
Trajectory Triangulation of Lines: Reconstruction of a 3D point Moving along a
Line from a Monocular Image Sequence

Shai Avidan Amnon Shashua

Institute of Computer Science,
The Hebrew University,
Jerusalem 91904, Israel

e-mail:favidan, shashuag@cs.huji.ac.il

Abstract

We consider the problem of reconstructing the location of a
moving 3D point seen from a monocular moving camera, i.e.,
to reconstruct moving objects from line-of-sight measurements
only. Since the point is moving while the camera is moving,
then even if the camera motion is known, it is impossible to
reconstruct the 3D location of the point under general circum-
stances. However, we show that if the point is moving along a
straight line, then the parameters of the line (and hence the 3D
position of the point at each time instance) can be uniquely re-
covered, and by linear methods, from at least 5 views. Conse-
quently, we propose a new approach for dealing with dynamic
scenes (rich with moving objects) in which once the camera
motion is recovered, the 3D trajectory (straight line) of the
moving target can be recovered — even when the moving tar-
get consists of a single point.

1 Introduction
Consider the situation in which a 3D scene containing a mix

of static and moving objects (points) is viewed from a moving
monocular camera. The typical question addressed in this con-
text is that of “segmentation”: can one separate the static from
dynamic in order to calculate the camera ego-motion (and 3D
structure of the static portion)? this question is basically a ro-
bust estimation issue and has been extensively (and success-
fully) treated as such in the literature (cf. [4, 3]).

However, consider the next (natural) question in this con-
text: can one reconstruct the 3D coordinates of a (single) point
on a moving object? The measurements available in this con-
text areline-of-sightonly, thus in a general situation the task
of reconstructionis not feasible, unless further constraints are
imposed. In order to reconstruct the coordinates of a 3D point,
the point must be static in at least two views (to enable tri-
angulation) — if the point is moving generally then the task
of triangulation is not feasible. Note that the feasibility issue
arises regardless of whether we assume the ego-motion of the
camera to be known or not. Knowledge of camera ego-motion
does not change the feasibility of the problem.

Nevertheless, when the shape of the trajectory of the mov-
ing point is constrained, say straight line trajectory, then the
problem of 3D reconstruction from line-of-sights is solvable -

and for some trajectory shapes in a very simple manner. We
call the problem of reconstruction of a moving point from line
of sight measurements astrajectory triangulationand we fo-
cus in this paper on straight-line trajectories. Hence, we define
our problem as follows (see Fig. 2):

Problem Definition 1 (Linear Trajectory Triangulation)
Given a scene of dynamically moving 3D points, each point
moving along some unknown 3D line, seen from a moving
camera whose motion is general but known (or can be
recovered from static scene points or through other means),
reconstruct the trajectory (the 3D line) of each moving point
from the known 2D matches across the views.

Note that we have not placed constraints on the laws of mo-
tion along the line. The point can move arbitrarily along a
3D line, thus the only assumption/constraint we are making is
that the point is a moving along a straight line. The straight-
line assumption is reasonable for a range of applications as
people, cars, planes tend to move largely along straight-lines
and is also valid in general situations for relatively small time
intervals (as an approximation). Note that in the problem def-
inition we assumed knowledge of camera ego-motion (projec-
tion matrices). We acknowledge the difficulty of recovering
the camera ego-motion in general, and under dynamic scene
conditions in particular, but believe it to be reasonable in view
of the large body of theoretical and applied literature on the
subject. Thus, we treat the problem of ego-motion as a ”black-
box” and a first layer in a hierarchy of tasks that are possible
in a ”3D-from-2D” family of problems.

2 Trajectory Triangulation of Straight Lines
The first question to consider ishow many views are nec-

essary for a unique solution? One can easily show that 4
views provide two solutions, thus 5 views provide a unique
solution. We first address this issue geometrically and then
algebraically, as follows.

2.1 A Geometric Interpretation

The geometric picture behind the problem of trajectory tri-
angulation of straight lines is alinear line complex, i.e., a set

1



(a) (b) (c)

Figure 1. Three frames from a sequence in which the car is moving independently of the scene. The camera is moving to the right.

(a) (b)

Figure 2. Illustration of Trajectory Triangulation. Schematicillustration (a) of A point moving along a 3D line and is projected on the
image plane of a moving camera. Since the 3D point is moving one can not use triangulation to recover its coordinates. A sketch of this
principle is seen in (b) where the car is moving along a straight line while the camera is moving. The lines drawn from the car are the
optical rays of a single point on the car as seen by the moving camera.

of 3D lines that have a common intersecting lineL. The inter-
secting line is the straight-line trajectory of the moving point
(unknown) and the set of lines are the optical rays from the
camera at each time instance (known). Let there bek views of
the moving point. The question therefore is what is the mini-
mal k that form auniquelinear line complex?

Clearly, if k = 2 we have infinite linesL intersecting the
2 rays. Fork = 3, for each point along the first ray there
is a unique line incident to it and to the other two rays (the
point and the second ray define a plane which intersects the
third ray uniquely) — hence we still have infinite linesL (see
Fig. 3). Fork = 4, three of the rays define a ruled quadric (the
collections of lines swept by the point moving along the first
ray, as considered above) which intersects the fourth ray at two
distinct points — thus we have two solutions forL, and thus,
for k = 5 we have a unique solution.

The argument that one needs at least 4 lines for a finite num-
ber of solutions for a common intersecting line is well known
and is also used in graphics algorithms for synthetic illumina-
tion and visibility computations (cf. [6]).

2.2 Solving for Plucker Representation

We wish to recover the piercing lineL givenk � 5 views,
known3 � 4 projection matrices (describing camera motion)
Mi and the projectionspi, i = 1; :::; k of the moving point
along the lineL.

Let P;Q be any two points on the lineL, and letli be the

projection ofL on view i. Clearly,p>i li = 0 becausepi is
incident to the lineli in the image plane. We can representli
by the cross product of the projections ofP andQ:

li �= (MiP )� (MiQ)

becauseMi projects 3D points onto viewi. A convenient
way to simplify this expression is to represent the lineL us-
ing Plucker coordinates:L = P ^ Q which is a vector of six
components defined as follows:

L = P ^Q (1)

= [1; Xp; Yp; Zp] ^ [1; Xq; Yq; Zq]

= [Xp �Xq ; Yp � Yq ; Zp � Zq ;

XpYq � YpXq ; XpZq � ZpXq ; YpZq � ZpYq ]

The Plucker representation of the line is defined up to scale
and is independent of the choice ofP;Q. The entries of the
vectorL are the determinants of2� 2 sub-matrices of�

1 Xp Yp Zp

1 Xq Yq Zq

�
: (2)

The entries ofL also satisfy a quadratic constraint

L1L6 � L2L5 + L3L4 = 0; (3)

for all Plucker coordinates. The space of all 3D lines is there-
fore embedded in a 5-dimensional projective space and subject



(a) (b)

(c)

Figure 3. Figures (a) and (b) show that one can define infinite number of lines that intersect two or three given lines, respectively. Given
3 lines (b), there is a unique intersecting line for every point along the first line, thus the set of intersecting lines form a ruled surface
(quadric); the fourth line (c) intersects the surface at two points, thus there are two intersecting lines for a general set of 4 lines.

to a quadratic constraint (i.e., not every six tuple corresponds
to a real line). Thus the six Plucker coordinates describe a four
parameter space which confirms basic intuition that a 3D line
could be parameterized by four numbers (such as by slope and
intercept on two standard planes).

In [2] it was pointed out that by using the Plucker represen-
tation one can readily transformMi into a3�6 matrix ~Mi that
satisfies a line projection matrix relation:li �= ~MiL whereL
is represented by its six Plucker coordinates. The rows of~Mi

are defined by thê (“meet”) operation (eqn. 1) on the pairs of
rows ofMi. (M j stands for thej � th row of camera matrix
M )

~M =

2
4

M2
^M3

M3
^M1

M1
^M2

3
5 (4)

We have therefore established the following linear constraint
on the unknown Plucker vectorL:

p>i
~MiL = 0

which is linear in the parameters ofL. Thus 5 views provide a
unique solution and more than 5 views provide a least-squares
solution. Generally, the rank of the estimation matrix is 5 and
L is the null space of the estimation matrix.

The quadratic constraint comes into play when the rank of
the estimation matrix is 4. This situation arises when the num-
ber of views is 4 (as we have seen in the previous section
we expect to have two solutions) or when the camera center
of projection traces a straight line during camera motion. In
these cases we have a two dimensional null space spanned by
v1; v2, thusL = v1 + �v2. The scalar� can be found from
the quadratic constraint eqn. 3, thus we obtain a second-order
constraint on� which provides two solutions forL.

The degenerate situations occur when the moving point and
the camera center trace trajectories that live in the same ruled
quadric surface. For example, when the camera center traces a
straight line coplanar withL we have a rank deficient situation
(any line on that plane is a solution).

2.3 Multiple Points

So far we have discussed the case of a single moving point
along a straight line viewed by a projective camera. On an ob-
ject moving along a straight-line path one may possibly track
a number of points — those would correspond to a family of
parallel lines in case the camera matricesMi are Euclidean.
Note from eqn. 1 that the coefficientsL1; L2; L3 denote the
direction of the lineL, thus a set ofk parallel lines are deter-
mined by3 + 3k Plucker coordinates (up to scale). For ex-
ample, when two points are tracked across four views we have
8 equations for a unique solution for the two parallel lines.
More views and/or more points would give rise to an over-
determined system of equations. In practice, due to the prox-
imity of the points compared to the field of view of the camera,
the added equations would make a relatively small contribu-
tion to the numerical stability of the system — but in any-case
if the information exists (of multiple points on the straightly
moving object) it is worthwhile making use of it.

2.3.1 Reconstructing the 3D point

Note that once the 3D lineL is recovered it is a simple mat-
ter to reconstruct the actual 3D points as they were moving in
space, simply by intersecting each ray with the lineL. This
is done as follows. Represent the lineL as a linear combina-
tion of two pointsQ1 = [1; X; Y; Z]; Q2 = [0; X + �X; Y +
�Y; Z + �Z], where(�X; �Y; �Z) = (L1; L2; L3), the first
three components of the lineL, andX;Y; Z can be solved
from the following set of linear equations:

2
4

L2 �L1 0
L3 0 �L1

0 L3 �L2

3
5
2
4

X

Y

Z

3
5 =

2
4

L4

L5

L6

3
5 (5)

Next, find� such that the pointPi = Q1 + �Q2 satisfies
the equationpi �= MiPi. Pi is the 3D position of the object at
time instancei.



(a-1) (a-2)

(b-1) (b-2)

Figure 4. The top tow (a-1,a-2) shows the two extreme frames from a 30-frames sequence. We have computed the camera matrices of all
the 30 frames using the chess-board. The middle row (b-1,b-2) shows the recovered 3D lineL as projected on the extreme two frames. The
red dot on Meggie’s nose was used for the tracking. The last 10 frames were not used in computing the 3D line, yet the distance between
the tracked point and the projected 3D lineL is less than 1.5 pixels for all the frames in the sequence.



Figure 5. Projecting the 3D line defined by the moving car
on one of the images of the sequence.

2.4 Extension to Conic Triangulation

We have also extended the basic approach to deal with
curved trajectories by allowing the 3D point to move along
a conic (i.e., an elliptic, parabolic or hyperbolic trajectories in
space). We show that the 3D conic can be recovered uniquely
from 8 views [5], and the algorithm for recovering the conic
uses numerical optimization (Gauss-Newton iterations). This
problem is reminiscent of theorbit determinationproblem in
astrodynamics (cf. [1]), where a set of measurements of a
moving object (a planet) from a moving observer (Earth) are
used to determine the orbit of the planet which is known to
be elliptic. The difference between our algorithm and that of
orbit determination lies in the fact that in astrodynamics one
assumes motion in a gravitational field, i.e., motion satisfies
Keplerian law (equal areas swept by equal times). We do not
make any assumption on the motion along the trajectory —
the type of conic and its position and orientation in space are
recovered regardless of the manner in which the object is mov-
ing along the trajectory. Our generalization of the classic work
on orbit determination opens up new applications in Computer
Vision where dynamic scenes are to be reconstructed.

3 Experiments
We show the results of two of the experiments conducted.

In the first experiment Fig. 5, a sequence of 7 images of the
moving car was taken with a moving camera (Fig. 1). The
static points in the scene were used to compute the camera
matrices and we have manually selected a point on the car in
the first image and have automatically tracked it through the
sequence. Then, we used the algorithm presented in this paper
to recover the parameters of the 3D lineL. We then projected
the lineL on one of the images (using the recovered camera
matrixMi).

In the second experiment Fig. 4 we used a video sequence
of 30 frames. Again, the camera was moving while little Meg-
gie was moving as well. The camera matricesMi were re-
covered using the chess-board appearing in the scene, and a
point on the tip of the nose of Meggie was manually selected
and automatically tracked along the sequence. However, in
this experiment we have used just the first 10 even-numbered
frames(2; 4:::; 20) to recover the 3D lineL, which was then
projected on all of the frames of the sequence (using the cor-
respondingMi camera matrices), thus showing the ability of

the method topredict the line on which Meggie will appear in
the last 10 frames. The average distance between the tracked
point and the projected line was about 1 pixel. In addition, we
have used the chess-board in the scene to obtain a Euclidean
reconstruction and, since we recovered the position of Meggie
at each time instance, we were able to produce a virtual movie
where the camera moves freely in 3D space, capturing Meggie
from different viewpoints at different time instances.

4 Summary
We have introduced a new approach for handling scenes

with dynamically moving objects viewed by a monocular mov-
ing camera. In a general situation in which both the camera
and the target are moving without any constraint the problem
is not solvable, i.e., one cannot recover the 3D motion of the
target even when the camera ego-motion is known. We show
that by assuming the target is moving along a straight 3D line
the problem of recovering the target’s trajectory is uniquely
solved given at least five views of the moving target.

Acknowledgments
This research was partially funded by DARPA through the

U.S. Army Research Labs under grant DAAL01-97-R-9291.

[1] P.R. Escobal.Methods of Orbit Determination. Krieger
Publishing Co., 1976.

[2] O.D. Faugeras and B. Mourrain. On the geometry and
algebra of the point and line correspondences between N
images. InProceedings of the International Conference
on Computer Vision, Cambridge, MA, June 1995.

[3] P. Meer and Y. Leedan. Estimation with bilinear con-
straints in computer vision. InProceedings of the Inter-
national Conference on Computer Vision, pages 733–738,
Bombay, India, January 1998.

[4] Torr P.H.S., Zisserman A., and Murray D. Motion clus-
tering using the trilinear constraint over three views. In
Workshop on Geometrical Modeling and Invariants for
Computer Vision. Xidian University Press., 1995.

[5] A. Shashua, S. Avidan, and M. Werman. Trajectory tri-
angulation over conic sections. Technical report, Inst.
of Computer Science, Hebrew University of Jerusalem,
March 1999.

[6] S. Teller. Computing the antipenumbra cast by an area
light source.SIGGRAPH, 26(2):139–148, 1992.


