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Abstract— We present a real-time system that detects mov-
ing crowd in a video sequence. Crowd detection differs from
pedestrian detection in that we assume that no individual
pedestrian can be properly segmented in the image. We pro-
pose a scheme that looks at the motion patterns of crowd in the
spatio-temporal domain and give an efficient implementation
that can detect crowd in real-time. In our experiments we
detected crowd at distances of up to 70m.

I. I NTRODUCTION

Pedestrian detection from a moving platform (i.e. ve-
hicles) holds the promise of increased safety, both for
pedestrians and passengers. This is a difficult problem as
pedestrians come in different shape, size and color, against
cluttered background and varying illumination conditions.

Since humans are not radar-reflective, computer vision
techniques are often used to address the problem [4],
[10], [13]. However, most of these techniques consider
the problem of detecting a well defined pedestrian in an
image, which is a difficult problem in itself. Unfortunately,
in reality this is not enough. In many scenes pedestrians are
too small to be reliably detected in an image or else they
might move in a group (i.e. near zebra crossings).

The crowd detection module we present is part of our
Driver Assistance System that was developed in the last
four years [14], [14], [13], [8]. Our system uses a single
video camera to detect lane marks, vehicles, pedestrians and
crowd. Here we only describe the crowd detection module
while emphasizing that a stand-alone pedestrian detection
module exists in our system.

Crowd scenes often contain many pedestrians that move
in opposite directions, or many pedestrians that move at a
distance. Such scenes pose a serious challenge to pedestrian
detection algorithm as the pedestrians are not clearly visible
in the image. However, these scenes are rich in unique
motion patterns.

Each person moving in a crowd forms a line in the spatio-
temporal domain and a moving crowd generates multiple
lines that intersect with each other, because people move
in opposite directions or different speed. We found that the
amount of intersecting lines is a strong cue for detecting
moving crowd. If the signal is not enough to categorically
determine that this is a crowd scene we use the inward
motion information as an additional cue to our pedestrian
detection module. Put together, our system achieves a very

high detection rate of pedestrians and crowd in busy city
scenes.

We have implemented the proposed method on our real-
time system and tested it on a variety of scenes. We found
that our method can detect moving crowd at a distance of
up to 70m.

A. Previous Work

Observing humans and analyzing their actions is an active
research field within the computer vision community. We do
not intend to give a full survey here and the interested reader
might refer to [5], [7]. Furthermore, we only consider hu-
man detection from a single video camera but methods that
use dense stereo matching to recover the 3D information of
the scene and match it to the 3D model of humans exist.

Surveillance systems can detect and track humans from
a static camera, often by assuming the background to be
static or gradually changing [16], [6]. These methods use a
reference image of the background only and use background
subtraction to quickly detect regions that have changed.
Extensions include updating schemes of the background
image to account for gradual change, say due to outdoor
illumination conditions.

In case the background is not static additional cues are
often used. These cues are often based on shape, motion,
texture or symmetry properties.

Shape based methods aim at detecting a pedestrian in
a single frame. One approach is to use models of humans
[12]. However, this might require segmenting the image into
body parts, a very hard problem in itself. Another approach
uses standard classification techniques to detect pedestrians
in images. A database of pedestrian/non-pedestrians images
is used to train a classifier and during run time the image is
scanned at different resolutions to detect pedestrians [10],
[4].

Motion based methods often use the periodicity of human
walk or learned gait for pedestrian detection [9], [2], [11],
which implies the use of temporal information to make a
decision. In this way, the object must be clearly visible and
tracked over time. By stabilizing the tracked object one can
observe the periodic motion over time.

Common to these techniques is the assumption that each
pedestrian can be properly segmented from the background.
This assumption does not always hold true. For instance, in
a zebra crossing a crowd of people might move at once
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Fig. 1. The spatio-temporal domain: (a) Sample image with 5 scan-lines. (b) The 5xt images associated with the 5 scan-lines. Eachxt image
accumulates its corresponding scan-line over the last 16 frames. The red lines separate between thext images (c) The dual image of the 5xt images,
created by Hough transform. The large number of intersecting lines in thext images is translated to a large number of points in the dual images. The
red lines separate between the dual images.

and no particular pedestrian can be properly segmented
for classification. In other cases, a single pedestrian at a
distance is too small to be reliably and robustly detected in
an image.

Several pedestrian detection systems on moving vehicles
were demonstrated in recent years [18], [1], [3]. All three
systems focus on pedestrian detection and not crowd detec-
tion and all use a two step approach that combines stereo
vision first followed by some classification or validation
step.

An interesting extension that combines appearance and
motion was lately presented by [17]. The idea is to look at
a pair of successive frames of a video sequence and search
for a combination of appearance and motion cues. Good
results were shown but again, it is assumed that pedestrians
can be well segmented in the image.

Crowd detection was investigated within the framework
of static cameras (i.e. in train stations) where the idea
is to use block-matching methods, similar to those used
in MPEG, to measure the amount of motion, and hence
“crowdiness”, in the scene. We can not carry over these
ideas to our crowd detection module as we assume the host
vehicle is moving.

II. CROWD DETECTION

Crowd detection is mainly required in dense urban
settings where pedestrians often move in groups. These
scenarios are extremely difficult to analyze because no
individual pedestrian can be properly segmented out for
detection, the path people take can be quite chaotic and
the background is not homogenous and hence it is difficult
to distinguish humans from man-made objects.

Stereo matching is not enough either for detecting crowd
since there might be many man-made objects that will have
a similar 3D structure (i.e. poles, motorcycles). Single frame
detection methods might be useful if the crowd is nearby
but from a certain range the crowd becomes too small to be
reliably detected from a single image and hence we resort
to a motion-based approach.

Our crowd detection algorithm is based on spatio-
temporal analysis of the video sequence, where we look
for optic-flow patterns that can not be generated by a for-
ward moving vehicle. A forward moving vehicle generates
outward flow, hence inward flow must be generated by
independently moving objects. This cue is strong enough to
alert the system but is not enough do distinguish between
a vehicle, a pedestrian or crowd. To further distinguish
between the three classes we use higher level classifiers
to determine if the object is a vehicle or pedestrian and
an optic-flow analysis to determine is the moving region
corresponds to a crowd.

Inward motion in the input image give rise to a line in the
spatio-temporal domain whose slope depends on the motion
direction. When a group of people is moving in opposite
directions they form a collection of intersecting lines in
the spatio-temporal domain. The number of intersections
formed by a crowd scene is usually high enough to dis-
tinguish between an inward moving vehicle or pedestrian
and a crowd. In addition, detecting intersecting lines can
be done robustly even for distant objects that exhibit small
motions.

The algorithm is based onxt slices in the spatio-temporal
domain. Axt image is a single intensity scan-line collected
over several frames (Fig 1). This representation is rich
in information, easy to obtain and we will show that the
relevant information can be calculated in real time.

We use a variant of Hough transform to detect lines in
the xt image. Only points with sufficient gradient in thext
image vote and the slope of the line passing through the
points is taken to be perpendicular to the gradient of the
point, in thext image.

To handle the case of a turning vehicle we have a “turning
detection” module that tracks a sparse set of points in the
image and determines if they all move in one direction. The
crowd detection module updates its thresholds according to
the output of the “turning detection” module.

The algorithm observes several scan-lines in the image,



across multiple scales and detects inward moving objects
and moving crowd.

III. I MPLEMENTATION DETAILS

The crowd detection algorithm is capable of detecting
inward motion as well as collision between independently
moving objects. After processing the input image, as de-
scribed next, we obtain a probability distribution function
for the inward motion (both left and right). We use hard
thresholds on the probability distribution functions of the
inward motion to determine if to raise the “inward motion”
or “crowd detection” flags.

We maintain a collection of 5 different scan-lines. For
each scan-line we create axt image that contains that scan-
line in the last 16 frames (the scan-line from the last image
is at the bottom of thext image) and keep such an image
for each of the 4 levels of the Gaussian pyramid created
from the input image. Thus, in total we have20 xt images
to maintain.

The spacing of the scan-lines are based both on calcu-
lating distance on the road and distances in the image. The
scan-lines can capture distant moving objects, according to
the projection of the scan-line on the road. On the other
hand, their position on the image plane ensures it will
detect nearby objects as well. Moreover, the image spacing
is dense enough so that every object will be detected by
several scan-lines, adding to the robustness of the system.

A. Detecting lines in the spatio-temporal domain

A point (x, y) in an input image taken at timet is mapped
to point (x, t) in the xt image. A moving object will form
a line in thext image and we will detect these lines using
Hough transform.

A point (x, t) in the xt image sits on any line given by

a =
t

x − x0

(1)

wherea is the slope andx0 is the bias of the line (i.e. the
point where the line intersects the bottom of thext image).
But by fixing the slopea to be perpendicular to the gradient
of the point in thext image we have a mapping from thext
image to its dual image, as given by the following formula:

(x0, a) = f(x, t) ≡ (x +
dt

dx
t,−

dx

dt
) (2)

wheredx anddt denotes the partial derivatives of the point
(x, t). We use this derivation to map points in the original
image to the dual of thext image and we perform this
operation only for points with high enoughdx, dt gradients.
Thex axis in the dual image corresponds to thex axis in the
original image and they axis in the dual image corresponds
to different motion velocities.

In practice, we discretize the set of possible slopesa into
36 bins. Each point(x, t) with a strong enough gradient is
mapped to a point(x0, a) in the dual image and the gradient
of the point in thext image is added to the four nearest
pixels in the dual image.

The above procedure assumes that lines in thext image
can be well detected. This assumption might be violated in
case of fast motion that can create strong aliasing artifacts.
To avoid this problem we construct the dual image for each
of the 4 levels of the image pyramid and take the one with
the highest level of fast outward moving objects. All further
processing is done on this particular pyramid level.

B. Inward motion

We detect inward motion by breaking the dual image to
left (positive slope) and right (negative slope) motion im-
ages, summing the columns and normalizing. This produces
a probability distribution function for left and right motion.
We detect inward motion if the probability of left motion
in the right part of the image (or vice versa, right motion in
the left part of the image) is above a predefined threshold.
Finally, points of intersection are points with high leftand
right horizontal motion probabilities. Formally, letD be the
dual image using the function defined in equation 2 then the
left motion imageL and right motion imageR are given
by

L(x, a) =

{

D(x0, a) a > C

0 a < C

R(x, a) =

{

0 a > −C

D(x0, a) a < −C

whereC is a threshold used to reduce noise effects. The
probability that a pixelx on a scan-line is moving left is
given by

pL(x) =
∑

a

L(x, a)

And similarly, for the right motion we have:

pR(x) =
∑

a

R(x, a)

if the probabilities ofx to move both leftand right
(denoted, for short, bypL(x) and pR(x), respectively)
are above some predefined threshold thenx is a point of
intersection.

C. Making the final decision

Crowd detection is determined as follows. First, inward
motion thresholdθx is calculated for each columnx in
the image. Then, zebra crossing is detected to increase or
decrease system sensitivity and crowd detection is finally
calculated.

1) Inward motion threshold:The thresholdθx is deter-
mined differently if the vehicle is moving forward, rotating
or standing still. By default, we setθx to reflect a forward
moving vehicle. Then we determine if the vehicle is turning
or standing still and changeθx accordingly.

Onceθx is set we estimate inward motion by projecting
all scan-lines on a single line and calculating, separately
for left motion and right motion a histogram of all pixels
pR(x) > θx and for all pixelspL(x) > θx. We then fit
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Fig. 2. Examples with pedestrians: (a) Input images. (b) Corresponding graphs. The x-axis of the graph correspond to theposition on the scan-line
while the y-axis is a probability of that pixel. Red line denotes left motion, green line denotes right motion, yellow line denotes single-frame intersection
score and the light blue line denotes the intersection score, averaged over time. As can be seen the light blue graph is high in all examples, indicating
a strong “crowd detection” signal.
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Fig. 3. Examples with no pedestrians: (a) Input images. (b) Corresponding graphs. The x-axis of the graph correspond to the position on the scan-line
while the y-axis is a probability of that pixel. Red line denotes left motion, green line denotes right motion, yellow line denotes single-frame intersection
score and the light blue line denotes the intersection score, averaged over time. As can be seen the light blue graph is very low in both cases indicating
that no crowd is detected. In the first row one can see some right motion signal (denoted by the green line), this is due to thecar on the opposite lane.
In the second row there is a strong left motion caused by the white van on right that is entering the field of view. This is evident from the accompanying
graph that shows a strong inward motion from the right (the red line).

the resulting histogram with a Gaussian mixture model and
every large enough Gaussian is marked as an inward moving
region whose width is given by the variance of the Gaussian.

2) Crowd detection:The “crowd detection” is based on
the thresholding the product of the left and right motion
histograms, weighted by an awareness factor that measures
the probability of the scene to contain pedestrians. The
awareness factor is based on the existence of zebra crossing,
the number of detected vehicles and pedestrians in the
scene, as well the speed of the vehicle. Thus, in dense urban
settings the system is more sensitive to crowd detection
wheres in highways it is almost impossible to trigger the
“crowd detection” module.

3) Temporal smoothing:To further stabilize the system
we use multi-frame smoothing. That is, we require that
the signal will be detected for a minimum number of
consecutive frames, before raising the flag. Similarly, we
require that the signal willnot be detected for a number of
consecutive frames before turning off the flag.

In case of “crowd detection” no further processing is
needed, but in case of “inward motion” we pass the position
and width of the suspected region to the pedestrian and vehi-
cle detection modules as an additional cue. The information
consists of the “inward motion” flag, as well as the width of
the signal, as measured in the image. This information can

serve as a strong cue in discriminating between a vehicle
and pedestrian.

IV. EXPERIMENTS

We use a progressive scan video camera that captures 30
frames per second at a resolution of320× 240 pixels. The
camera is mounted on different vehicles and we only need
to know the height of the camera from the ground, as well
as its focal length for our application to work. No parameter
was changed from one experiment to another. The images
are fed to our development processing unit that consists
of a single Motorola 1000 Mhz G4 processor that runs
at about 15Hz. The processor performs vehicle detection,
lane detection and pedestrian detection in addition to crowd
detection. We are currently porting the development system
to a specialized system-on-chip (EyeQ) with a target frame
rate of 20-25Hz.

The system can work with the video feed only, or it can
connect to the car network to obtain various parameters such
as speed and heading [14], [14], [13], [8]. In this paper we
only describe the crowd detection module of a stand-alone
system that is not connected to the car network.

Fig 2 show experiments on scenes containing moving
crowd. In each row we show the input image and the
accompanying graph. The light blue line in the graph shows
the amount of intersections detected, integrated over time.



The examples show crowd detection at different distances
and, as can be seen, in all cases there is a strong intersection
signal. Note, for example, that in the forth row, no individual
pedestrian can be detected, but the crowd motion signal is
quite strong.

In Fig 3 we show experiments on scenes that donot
contain crowd. The two examples show that in urban scenes
that do not contain moving crowd the “crowd detection”
signal (denoted by a light blue line) is nearly non-existent,
as expected. On the other hand the system does detect
some inward motion due to other moving vehicles in the
environment. This information is passed to the vehicle
detection module as a cue.

V. SUMMARY AND CONCLUSIONS

We have presented a system for crowd detection from
a moving platform. The system uses slices in the spatio-
temporal domain to detect inward motion as well as in-
tersections between multiple moving objects. The spatio-
temporal representation is easy to obtain and analyzed
using Hough transform and quite stable using temporal
smoothing. The system calculates probability distribution
functions for left and right inward motion and use these
probability distribution functions to infer a decision about
inward motion or crowd detection. The system can auto-
matically detect scenes that contain crowd consisting of
multiple pedestrians moving in opposite directions, even at
a large distance. In case the pedestrians are moving in a
single direction, the system can detect inward motion and
call the pedestrian and vehicle detection module for final
verification. Experiments on real data show that the system
can reliably detect crowd at distances of up to 70 meters and
can robustly separate scenes with crowd from scenes that do
not contain crowd. The inward motion detection capabilities
are used in other applications, such as detecting crossing
vehicles in intersections, or detecting single pedestrians, say
children, that suddenly jump in front of the vehicle. Finally,
there has been increased interest in infra-red (IR) video
sensors. These sensors originated in military applications
but are now finding their way into civilian applications.
The idea of IR sensors is to detect the heat emitted by the
body of pedestrians and discriminate the heat emitted by
pedestrians from other heat sources, such as vehicles. Initial
experiments suggest that the “crowd detection” algorithm
works just as well on IR images.
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