

Our method constructs an ensemble classifier on-line. This bags the question what guarantees, if any,

do we have on its errors over the training set as well as its generalization error? AdaBoost assumes a static

distribution and an access to a weak learner that performs better than chance on this distribution. Ensemble

tracking, on the other hand, assumes time-varying distributions. However, because we are dealing with

video, we assume that the distribution changes slowly so past weak classifiers still perform better than

chance on the new data which gives error bounds on the test error of ensemble tracking. In practice,

AdaBoost was shown to perform much better than predicted by the theoretical analysis and we found the

same to be true with our ensemble tracking algorithm.

Algorithm 1 GeneralEnsemble Tracking
Input: n video framesI1, ..., In

Rectangler1 of object in first frame
Output: Rectanglesr2, ..., rn
Initialization (for frameI1):

• Train T weak classifiers and add them to the ensemble
For each new frameIj do:

• Test all pixels in frameIj using the current strong classifier and create a confidence mapLj
• Run mean shift on the confidence mapLj and report new object rectanglerj
• Label pixels inside rectanglerj as object and all those outside it as background
• KeepK “best” weak classifiers
• Train newT −K weak classifiers on frameIj and add them to the ensemble
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(a) (b)

Fig. 1. Ensemble update and test. (a) The pixels of image at timet−1 are mapped to a feature space (circles for positive examples, crosses

for negative examples). Pixels within the solid rectangle are assumed to belong to the object, pixels outside the solid rectangle and within the

dashed rectangle are assumed to belong to the background. The examples are classified by the current ensemble of weak classifiers (denoted

by the two separating hyper-planes). The ensemble output is used to produce a confidence map that is fed to the mean shift algorithm. (b)

Now we train a new weak classifier (the dashed line) on the pixels of the image at timet and add it to the ensemble.

A. The weak classifier

The ensemble tracking framework is a general framework that can be implemented in different ways.

We report the particular decisions we made in our system.

Let each pixel be represented as ad-dimensional feature vector that consists of some local information

and let{xi, yi}N
i=1 denoteN examples and their labels, respectively, wherexi ∈ Rd andyi ∈ {−1, +1}.

The weak classifier is given byh(x) : Rd → {−1, +1} that is defined as:

h(x) = sign(hTx)

whereh ∈ Rd is a separating hyperplane that is computed using weighted least square regression

h = (ATWA)−1ATWy

Each row of the matrixA, denotedAi, corresponds to one examplexi augmented with the constant

1, that isAi = [xi, 1] andW is a diagonal matrix of the weights. We found it useful to scale the sum of

weights of positive, as well as negative, examples to be equal to0.5. This prevents bias to the negative

examples if the area of the object is smaller that that of the background.
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The temporal coherence of video is exploited by maintaining a list ofT classifiers that are trained over

time. In each frame we keep theK “best” weak classifiers, discard the remainingT −K weak classifiers,

train T −K new weak classifiers on the newly available data and reconstruct the strong weak classifier.

Prior knowledge about the object to be tracked can be incorporated into the tracker in the form of one

or more weak classifiers that participate in the strong classifier, but can not be removed in the update

stage.

Here we use the same feature space across all classifiers, but this does not have to be the case. Fusing

various cues [7], [8] was proved to improve tracking results and ensemble tracking provides a flexible

framework to do so.

The margin of the weak classifierh(x) is mapped to a confidence measurec(x) by clipping negative

margins to zero and re-scaling the positive margins to the range[0, 1]. The confidence value is then used

in the confidence map that is fed to the mean shift algorithm. The specific algorithm we use is given in

Algorithm 2.

B. Ensemble update

In the update state, the algorithm keeps the “best”K weak classifiers, thus making room forT −K

new weak classifiers. However, before adding the new weak classifiers one needs to update the weight of

the remainingK weak classifiers. This is done is step (7) of Algorithm 2. Instead of training a new weak

classifier, the weak learner simply hands AdaBoost one weak classifier (from the existing set ofT weak

classifiers) at a time. By repeating this processK times we effectively choose the bestK weak classifiers

from the current ensemble ofT classifiers. This saves training time and creates a strong classifier as well

as a sample distribution that can be used for training the new weak classifier, as is done in step (8).

Care must be taken when adding or re-weighting a weak classifier that do not perform much better

than chance. If, during weight re-calculation, the weak classifier performs worse than chance then we set

its weight to zero. During step (8), we require the new weak classifier to perform significantly better than

chance. Specifically, we abort the loop in step (8) of the steady state in Algorithm 2 iferr, calculated in
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Algorithm 2 SpecificEnsemble Tracking
Input: n video framesI1, ..., In

Rectangler1 of object in first frame
Output: Rectanglesr2, ..., rn
Initialization (for frameI1):

1) Extract{xi}N
i=1 examples with labels{yi}N

i=1
2) Initialize weights{wi}N

i=1 to be 1
N

3) For t = 1...T ,
a) Make{wi}N

i=1 a distribution
b) Train weak classifierht

c) Seterr =
∑N

i=1 wi|ht(xi)− yi|
d) Set weak classifier weightαt = 1

2
log 1−err

err

e) Update example weightswi = wie
(αt|ht(xi)−yi|)

4) The strong classifier is given bysign(H(x)) whereH(x) =
∑T

t=1 αtht(x)
For each new frameIj do:

1) Extract{xi}N
i=1 examples

2) Test the examples using the strong classifierH(x) and create confidence imageLj
3) Run mean-shift onLj with rj−1 as the initial guess. Letrj be the result of the mean shift algorithm
4) Define labels{yi}N

i=1 with respect to the new rectanglerj
5) Keep bestK weak classifiers
6) Initialize weights{wi}N

i=1 to be 1
N

7) For t = 1...K, (ChooseK best classifiers and update their weights)
a) Make{wi}N

i=1 a distribution
b) Chooseht(x), with minimal errorerr, from {h1(x), ..., hT (x)}
c) updateαt and{wi}N

i=1
d) Removeht(x) from {h1(x), ..., hT (x)}

8) For t = K + 1...T , (Add new weak classifiers)
a) Make{wi}N

i=1 a distribution
b) Train weak classifierht
c) Computeerr andαt

d) Update example weights{wi}N
i=1

9) The updated strong classifier is given bysign(H(x)) whereH(x) =
∑T

t=1 αtht(x)

step (8c), is above some threshold, which is set to0.4 in our case. This is especially important in case of

occlusions or severe illumination artifacts where the weak classifier might learn data that does not belong

to the object but rather to the occluding object or to the illumination.

Note that even during step (7), of choosing theK best weak classifier, we might encounter a case

where some of the existing weak classifiers do not perform much better than chance. We allow up to two

existing weak classifiers to be removed this way because a larger number might be the sign of occlusion

and hence we keep the ensemble unchanged for this frame.

IV. I MPLEMENTATION ISSUES

There are several implementation issues that we found helpful in tracking.
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(a) (b) (c)

Fig. 2. Outlier rejection. (a) The input image. The solid rectangle marks the object, the dashed one marks the background. (b) The confidence

map with outlier rejection. (c) confidence map without outlier rejection. The outlier rejection process produces cleaner confidence maps that

lead to a more stable tracking process. The confidence maps correspond to the dashed rectangle.

(a) (b) (c) (d) (e)

Fig. 3. Integrating multi-scale confidence maps. Combining features across multiple scales improves the object/background separation.

(a) input image with the solid rectangle defining the object and dashed rectangle defining the background region. (b) The confidence map

computed as a weighted average of the confidence maps (c-e). (c-e) are confidence maps that are computed on different levels of the image

pyramid. (c) confidence map of original image. (d) confidence map of half-size image. (e) confidence map of quarter-size image. The

confidence maps correspond to the dashed rectangle.

A. Outlier rejection

If the object to be tracked is not a pure rectangle then the bounding box that we use for tracking

will include some pixels that are labeled as positive, while in fact they should be labeled negative. It was

shown that AdaBoost is sensitive to outliers [9] and hence an outlier rejection scheme is needed. A simple

approach is to treat too “difficult” examples as outliers and change their label.

Specifically, step (4) of the steady state in Algorithm 2 can be written as follows:

yi =





+1 inside(rj, pi)

−1 otherwise
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Adapting the weak classifiers. Top row shows frames 10, 40 and 70 from a 100-long video sequence. Bottom row shows the

ensemble classifiers used in each frame. There are five weak classifiers for each frame, shown in reverse temporal order (i.e. top classifier

was trained on the current frame, the one below it was trained on the previous frame and so on). The first 8 bins of each classifier are of

a 5× 5 local histogram of oriented gradients calculated around each pixel, the last three bins are of the pixel color. The magnitude of the

bars indicate the weight of the feature. As can be seen, the color (right-most three bars) plays an important role in the tracking, but when

the pedestrian stands in front the of the car, the weight of the oriented edges increase to provide better object/background separation.

whererj is the current rectangle,pi is the pixel position of examplei and inside(r, p) is a predicate that

is true if pixel p is inside rectangler. The outlier rejection version will look as follows:

yi =





+1 inside(rj, pi) ∧ (wi < Θ)

−1 otherwise

where wi is the weight of the pixelpi after running the strong classifier andΘ is some predefined

threshold which, in our case, is set toΘ = 3
N

, whereN is the number of examples. That is, pixels inside

the rectangle are assumed to be positive examples, unless they are too “difficult” to classify and then their

label is changed to negative.

Figure 2 show the contribution of the outlier rejection process. The confidence maps are much cleaner,

leading to a better and more stable tracking.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONTH XXXX 11

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Ensemble Tracking with a moving camera. (a-d) Frames 0,40,68 and 80 from a 80-frame long sequence. (e-h) The confidence map

for each frame. The confidence maps correspond to the dashed rectangle.

B. Multi-resolution tracking

We run ensemble tracking in a multi-scale framework. This enables the tracker to capture features at

multiple scales. For each level of the pyramid we run an independent ensemble tracking that outputs a

confidence map. The maps are then combined to form a single confidence map that is used by the mean

shift tracker.

Specifically, in each frame we train a weak classifier for each pyramid level, and maintain one strong

classifier for each such level. Each strong classifier generates a confidence map and all the confidence

maps are resized to the size of the original image and averaged to form the confidence map that is used

by the mean shift algorithm.

Figure 3 shows a typical confidence map, accumulated across multiple scales. We computed a confidence

for the original, half-size and quarter-size images, then we rescaled all confidence maps to the same size

and combined them based on the classification score of the classifier at each level.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Ensemble Tracking. (a-d) Frames 0,20,40 and 70 from a 90-frame long sequence. (e-h) The confidence map for each frame. The

confidence maps correspond to the dashed rectangle.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Ensemble Tracking with and without update. Trackingwith weak classifier update (a-d). Trackingwithout weak classifier update

(e-h). In the latter case, we train 5 weak classifiers on the first frame and never update them. In the former case, we update the weak classifier

according to the scheme presented in this paper.
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V. EXPERIMENTS

We implemented the proposed method in MATLAB and tested it on several video sequences. No

parameters were changed from one experiment to the next and in all cases the initial rectangle was

supplied manually. We experimented with several different feature spaces. The first version uses 5 weak

classifiers each working on an11D feature vector per pixel that consists of an 8-bin local histogram

of oriented gradients calculated on5 × 5 window as well as the pixelR,G and B values. To improve

robustness we only count edges that are above some predefined threshold, which in our case was set to

10 intensity values. The histogram of oriented gradients is easy to compute and convey rich information

that was used in the past for detection and recognition purposes [11], [19], [10]. Other features, such as

the response to filter banks, can be used as well.

In the traffic and zodiac sequences, a gray scale and IR sequences presented later in this section, we

found that the original feature space was not stable enough and used a non-linear version of that feature

space instead. The non-linear feature space is defined as[xi,xi
2,xi

3], wherexi is the original feature

vector andxi
d is taken to be a shorthand for raising each element of the vectorxi to the powerd. We

found this to be a cheap way of introducing non-linear kernel-like performance into the system. Of course,

other non-linear classifiers can be used as well, provided they can work in real time. With the non-linear

feature vector we used only 3, instead of 5, weak classifiers.

We run the tracker, in parallel, on three levels of the pyramid, combine the confidence maps and run

mean-shift on the resultant confidence map. In each frame we drop one weak classifier and add a newly

trained weak classifier. We allow the tracker to drop up to two weak classifiers per frame, because dropping

more than that might be a sign of occlusion and we therefor do not update the ensemble in such a case.

The algorithm runs at a few frames per second. Currently we use every pixel of the object and background

for the ensemble update. This can probably be greatly accelerated if we sample the pixels (because the

feature vector associated with each pixel already captures some local information) or if we ignore samples

with low weight, as was suggested by Friedmanet al. [12]. In all cases we never use a static background
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assumption and allow the camera to move freely.

A. Results on color sequences

The first experiment is on a video sequence of a pedestrian crossing the street. Halfway through the

sequence the pedestrian is standing in front of a car that has the same color as he does. The tracker manages

to track the pedestrian through the entire sequence. Figure 4 shows several frames from the sequence.

The top row shows the actual images, while the bottom row shows the weak classifier behavior (for the

bottom level of the pyramid only). Recall that the feature vector consists of an 8-bin local histogram of

oriented gradients, followed by theR,G and B colors of each pixel. As can be seen, at first the color

features are prominent in the classification, but as the background changes, so are the classifiers and the

role of the histogram of oriented gradients increases.

In the second experiment we track a couple walking with a hand-held camera. Figure 5 show several

frames from this 80-frame long sequence.

In the third experiment we track a face exhibiting out-of-plane rotations. Figure 6 show several frames

from this 90-frame long sequence.

In the next experiment, shown in figure 8, we track a red car that is undergoing out-of-plane rotations

and partial occlusions. This scenario is challenging to template based methods as the object change its

appearance completely over time. The sequence is 200 frames long and the size of each image is240×320

pixels. In this case we used the basic11D feature vector (RGB color and the 8-bin histogram), in a single

scale, and an ensemble of 3 classifiers. This was enough to obtain robust and stable tracking.

Next, we analyzed the importance of the update scheme for tracking. Figure 7 show the results of two

trackers on the same sequence. In the first case we use an “adaptive” tracker based on the framework

presented in this paper. In the second case we use a “static” tracker that trains five weak classifiers on

the first frame of the sequence and fix it for the entire length of the sequence. At frame 30 the “static”

tracker locks on the background while the “adaptive” tracker keeps tracking successfully.
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Frame 1 Frame 37 Frame 50

Frame 100 Frame 150 Frame 200

Fig. 8. Another tracking example. Ensemble tracking tracks a red car that is undergoing out-of-plane rotations and partial occlusions. The

sequence was taken with a hand-held camera.

In the following experiment we analyzed the update regime taken by our method. Specifically, we were

interested in several aspects of the method. How often are the weak classifiers updated? How does their

weight change over time? and how does this method compare with a standard AdaBoost classifier that

trains all its weak classifiers on a given frame. The results are shown in figure 9.

We found that the first weak classifier is kept for a very long period of time, providing an anchor for

the tracker. The rest of the weak classifiers are updated more often, according to the particular sequence

at hand. Note also that in some cases (frames 79,91 and 92) the algorithm dropped two weak classifiers

in one frame and then added a new one. This is because both weak classifiers produced error rates that

are close to chance and hence were removed. One new weak classifier was trained, and added to the

ensemble, in their place. We also recorded the weight of the first weak classifier over time and, as can

be seen, the weight decreases overtime, indicating that the associated weak classifier is slowly losing its

ability to properly classify the data.

Our method constructs an on-line classifier and it is therefor reasonable to compare this classifier to a

classifier that is built from scratch in each frame. Specifically, in each frame we trained an independent

strong classifier using the same number of weak classifiers from scratch given the same training data that
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was used by ensemble tracking to train the new weak classifier. As can be seen, the standard AdaBoost

classifier outperforms ensemble tracking by at most8%. The large discrepency at the begining of the

sequence stems from the fact that ensemble tracking trains one weak classifier per frame, whereas vanilla

AdaBoost trains five weak classifiers per frame. Over time, this discrepancy diminishes. This experiment

also shows the robustness of our approach to, at least, short occlusions of the object. The ensemble did

not lock onto the pole because the new weak classifier trained at this frame had a high training error and

thus the ensemble remained unchanged until the pedestrian crossed the pole entirely.

B. Results on gray-scale and IR sequences

An important advantage of ensemble tracking, over mean-shift methods, is its ability to work on images

other than color images. Here we show two examples; one on gray-scale and another on IR. The only

modification made to the algorithm was to change the feature space that is used to represent each pixel,

as we describe next.

In one experiment we tracked a car over 225 frames of a gray scale, not color, video sequence1. While

a 9D feature space (the 8-bin local histogram of oriented gradients and the gray scale intensity value)

managed to track the car, we found that the non-linear feature space (which is27D in this case) was

much more robust to the position of the initial rectangle and in general performed much better. Gray

scale images are usually difficult to track using traditional mean-shift algorithms because a single color

channel does not provide enough information for tracking. However this did not prove to be a problem

for our system. Some of the frames can be seen in figure 10.

In a similar experiment we used one of the PETS data sets to track a zodiac boat in a 671 frames long

IR sequence. The results are shown in figure 11. Note that the system manages to discriminate the object

from the background despite the small size of the object, that means a small sample set for training. Here

as well as in the previous experiment, we used the non-linear feature space.

1Downloaded from the Karlsruhe university site at: http://i21www.ira.uka.de/imagesequences
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(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

(c)

(d) (e)

Fig. 9. Ensemble update rate. (a) some of the frames from this 100 frame sequence. (b) The corresponding confidence map. Note how

the ensemble correctly mark the pole as being part of the background (b-3). (c) The ensemble update rate. Thex axis represent the frame

number and each row correspond to a different classifier. Black means the classifier was updated, Gray means the classifier was removed.

Note that the first classifier is maintained through the entire sequence. Note that at frames 79,91 and 92 the ensemble removed two weak

classifiers per frame and added only one in their place. (d) ensemble tracking (online) Vs. AdaBoost (batch). Thex axis represent the frame

number and they axis represent the classification score using AdaBoost or ensemble tracking on each frame. See text for further details.

(e) the weight of the first weak classifier, over the entire sequence. As can be seen the weight of the classifier decreases over time as the

ability of the associated weak classifier to explain the data diminishes.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Ensemble Tracking of a gray scale sequence. (a-e) Frames 0,100 and 225 from a 225-frame long sequence. We track a car from the

upper left part of the image to the middle bottom of the image. (d-f) The confidence map for each frame. The confidence map corresponds

to the dashed rectangle. Note how the confidence map picks the car’s shape over time.

C. Handling occlusions

So far, we have only considered partial occlusions, or very brief occlusions that the tracker managed to

overcome automatically. However, in some cases the object undergoes a long period of occlusion and the

tracker can no longer handle it automatically. To handle these cases we use a very simple particle filter

approach that works as follows. As long as the classification rate is high, the tracking goes unchanged.

When the classification level drops, we stop updating the ensemble and switch to prediction mode. The

ensemble update is resumed once we find a region that is classified with a classification rate higher than

a predefined threshold. We take the classification rate to be the fraction of the number of pixels that

were correctly classified, in each frame. In case all pixels are correctly classified, then the classification

rate is1. When all pixels are wrongly classified, then the classification value drops to0. In practice we

found the classification score to be above0.9 and drop to about0.5 in case of occlusion (This is because
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(a) (b) (c) (d)

Fig. 11. Ensemble Tracking of an IR sequence. (a-d) Frames 1,200, 400 and 671 from a 671-frame long sequence. We track a zodiac boat

in this IR sequence.

during occlusions we can still label the background pixels correctly). Once occlusion is detected we start

sampling, according to the particle filter, possible locations that the object might appear. In each such

location we compute the confidence map, using the existing ensemble, and run mean-shift to find the

peak. We then compute the classification score at this point and if it is above a threshold (which in our

case was set to0.7) then tracking resumes.

The particle filtering assumes zero-motion with different uncertainty in thex andy directions. This is

because, in our case, the objects mainly move horizontally. We do not assume constant velocity because

both the object and the camera are assumed to be moving and hence a constant motion assumption, in

the image plane, does not hold. Clearly one can use image stabilization to stabilize the entire image first

and then use a filtering method with a constant velocity or constant acceleration for prediction. In the

following examples we sample5 locations in each frame. Increasing the number of locations sampled per

frame will result in earlier re-detection at the cost of higher processing cost per frame.

Figure 12 show several frames from an 80-frame color video sequence where the size of each frame

is 240 × 320. We use an11D feature space, an ensemble of 3 classifiers and just a single level of the

pyramid. The classification score proved to be a reliable enough to detect occlusions (observe how it drops

sharply when the car is occluded). The car was re-detected two frames after it re-appears and tracking is

resumed.

Another example is shown in figure 13. This is a 348-frame long color sequence, taken by a hand-held
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Frame 1 Frame 40 Frame 50

Frame 54 Frame 58 Frame 80

Confidence

Fig. 12. Handling occlusions. On the left we show 6 frames from an 80-frame long sequence of a red car taken with a hand-held camera. On

the right we show the confidence measure that is used during tracking. Thex axis is for the frame number and they axis is the classification

score. The classification score is taken to be the number of pixels that are correctly classified by the ensemble, in each frame. As can be

seen, most of the time the ensemble correctly classifies more than95% of the pixels. This number drops to about0.5 when occlusion occurs.

The tracking re-initialization kicks in and picks up the car again and the tracking resumes.

camera, in which we track a woman going behind a large pole. The length of the occlusion is about

100 frames, and still the tracker managed to re-lock on the target. Observe how the method automatically

handles partial occlusion (see how the confidence map of frame 57 correctly handles the partially occluding

pole). In frame 155 it seems that the tracker is locked on the man, not the woman, however looking at the

confidence map, as well as the confidence score which is about0.6 shows that the tracker “knows” that

he should still not re-initiate detection and should keep on looking (as before, our re-detection threshold

is set to0.7). Finally, in frame 167, the lady re-appears and the tracker picks her up with confidence level

of about0.95 and resumes tracking.

VI. CONCLUSIONS

We treat tracking as a binary classification problem. An ensemble of weak classifiers is trained on-line

to distinguish between features of the object and features of the background. We form a strong classifier

from the ensemble using AdaBoost. The strong classifier is then used to compute a confidence map of
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Frame 1 Frame 57 Frame 100

Frame 155 Frame 167 Frame 348

Confidence

Fig. 13. Handling occlusions. On the left we show 6 frames from a 348-frame long sequence, taken with a hand-held camera, of a woman

going behind a pole. In the top-right corner of each image we overlaid its associated confidence map (the region corresponds to the dashed

rectangle, where white represent the object and black means the background). On the right we show the confidence measure that is used

during tracking. Thex axis is for the frame number and they axis is the classification score. The classification score is taken to be the

number of pixels that are correctly classified by the ensemble, in each frame. As can be seen, most of the time the ensemble correctly

classifies more than95% of the pixels. This number drops to about0.5 when occlusion occurs. After the occlusion ends, and before the

woman re-appears (frame 155), the tracker hovers around with a low confidence score of about0.6 until the woman re-appears (frame 167)

and the tracker snaps back to her.

the next frame. The peak of the map, and hence the new position of the object, is found using mean shift

algorithm. The tracker adjusts to appearance changes by training a new weak classifier per frame and

updating the strong classifier, giving robustness to the tracker at a low computational cost.

We have shown that the tracker can work in a wide variety of scenarios, including static and dynamic

cameras, color, gray-scale and IR imagery and various object size. The tracker can also handle some

occlusions, by refusing to learn pixels that belong to the occluding object. The classification score was

shown to be a reliable confidence measure that can be used to detect occlusions and particle filtering can

be used to overcome the occlusion.

There are several limitations to the proposed system. First, the tracker is not designed to handle full and

long term occlusions. This is solved by adding a particle filtering on top of it, still it would enhance the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. Y, MONTH XXXX 22

method if particle filtering and ensemble tracking could be fused together. Second, the tension between

adaptation and drifting appears here as well. Namely, it is possible to have the tracker adapt more rapidly

to legitimate changes in the scene, at the expanse of suffering from drift. A somewhat ad-hoc solution is to

prevent the tracker from removing the weak classifier trained on the first frame. Finally, the current feature

space selected does not take into account spatial information, thus making the problem more difficult than

it should be. Again, an ad-hoc solution might be to break the region to be tracked into several sub-regions

and build a different ensemble of weak classifiers for each sub region independently.

Going beyond visual tracking we hope that this method can be used in any case where a discriminant

function of time-varying distributions is needed.
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