
Mode-Detection via Median-Shift

Lior Shapira
Tel-Aviv University

Tel Aviv, Israel
liors@post.tau.ac.il

Shai Avidan
Adobe Systems, Inc.

275 Grove St. Newton, MA
avidan@adobe.com

Ariel Shamir
The Interdisciplinary Center

Herzliya, Israel
arik@idc.ac.il

Abstract

Median-shift is a mode seeking algorithm that relies on
computing the median of local neighborhoods, instead of
the mean. We further combine median-shift with Locality
Sensitive Hashing (LSH) and show that the combined al-
gorithm is suitable for clustering large scale, high dimen-
sional data sets. In particular, we propose a new mode de-
tection step that greatly accelerates performance. In the
past, LSH was used in conjunction with mean shift only to
accelerate nearest neighbor queries. Here we show that we
can analyze the density of the LSH bins to quickly detect
potential mode candidates and use only them to initialize
the median-shift procedure. We use the median, instead of
the mean (or its discrete counterpart - the medoid) because
the median is more robust and because the median of a set
is a point in the set. A median is well defined for scalars
but there is no single agreed upon extension of the median
to high dimensional data. We adopt a particular extension,
known as the Tukey median, and show that it can be com-
puted efficiently using random projections of the high di-
mensional data onto 1D lines, just like LSH, leading to a
tightly integrated and efficient algorithm.

1. Introduction
Mean shift is a popular mode seeking algorithm that is

used in a large number of computer vision applications. It
is a non-parametric method that does not require a-priori
knowledge of the number of clusters, nor does it place any
limitations on the shape of the clusters.

Data points belong to the same cluster if they converge to
the same mode. However, initializing mean shift from every
data point is computationally expensive because each mean
shift iteration requires numerous nearest neighbor searches.
The problem is exacerbated when dealing with large scale
data sets and one often resorts to approximate nearest neigh-
bor tools such as Locality Sensitive Hashing (LSH) to ac-
celerate the process.

We show that LSH can provide more than nearest neigh-

bor query acceleration. LSH works by hashing high dimen-
sional points to bins based on locality. Therefore, points
in high density regions will be hashed to the same LSH
bin with high probability. We take advantage of this fact
to quickly find an excellent initial guess as to the location
of the modes, even before applying the mode seeking algo-
rithm. Specifically, We take all high density LSH bins and
replace them with their median. This creates a set of rep-
resentative points, much smaller than the original data set.
Next, we shift each point toward the median of its neighbor-
hood. This is similar to medoid shift, but instead of using
the point in the set closest to the mean (i.e., the medoid), we
use the median that we restrict to be a point in the set. We
iterate this procedure until convergence.

This mode detection procedure is faster than mode seek-
ing in detecting the modes of the distribution but, unlike
a typical mode seeking algorithm, it does not assign each
data point to a mode. To do that we can propagate cluster
labels from the modes to the rest of the points. In fact, in
applications where only mode detection is needed and not
clustering, this step is not necessary.

Switching from mode seeking to mode detection fol-
lowed by propagation offers some additional advantages as
well. Mode seeking is a bottom up approach that is prone to
get stuck at saddle points. This is why it is often necessary
to perform a post-processing stage to eliminate small clus-
ters. On the other hand, mode detection quickly finds the
most significant modes of the distribution and then propa-
gates them to the rest of the data in a top-down fashion. As a
result, we do not have to perform any post-processing steps
to reason about small clusters or saddle points.

Working with LSH accelerates performance but can also
introduce outliers (i.e. points that are not in the neighbor-
hood of the query point). There are two reasons for that.
The first is due to the random nature of LSH, and the second
has to do with the nature of the data. High dimensional data
sets are often assumed to lie on a low dimensional manifold
embedded in the high dimensional ambient space. Since
LSH operates in the ambient space and not on the mani-
fold, it will return nearest neighbor points according to Eu-

clidean distance and not geodesic distance. This problem
arises in mean shift as well and can be dealt with by using
M-estimators. However, these estimators are slow to com-
pute. We found the median-shift to be a good compromise
between the need for speed and the need for robustness. In
addition, median-shift is constrained to land each shift on
a point in the set. This has two advantages. First, it can
never drift off the manifold and second, we do not have to
specify a threshold parameter to determine when mean shift
trajectories are close enough to be clustered together.

Working with medians begs the question: what is the
definition of a high dimensional median? As it turns out,
there are a number of possible extensions proposed in the
literature and we use the Tukey median definition. The
Tukey median can be well approximated with multiple ran-
dom projections, just like LSH, which leads to a tightly in-
tegrated, fast and robust mode detection and seeking algo-
rithm.

The Tukey median is based on the Tukey depth, which is
part of a large class of statistical depth order functions that
attempts to define order (i.e., depth) on high dimensional
data sets. As a by-product of our work, we demonstrate that
the Tukey depth can also be used for saliency detection.

In this paper we show how median-shift manages to find
a natural classification in synthetic data-sets where mean
shift and medoid shift fail, and demonstrate it in a number
of applications.

2. Related work
Previous work on clustering is vast and we only cover

here work directly related to ours.
Mean shift was introduced by Fukunaga and Hostetler

[9], formalized by Cheng [3] and introduced to the com-
puter vision community by Comaniciu and Meer [4]. Mean
shift was first used in Euclidean space and later extended to
work on analytic manifolds [18].

Recently, Sheikh et al. [17] proposed medoid shift,
which applies mean shift to graphs. To do this, they de-
fine the medoid to be the point in the data set that is closest
to the mean. The result is a mode seeking algorithm that is
constrained to move only along points of the set (as opposed
to mean shift that can shift to points outside the sample set).
This algorithm is reduced to matrix multiplication and as
such suffers from a high computational cost of O(n2.38)
where n is the number of sample points. It was later shown
by Vedaldi and Soatto [21] that in case the distance metric
is Euclidean the complexity drops to O(n2).

Georgescu et al. [10] combined mean shift and LSH
for texture classification. However, their approach only re-
placed the nearest neighbor search needed by mean shift,
with an LSH based search which improved performance
considerably. We differ in a number of crucial aspects.
First, we propose median-shift which is constrained to

Figure 1. The Tukey median is more robust to noise than either the
mean or the medoid. It achieves similar results to the geometric
median, however it is faster to compute.

points in the data set only (as opposed to mean-shift). This
is more robust to outliers than mean shift, as we demon-
strate in the experimental section of the paper. In addition,
median-shift shares the LSH data-structure which leads to
better integration and better performance. Finally, and most
importantly, we use LSH to quickly find an initial guess of
the location of the modes, which can then be refined using
median-shift.

There has also been much work on accelerating mean
shift, mainly for image segmentation, using Newton iter-
ations [1], downsampling [5] or by explicitly representing
the underlying density function [14].

Switching from mean shift to median-shift forces us to
adopt an extension of the median to high dimensional data.
A straight forward extension is the geometric median. The
geometric median of a discrete set of sample points in a Eu-
clidean space is the point minimizing the sum of distances
to the sample points. In other words, the median minimizes
the L1 norm, as opposed to the mean that minimizes the
L2 norm (i.e., the sum of squared distances). There is no
closed-form solution for finding the geometric median and
it does not have to be a point in the set. Within the context
of image filtering (i.e. applying median filter to, say, RGB
images), the median filter is extended to the vector median
filter, which is the point in the data set that minimizes the
Euclidean distance to all other points. The geometric me-
dian reduces to the standard definition of the median for
scalars, but because of its computational cost we explore
other extensions (See Figure 1).

The median belongs to a class of statistical depth order
functions that attempt to define order on data sets. That is,
the goal is to define which points are in the center of the
distribution and which points are further away. There are
several possible extensions and all reduce to the standard

definition of the median for scalars.
The Convex hull peeling [8] method computes the con-

vex hull of the data set and the assign points of the convex
hull a depth order of 1. These points are peeled from the
data set and a new convex hull is computed on the remain-
ing points and the points that belong to it are assigned depth
order 2, and so on and so forth. The peel median are the
points with the highest depth order. This method is attrac-
tive for low dimensional data but computing the convex hull
of high dimensional data becomes prohibitively expensive,
and it is not robust to outliers.

Another approach is the simplicial median [12] that is
also defined in terms of the convex hull. A simplicial depth
of a point is the probability that this point is in the convex
hull of d+1 points (where d the dimensionality of the data),
chosen independently according to the underlying probabil-
ity distribution function. The simplicial median is the point
with the highest simplicial depth. The sample estimate of
the median is the point that is contained in the largest num-
ber of simplicials. The reader is referred to [16] for further
discussion on depth order functions.

Here we adopt the Tukey median that was proposed
by Tukey [20] and rediscovered by computational geome-
ters [15]. The Tukey median of a set of points is a point
in the set that maximizes the Tukey depth, where a Tukey
depth of a point is the minimum number of sample points
on one side of a hyperplane going through the point (see
Figure 2). It was recently shown that good approximation
of the Tukey median can be achieved using random 1D pro-
jections of the data [6]. The use of of random projections
fits nicely with Locality Sensitive Hashing (LSH). LSH is
a randomized algorithm that can be applied by hashing the
projection of the the data points on 1D lines. Points that are
hashed to the same bin are taken to be close in the input,
high dimensional, space [7].

3. Preliminaries

We give the preliminary technical details needed to make
the paper self contained.

3.1. Mean Shift

Given a set of points X = {x1, . . . , xn} in Rd Euclidean
space, the kernel density estimate of the point x is taken to
be:

f̂k(x) = C

n∑
i=1

k(
||x− xi||2

h2
) (1)

with bandwidth h, profile function k (i.e., a Gaussian or uni-
form kernel) and a constant C that ensures that f̂ integrates
to 1. Letting g(x) = −k′(x) and taking the gradient of (1)

Figure 2. The Tukey median is calculated by passing all possible
hyperplanes through every point in the data set. For each hyper-
plane we take the minimum number of points on either side of the
hyperplane. The Tukey depth of a point is the minimum achieved
over all hyperplanes. The Tukey Median is the point with the high-
est Tukey depth.

we obtain:

mh(x) =
∑n

i=1 g(||x−xi||2
h2)xi∑n

i=1 g(||x−xi||2
h2)

− x (2)

where, mh(x) is the mean shift vector which is proportional
to the normalized density gradient estimate. Repeatedly ap-
plying the mean shift operator is a hill-climbing technique
to the nearest stationary point of the density, i.e., a point in
which the density gradient vanishes.

3.2. Tukey Median

We work our way to the Tukey median of high dimen-
sional points by first revisiting the necessary definitions in
1D and then extending them to high dimensional data.

3.2.1 Depth order of 1D points

Suppose we are given a set S = {s1, . . . , sn} of reals si ∈
R1, define the rank of si by

RANK(si) ≡ |{sj : sj ≤ si}| (3)

and its depth by

DEPTH(si) ≡ min(RANK(si), n + 1−RANK(si)).
(4)

The median of S is an element with maximal depth:

MEDIAN(S) ≡ max
si

DEPTH(si) (5)

3.2.2 Depth order of high dimensional points

Given a set S = {s1, . . . , sn} of points si ∈ Rd, d > 1,
define the Tukey depth of a point to be:

DEPTH(si) = min[vT si : v ∈ Rd, ||v|| = 1] (6)

That is, the Tukey depth of a point is the minimum of its
depth, along any projection vector v. The Tukey median is
the point with the highest Tukey depth. There is an opti-
mal randomized algorithm for finding the Tukey median [2]
using a variant of linear programming. Unfortunately, it is
exponential in d, the dimensionality of the data. A good ap-
proximation was reported using a finite number of random
projections V = {v1, . . . , vk} [6] (see Figure 2). Formally:

MEDIAN(S) = max
si∈S
{
∑

vk∈V

DEPTH(sT
i vk)} (7)

3.3. Locality Sensitive Hashing (LSH)

LSH on p-stable distributions works by hashing points in
Rd into hash families, such that given two points p and q:

Pr(H(p) <> H(q)| ‖p− q‖ < r) ≤ c1

Pr(H(p) = H(q)| ‖p− q‖ ≥ r) ≥ c2
(8)

where r is the parameter, signifying the radius of the R-NN
queries, the LSH in effect answers. We define each of the L
hash families by randomly selecting k vectors, drawn from
Rd normally (for L2 metric). We define a function ha,b for
each projection as:

ha,b(x) =
⌊

a · x + b

w

⌋
(9)

Where b is drawn uniformly from the range [0..w]. To-
gether, the k vectors define a hash function Rd → nk. w is
selected to minimize the number of false negatives in the re-
turned queries. For a complete description of the algorithm,
see [7]. Both LSH and the Tukey median use the same ma-
chinery of random projections which leads to a tightly inte-
grated and efficient algorithm.

4. Mode Detection
In this section we describe median-shift, a robust and

scalable mode detection algorithm. The algorithm consists
of shifting each point toward its local neighborhood median,
using a multi-dimensional depth function, which gives a ro-
bust data density estimation. Recall that the mean and me-
dian coincide for symmetric distributions (i.e., Gaussian or
uniform distributions) and hence as the number of samples
grow, the median-shift converges to the density mode. In
the following subsections we present the theoretical back-
ground, as well as the implementation details.

4.1. Median-Shift Mode Seeking

The median-shift algorithm is similar to other mode-
seeking algorithms such as mean shift and medoid shift. For
each point we wish to ascend in the direction of the posi-
tive gradient of the underlying probability density function.

This is equivalent to moving toward the local representative
of the neighborhood, in our case, the Tukey median. There-
fore we define the median-shift for point c in set P as:

c′ = MEDIAN({p ∈ P | ‖p− c‖ ≤ r}) (10)

where r is the bandwidth parameter of the algorithm. Since
c′ is necessarily a point in the dataset, there is no need for
multiple iterations in this step (similar to medoid shift, but
unlike mean shift). After one iteration all points are linked
and we can only go through the list of discovered medians
to find a mode.

The results of this step are a set of modes representing
clusters. We proceed by iteratively working on the reduced
set of modes, replacing the median calculation by weighted
median calculation, where the weights are the number of
points mapped to the given mode. We stop the iterations
when the set of modes does not change from one iteration
to the next.

4.2. Significant Mode Detection

Running median-shift on all data points is possible but is
usually time consuming. The basic operation in this proce-
dure is calculating the depth of points in the neighborhood
of each point and sorting them. Although LSH gives a good
approximation of the neighborhood, it still takes time to sort
all neighborhood points especially in high density areas of
the data, i.e. in bins that contain many points. In fact, we
found that most of the time in a mode seeking algorithm is
spent on sorting the same LSH bins in high density areas
again and again. This inspired us to examine those bins.

We found (Figure 3) that in all projections the distribu-
tion of bins is similar. A small number of bins (in each
projection) cover most of the data. Since significant modes
in the data will most likely fall within these high density ar-
eas and all points in such areas have a high probability of
being hashed to the same mode, we replace each bin with
its median as a representative point (Figure 4 (b)).

Next, we run the median-shift procedure on the set of
representative points iteratively until convergence. In each
iteration we replace the previous set with the set of detected
modes, weighted by the number of points mapped to them
(Figure 4 (c)). These weights are taken into account during
the calculation of the depth of each point in the next itera-
tion by modifying the definitions as follows:

RANK(si) ≡
∑

sj≤si

Weight(sj) (11)

and defining W =
∑

sj
Weight(sj) as the total weights in

the neighborhood of si then:

DEPTH(si) ≡ min(RANK(si), W −RANK(si)).
(12)

Figure 3. Histograms of point density of LSH bins (y axis in log
scale). The top example shows bin distribution on synthetic data.
The 500 largest bins (out of 7000) cover 91% of the data (high-
lighted in light blue). The lower example shows bin distribution
on a 3x3 patch feature space of an image. Both histograms demon-
strate that a small number of bins contain a significant portion of
the data. These bins serve as an excellent initial guess for mode
detection as they cover densely populated regions.

Finally, in case of data clustering, and not only mode
detection, we map each data point to its closest mode. This
is done using multiple seed breadth-first-search based on the
geodesic distance in the data set (Figure 4 (e)).

5. Experiments
We have implemented median-shift in C++ with a matlab

interface. We then performed a couple of experiments to
evaluate it.

5.1. Synthetic experiments

First, we compared the performance of LSH to the kd-
tree based ANN library [13]. Our dataset consisted of
246, 000 image patches of size 7× 7× 3 (equivalent to 147
dimensions). We measure the time it takes to construct a
database and the time it takes to query the database. As
can be seen in Table 1, LSH is about four times faster in
constructing the dataset and querying it.

Figure 4. Significant mode detection by LSH. (a) Original data
set (b) Tukey medians of the largest bins in the LSH (c) Sin-
gle median-shift step for each initial representative converges to
a few modes(d) We iterate over the modes until convergence us-
ing a weighted median-shift step (e) Using a geodesic propagation
step we assign a mode to each point (f) Final clustering results.

LSH kd trees Dim. N
Construct 16.7 sec 52.3 sec 147 246K

Query 3.6e-4 sec 0.019 sec 147 246K

Table 1. Comparison of LSH and kd-trees. We compare the prob-
lem of clustering 246, 000 points living in a 147 dimension space.
LSH is faster in construction and query time, over kd-trees.

In another experiment, we compare four types of mode
seeking algorithms: median shift with mode seeking or
mode detection, medoid shift and mean shift with mode
seeking. As is often suggested in the literature, we termi-
nate mode seeking iterations if we encounter a point that is
already assigned to a cluster. Table 2 reports the results. It
shows that mode detection runs up to 10 times faster than a
mode seeking approach that is applied to every point in the
data set (even with early trajectory termination).

Next, we compared mean shift, medoid shift and median
shift on a synthetic data set shwon in Figure 5. This is a
challenging example because it shows the possible confu-
sion of Euclidean and geodesic distance. All algorithms fail
to cluster the data into only two clusters, because the data
is not organized in two, nicely clustered Guassians. As one
increases the bandwidth, both mean shift and medoid shift
break down and cluster points from the two sine waves to-
gether. Median shift, on the other hand, proves to be more
robust. It never clusters points from the two sine wave to-

num dim mseek mdetect med. mean
5000 2 2.736 0.84 15.2 1.341

10000 2 14.6 2.88 na 2.07
30000 2 147.9 13.74 na 8.1
5000 10 10.13 1.38 na 3
5000 20 24 3.5 na 2.7

Table 2. We ran several experiments to demonstrate the speedup of
mode detection over mode seeking. The same data set was clus-
tered using four algorithms: mode seeking via median-shift, mode
detection via median-shift, medoid shift and mean shift. Mode de-
tection via median-shift shows great speedup compared to mode
seeking, and is comparable in performance to simple mean shift.
Medoid shift could not be run on more than 5000 points due to the
necessity of calculating a distances matrix n2.

Figure 5. A comparison of median-shift to Medoid shift and Mean
shift on a synthetic data set. From top left, in a clockwise direc-
tion. The result of median-shift clustering, the initial set of mode
candidates detected using LSH bin probing, result of mean shift
clustering, and result of medoid shift clustering. Median-shift is
more robust than either mean shift or medoid shift. It never clus-
ters points from the two sine waves together. (All mode seeking
algorithms struggle in uniform regions, as demonstrated here).

gether.
We also demonstrate that median shift works properly

on manifolds. Figure 6 applies our algorithm to the data
set proposed by Sheikh et al. [17]. We achieve the same
clustering results at a fraction of the time.

5.2. Saliency detection using the Tukey depth

Before we move to experiments of the median shift on
real data, we highlight the capabilities of the Tukey depth
as a depth order function for the problem of saliency detec-
tion. Given an image, we break it into overlapping 7 × 7
pixel patches and want to find the most salient ones. We

Figure 6. Medoid shift on manifolds. We demonstrate median-
shift on the data sets proposed in [17], results are comparable and
are achieved in a fraction of the time.

Figure 7. Saliency detection using Tukey depth. We break each
image into overlapping 7 × 7 pixel patches and compute their
Tukey depth. The bottom 1% Tukey depth patches are taken to
be salient patches. For comparison, we repeat this experiment us-
ing the mean, instead of the Tukey depth. (a) The original image.
(b) Tukey depth (darker blue means lower value). (c) Thresholded
Tukey depth of bottom 1% (shown in black). (d) Distance from
mean patch. (e) Thresholded mean patch distance (we threshold
the mean image to have the same number of pixels as (c)). Clearly,
Tukey depth captures salient regions much better.

interpret this to be patches with a very low Tukey depth.
Figure 7 show the results on several images from the traffic
sign database [11]. For comparison we repeat the process
with the mean, instead of the Tukey depth. That is, we first
compute the mean patch and then measure the distance of
all patches to the mean patch, where distance is taken to
be the sum of absolute pixel intensity values differences.
Clearly, the Tukey median does a much better job.

5.3. Image segmentation

We applied median-shift to image segmentation and
compare two possible representations. In the first case, each
pixel is represented by a simple xyrgb representation where
the XY coordinates are scaled according to an approxi-
mate desired spatial bandwidth. In the second representa-
tion each pixel is represented by a combination of a 3 × 3
patch surrounding it and its coordinates. In both cases, we
do not rely on image coordinates to accelerate performance.
Instead we rely on LSH for fast nearest neighbor queries

Figure 8. Image segmentation. (a) Original image (b) Segmenta-
tion overlay (c) Simplified image (d) Manual results using EDI-
SON mean shift. Images i,ii,v were segmented using median-shift
on 3x3 patches. Images iii,iv,vi were segmented using median-
shift on RGB.

and for initializing the location of the modes. We show sev-
eral typical results in Figure 8.

Segmenting a 250× 300 image in xyrgb takes 13.1 sec-
onds, while using local patches (29 dimensions) takes 16.2
seconds. Skipping the mode detection step and initializing
the mode seeking procedure from every pixel can take more
than a minute to complete, even when using early trajec-
tory termination (i.e., we stop iterations if we encounter a
pixel that is already assigned to a cluster). For comparison
we measured timing performance of the mean-shift based
EDISON system [5] that does rely on the structure of the
image to limit the range of nearest neighbor queries. We
hand tuned EDISON to give results as similar as possible to
ours and found that it takes 12.7 seconds with no speedup
and 4.5 with speedup enabled.

5.4. Chromatic noise filtering

Chromatic image noise affects the direction (chromatic-
ity) of the color vector but not its intensity. Unit vectors
lie on a manifold and hence standard mean shift does not
apply. One can use nonlinear mean shift over Riemannian
manifolds [19], or use median shift as we show here.

Given an input image, we add noise by changing the di-
rection of the color vectors, but not their length. We then

Figure 9. Chromatic noise filtering. (a) Original image. (b) Noisy
image. (c) Tukey median filter. (d) Median shift using Mode de-
tection. (e) Result using EDISON mean shift. (f) Mean shift using
Mode detection. See text for more details.

compare two methods for chromatic noise reduction. The
first method relies on the Tukey median filter. Specifically,
we go over every 7 × 7 neighborhood and select the Tukey
median over the normalized RGB vectors. After filtering the
whole image we restore the original vector lengths to get the
final image. We varied the neighborhood size from 3×3 up
to 9 × 9 with similar results. The second method relies on
mode detection using median shift. We first normalize RGB
pixels to unit length and then map all pixels to rgbxy fea-
ture space, where the xy component is scaled appropriately
to approximate a spatial bandwidth. We then construct the
LSH but use only the normalized rgb component, and not
the xy. This way, the Tukey median is computed on local
neighborhoods of the normalized rgb component, discard-
ing the xy component.

Mean-shift segmentation using EDISON is unable to re-
move the noise, either leaving the image noisy, or blurring
it. Applying mode detection via mean-shift to the image,
on the normalized color vectors also fails. In this case, the
mean of a local neighborhood is not constrained to remain
on the manifold, and thus fails to achieve a good result (See
Figures 9 and 10).

6. Conclusions

Median shift is a mode seeking algorithm that is based
on the median, instead of the mean. It is coupled with LSH
for fast nearest neighbor queries which makes it suitable
for handling large scale data sets. A novel contribution of
our work is the mode detection step that greatly acceler-
ates performance. Instead of initializing median shift from
every point, we analyze the point density of the LSH bins
and use the ones that are most dense as an initial guess for
mode seeking. We then propagate the cluster labels from
the modes to the rest of the data points. This top-down
approach, as opposed to the bottom-up mode seeking ap-

Figure 10. Additional results in chromatic noise filtering. Origi-
nal image on left, noisy image in the middle, median shift noise
reduction on the right.

proach, does not require post-processing to reason about
saddle points or small cluster. We compute high dimen-
sional medians using the Tukey median and show that it can
be efficiently approximated using random 1D projections,
just like LSH, leading to a tightly integrated and efficient
algorithm. We demonstrate the algorithm on both synthetic
and real data, including image segmentation and chromatic
noise filtering.

References

[1] M. A. Carreira-Perpinan. Acceleration strategies for gaus-
sian mean-shift image segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2006. 2

[2] T. M. Chan. An optimal randomized algorithm for maximum
tukey depth. In SODA ’04: Proceedings of the fifteenth an-
nual ACM-SIAM symposium on Discrete algorithms, pages
430–436, Philadelphia, PA, USA, 2004. Society for Indus-
trial and Applied Mathematics. 4

[3] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
17(8):790–799, 1995. 2

[4] D. Comaniciu and P. Meer. Mean shift analysis and applica-
tions. In ICCV ’99: Proceedings of the International Confer-
ence on Computer Vision-Volume 2, page 1197, Washington,
DC, USA, 1999. IEEE Computer Society. 2

[5] D. Comaniciu and P.Meer. A robust approach toward feature
space analysis. IEEE Trans. on Pattern Analysis Machine
Intelligence (PAMI), 2002. 2, 7

[6] J. A. Cuesta-Albertos and A. Nieto-Reyes. The random tukey
depth. Comput. Stat. Data Anal., 52(11):4979–4988, 2008.
3, 4

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In SCG ’04: Proceedings of the twentieth an-
nual symposium on Computational geometry, pages 253–
262, New York, NY, USA, 2004. ACM. 3, 4

[8] W. Eddy. Convex hull peeling. COMPSTAT, pages 42–47,
1982. 3

[9] K. Fukunaga and L. D. Hostetler. The estimation of the
gradient of a density function, with applications in pattern
recognition. IEEE Transactions on Information Theory,
21(1):32–40, 1975. 2

[10] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based
clustering in high dimensions: a texture classification exam-
ple. In Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, pages 456–463 vol.1, 2003. 2

[11] http://ilab.usc.edu/toolkit/downloads.shtml. 6
[12] R. Liu. On a notion of data deph based on random simplices.

The Annals of Statistics, 18:405–414, 1990. 3
[13] D. M. Mount and S. Arya. Ann: A library for approximate

nearest neighbor searching. 1997. 5
[14] S. Paris and F. Durand. A topological approach to hierar-

chical segmentation using mean shift. Computer Vision and
Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,
pages 1–8, June 2007. 2

[15] M. S. R. Cole and C. Yap. On k-hulls and related topics.
SIAM J. Comput., 16:61–77, 1987. 3

[16] R. J. S. R. Liu and D. L. Souvaine. Data Depth: Robust
Multivariate Analysis, Computational Geometry, and Appli-
cations. AMS Bookstore, 2007. 3

[17] Y. Sheikh, E. Khan, and T. Kanade. Mode-seeking by
medoidshifts. In ICCV 2007: Proceedings of the 11th Inter-
national Conference on Computer Vision, pages 1–8, Wash-
ington, DC, USA, Oct 2007. IEEE Computer Society. 2, 6

[18] R. Subbarao and P. Meer. Nonlinear mean shift for cluster-
ing over analytic manifolds. In CVPR 2006: Proceedings of
the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 1168–1175, Washing-
ton, DC, USA, 2006. IEEE Computer Society. 2

[19] R. Subbarao and P. Meer. Nonlinear mean shift over rieman-
nian manifolds. In To appear in International Journal on
Computer Vision, 2009. 7

[20] J. Tukey. Mathematics and the picturing of data. 1971. 3
[21] A. Vedaldi and S. Soatto. Quick shift and kernel methods for

mode seeking. In Proceedings of the European Conference
on Computer Vision (ECCV), 2008. 2

	. Introduction
	. Related work
	. Preliminaries
	. Mean Shift
	. Tukey Median
	Depth order of 1D points
	Depth order of high dimensional points

	. Locality Sensitive Hashing (LSH)

	. Mode Detection
	. Median-Shift Mode Seeking
	. Significant Mode Detection

	. Experiments
	. Synthetic experiments
	. Saliency detection using the Tukey depth
	. Image segmentation
	. Chromatic noise filtering

	. Conclusions

