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Threading Fundamental Matrices
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AbstractÐWe present a new function that operates on Fundamental matrices

across a sequence of views. The operation, we call ªthreadingº, connects two

consecutive Fundamental matrices using the trifocal tensor as the connecting

thread. The threading operation guarantees that consecutive camera matrices are

consistent with a unique 3D model, without ever recovering a 3D model.

Applications include recovery of camera ego-motion from a sequence of views,

image stabilization (plane stabilization) across a sequence, and multiview image-

based rendering.

Index TermsÐStructure-form-motion, multiview geometry.

æ

1 INTRODUCTION

CONSIDER the problem of recovering the camera trajectory from an
extended sequence of images. Since the introduction of multilinear
forms across three or more views, there have been several attempts
to put together a coherent algebraic framework that would
produce a sequence of camera matrices that are consistent with
the same 3D (projective) world [14], [2], [13]. The consistency
requirement is needed to ensure that all the camera matrices will
be defined up to a single projective transformation. There are two
basic approaches to the problem. One is to use 3D structure to
enforce the consistency constrains, the other is to ensure that all the
recovered camera matrices are due to the same reference plane.

The first approach is intuitive and fairly amenable to recursive
estimation. An example of such an approach is the incremental
method of [2], where fundamental matrices or trifocal tensors are
recovered to ensure the quality of matching points and the camera
matrices from the 3D structure, which is built-up incrementally, is
estimated. Likewise, [13] recovers independently the fundamental
matrices of every consecutive pair of images and relies on a 3D
structure to put them all in a single measurement matrix which is
then used to recover the camera parameters.

The second approach requires some investigation into the
connections between camera matrices. If a simple connection exists
then one can avoid having to recover the 3D structure of the scene
as an intermediate variable in the process. The only attempt we
know of is in [14], which seeks a sequence of camera matrices in
which the homography matrices all correspond to the plane at
infinity. However, the method resorts to a large nonlinear
optimization problem, where one, alternatively, recovers 3D
structure from motion and motion from structure (thus, not
avoiding the 3D structure as an intermediate variable).

In order to obtain a better idea of the issues involved, we will
first define what makes a collection of camera matrices consistent
with each other. In the Euclidean case (cameras are calibrated), the
definition is straightforward. We require that it would be possible
to represent the camera parameters of each image in the sequence
as a composition of the camera parameters of the previous images
in the sequence. This is because a composition of two rotation
matrices is a rotation matrix as well. In the projective case, the

rotation matrix is generalized to the homography matrix. A
homography matrix is a mapping of a 3D planar surface between
a pair of images, thus, the rotation matrix is the homography of the
plane at infinity. If we want the composition of two projective
camera matrices to produce a consistent camera matrix, then we
must ensure that multiplying homography matrices will produce a
consistent (and valid) homography matrix. This is ensured if all the
homography matrices are due to the same 3D plane (i.e., they form
a subgroup). Further details on the formal treatment of this issue
can be found in the appendix. Our problem statement is:

Problem Def. 1. (Consistent Trajectory). Given a set of multiple
matching points across multiple images, recover a set of camera
matrices whose homography matrices are due to a single (arbitrary)
reference plane.

In this paper, we wish to find a consistent set of camera
matrices in a direct manner, i.e., without reconstructing the 3D
scene as an intermediate step. To this end, we introduce a new
result on the connection between fundamental matrices and the
trifocal tensor on a given triplet of images. Applying this result on
a sliding window of triplets of images provides an efficient method
for concatenating camera matrices along an extended sequence
without resorting to 3D structure. The connection is based on a
representation of the tensor as a function of the elements of two
consecutive fundamental matrices and a homography matrix of
some arbitrary reference plane. An interesting property of this
representation is that each camera matrix is guaranteed to be
consistent with the previously recovered camera matrices. That is,
all camera matrices will be recovered due to the same reference
plane. By repeated application of the basic result, we call a
threading operation, on a sliding window of triplets of views, we
obtain a consistent sequence of camera matrices (and the
fundamental matrix and trifocal tensors as well). Since the
threading operation is linear, we have an on-line structure-from-
motion algorithm that has only a single nonlinear constraintÐthe
rank-2 constraint of the first fundamental matrix. The rest of the
camera matrices are recovered linearly one by one. Potential use of
the threading operation includes ego-motion estimation or image
stabilization.

The paper is organized as follows: Section 2 provides the
general background, notations, and conventions for the paper. The
main results are stated and proven in Section 3. The outline of the
algorithm is given in Section 4 and results are shown in Section 5.

2 NOTATIONS

We use a 3-view building block in the process of concatenating
together a sequence of fundamental matrices, hence, our notations
are geared for representing three views at a time. A triplet of
camera matrices are denoted by �I; 0�; �A; v0�; �B; v00�, where the left
3� 3 minor is a homography matrix due to the (arbitrary)
reference plane and the fourth column is the epipole which is
the projection of the center of projection of the first camera onto the
second and third image planes, respectively.

We will occasionally use tensorial notations, as described next.
We use the covariant-contravariant summation convention: A
point is an object whose coordinates are specified with super-
scripts, i.e., pi � �p1; p2; . . .�. These are called contravariant vectors.
An element in the dual space (representing hyper-planesÐlines in
the 2D plane), is called a covariant vector and is represented by
subscripts, i.e., sj � �s1; s2; . . . :�. Indices repeated in covariant and
contravariant forms are summed over, i.e., pisi � p1s1 �
p2s2 � . . .� pnsn. This is known as a contraction. An outer-product
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of two 1-valence tensors (vectors), aib
j, is a 2-valence tensor

(matrix), cji , whose i; j entries are aib
jÐnote that in matrix form

C � ba>. A 3-valence tensor has three indices, say Hjk
i . The

positioning of the indices reveals the geometric nature of the
mapping: for example, pisjH

jk
i must be a point because the

i; j indices drop out in the contraction process and we are left with
a contravariant vector (the index k is a superscript). Thus, Hjk

i

maps a point in the first coordinate frame and a line in the second
coordinate frame into a point in the third coordinate frame. A
single contraction, say piHjk

i , of a 3-valence tensor leaves us with a
matrix. Note that when p is �1; 0; 0�, �0; 1; 0�, or �0; 0; 1� the result is
a ªsliceº of the tensor.

The tensor �ijk is the antisymmetric tensor defined such that
�ijka

ibjck is the determinant of the 3� 3 matrix whose columns are
the vectors a; b; c. As such, �ijk contains 0;�1;ÿ1 where the
vanishing entries correspond to arrangement of indices with
repetitions (21 such entries), whereas the odd permutations of
ijk correspond to ÿ1 entries and the even permutations to
�1 entries. Therefore, �ijka

ibj � ck is the cross product of two
points resulting in the line ck. Likewise, �ijkaibj � ck represents the
point intersection of the to lines ai and bj.

Matching image points across three views will be denoted by
p; p0; p00. When these points appear in a tensor equation indices are
included, pi; p0j; p00k, i; j; k � 1; 2; 3, and always i is an index for
elements (points or lines) in view one, j is an index for elements in
view two, and k is an index for elements in view three.
Occasionally, we will refer to a particular component of an image
point, and in that case we will adopt the convention
pi � �x; y; 1�; p0j � �x0; y0; 1�; p00k � �x00; y00; 1�.

The trifocal tensor of the three camera matrices �I; 0�, �A; v0� and
�B; v00� is a 3� 3� 3 tensor defined below:

T jki � v0jbki ÿ v00kaji : �1�
The tensor acts on a triplet of matching points in the following way:

pis�j r
�
kT jki � 0; �2�

where s�j are any two lines (s1
j and s2

j ) intersecting at p0, and r�k are
any two lines intersecting p00. Since the free indices are �; � each in
the range 1, 2, we have four trilinear equations (unique up to linear
combinations). For more details, please refer to [9], [10], [4].

In the sequel, it will become useful to represent the 3� 3
fundamental matrix [6], [3] as embedded into a 3� 3� 3 tensor as
follows [1]:

F jk
i � �ljkFli;

where Fli is the Fundamental matrix and �ljk is the cross-product
tensor. This can be verified as follows:

pisjrkF jk
i �

pisjrk��ljkFli� �
pi �sjrk�ljk�|�����{z�����}

p0l

Fli � 0;
�3�

where s; r are any two lines coincident with p0. Finally, a triplet of
images will be denoted by �n1; n2; n3�, where the numbers n1; n2; n3

stand for the index of the three images in the sequence. Note that
order is important. The tensor of the image triplet �n1; n2; n3� is
denoted by < n1; n2; n3 > .

3 THREADING FUNDAMENTAL MATRICES USING

TRIFOCAL TENSORS

The essence of the paper is in the following two theorems that exhibit
the relationship between a homography matrix, fundamental

matrix, and trifocal tensor. By repeatedly applying these results on
a sliding window of triplets of views, we obtain a camera trajectory
which is consistent with a single 3D reconstruction of the
worldÐbecause all the homography matrices correspond to a single
reference plane.

Theorem 1. The following equation holds:

T jki � ckl F jl
i ÿ v000kaji ; �4�

where T jki is the tensor of views 1,2,3, the matrix A, whose elements
are aji , is a homography from image 1 to 2 via some arbitrary plane �,
F jl
i is the 2-view tensor of views 1,2, and C � �C; v000� is the camera

motion from image 2 to 3 where ckl is a homography matrix from
image 2 to 3 via the (same) plane �.

Proof. We know that T jki � v0jbki ÿ v00kaji where the parameters
�A; v0� � �aji ; v0j� and �B; v00� � �bki ; v00k� are the camera matrices
from 3D to views 2,3 respectively: �p0 � Ap� �v0 and
p00 � Bp� �v00, where p; p0; p00 are the matching points in views
1, 2, and 3, respectively, and A;B are homography matrices due
to the same (arbitrary) reference plane � (uniqueness issue
discussed in [9]). By substitution, p00 � BAÿ1p0 � �

� �v00 ÿBAÿ1v0�
Therefore, the camera motion from view 2 to 3 is represented
by, �C; v000� � �BAÿ1; v00 ÿBAÿ1v0� and

bki � ckl a
l
i

v00k � ckl v
0l � v000k: �5�

By substituting the expressions above instead of bki and v00k in
T jki , we obtain:

T jki � v0j�ckl ali� ÿ �ckl v0l � v000k�aji
� ckl �v0jali ÿ v0laji� ÿ v000kaji
� cklF jl

i ÿ v000kaji ;
�6�

where F jl
i is the trivalent tensor form of the Fundamental

matrix, i.e., F jl
i � �sjlFsi where Fli is the Fundamental matrix

and �sjl is the cross-product tensor. Finally, because of the
group property of projective transformations, since A;B are
transformations due to some plane �, then C � BAÿ1. tu

Theorem 2. Given the Fundamental matrix of views 1, 2, and the tensor
T jki , then the Fundamental matrix between views 2 and 3 can be
recovered linearly from six matching points across the three views.

Proof. The basic tensorial contraction, a trilinearity, is

pisjrkT jki � 0;

where s and r are lines coincident with p0 and p00, respectively.
Thus, the tensor and two views uniquely determine the third
view (the reprojection equation) as follows:

pisjT jki � p00k;
where the choice of the line s is immaterial as long as it is
coincident with p0. By substitution, we obtain

pisj�cklF jl
i ÿ v000kaji� � p00k; �7�

which provides two linear equations for the unknowns ckl and
v000. We next show that different choices of the line s do not
produce new (linearly independent) equations and, thus, six
matching points are required for a linear system for the
unknowns.

Just as the trifocal tensor T jki satisfies the reprojection
equation, so does the 2-view tensor F jl

i :

pisjF jl
i � p0l;
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where the choice of the orientation of the line sj is immaterial.

Thus, (7) reduces to (in matrix form):

p00 � Cp0 � ��s�v000;
where ��s� is a scalar (depends also on s) that determines the

ratio between p00, Cp0, and v000, is thus unique (invariant to the

choice of s). tu
It is worthwhile to note that the homography matrix A that

appears in (6) can be generated using the following two

observations: First, the space of all homography matrices between

two fixed views lives in a 4-dimensional space [11], thus, we can

span A from four primitive homography matrices. Second, three of
the primitive homography matrices can be generated from the

ªhomography contractionº property of the tensors, i.e., �kF jk
i is a

homography matrix indexed by �k, thus, by setting �k to be

�1; 0; 0�; �0; 1; 0�, and �0; 0; 1�, we obtain three primitive homo-

graphy matrices. These homography matrices correspond to
planes coincident with the center of projection of the second

camera (thus, are rank 2 matrices). The fourth primitive homo-

graphy matrix is a rank-1 matrix whose columns are scaled

versions of the epipole v0 (which satisfies F>v0 � 0). In particular,
choose v0nT for n � �1; 0; 0�T . This homography corresponds to a

plane coincident with the center of projection of the first camera

and (thus, is rank 1), therefore, is not linearly spanned by the three

homography contractions of the 2-view tensor. Taken together, any
linear combination of the above four matrices will provide an

admissible homography matrix A that can be used in (6).

4 THREADING AND EXTENDED THREADING

It is possible to extend the basic 3-frame threading process to

handle a sequence of views by using a sliding window of w frames

in the following manner:

1. Recover the Fundamental matrix F1 of the first pair of
images in the sequence.

2. Recover the epipole v01 from the null-space of F1
T .

3. Construct the initial homography A1 as a linear combina-
tion of the four homography matrices. For the sake of
numerical stability, we wish to find a linear combination
that will approximate the form of a rotation matrix. In
particular, we use the method described in [8] which is
suitable for small-angle rotations.

4. Set M0 � �I ; 0� and M1 � �A1 ; v01�.
5. Fix w to be the number of images in the sliding window.
6. For image n, perform:
7. For every image h; nÿ w < h < nÿ 1 in the sliding

window compute the relative motion with respect to
image nÿ 1

�Ah ; v0h� �Mh
Mnÿ1

0 0 0 1

� �ÿ1

: �8�

8. Let Fh � �v0h��Ah:
9. Use all Ah; Fh (with the respective matching points in

images h; nÿ 1; n) in (7) to compute C � �C; v000�Ðthe
relative motion from image nÿ 1 to image n.

10. Let

Mn � C Mnÿ1

0 0 0 1

� �
:

Normalize Mn by its Frobenius norm.

We use a typical sliding window of w � 5 frames for the

extended threading. Note also that the recovered motion parameters

(the matrix C) are relative to the last frame and in order to bring it

into the coordinate system of the entire sequence, we need to

multiply it by Mnÿ1. Finally, we normalize each new camera matrix

by the Frobenius norm to avoid the entries in the matrix to shrink to

zero or explode to infinity.

5 EXPERIMENTS

The threading process produces the set of projection matrices

relative to some chosen reference plane. As such, we can view the

threading process as relevant to both the task of recovering the

ªego-motionº of a moving camera (the projection matrices) and to

the task of stabilizing a planar surface along a sequence of views.

In the latter case, the plane to be stabilized should be present in the

first two views of the sequence but need not be present later on in the

sequence. For example, in the sequence shown in Fig. 4, the plane

chosen as a reference plane (say, for purpose of image stabiliza-

tion) is the desk, which is fully present in the first image of the

sequence, but then gradually moves out of the field of view as the

image sequence progresses (the physical desk is still present but is

cluttered by off-plane objects). The threading procedure creates a

collection of camera matrices with respect to the chosen reference

planeÐwhich in particular means that we obtain, as a byproduct,

the homography matrices induced by that plane even in images in

which the planes is no longer visible.
The ego-motion aspect of the threading process is advantageous

for situations in which the integrated field of view is much larger

than the field of view of the camera at each time instant. In that

case, the build-up of projection matrices from image measure-

ments is incremental because new regions of the scene replace old

scene parts as the camera moves. The threading process is

designed to deal with an incremental integration of image

measurements while avoiding the need to carry the 3D coordinates

of corresponding points along the way. For example, the sequence

of 35 frames in Fig. 1 was taken from a helicopter covering a large
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Fig. 1. The ºHelicopterº experiment consisting of 70 frames. We have subsampled

the sequence by taking every other image. (a) and (b) are frames 0 and 35 in the

subsampled sequence. The size of the images is 360 � 240.

Fig. 2. Accuracy evaluation of plane stabilization. The ground was manually
chosen as the reference plane in the first two frames. (a) and (b) display the
overlay of frame 1 and frames 20 and 35, respectively, warped toward the first
frame. The ground is aligned to a subpixel level, while the roof (above the ground)
exhibits parallax effects. The car is duplicated on the road because it was moving
while the sequence was taken.



integrated field of view. The recovery of ego-motion (fundamental
matrices, trifocal tensors, and the camera projection matrices) is
necessarily incremental.

Next, we describe the experimental setup and results on the
two example sequences discussed above. In each example, we start
with an image sequence as input and from which we recover a set
of point matches. The point correspondence were extracted
automatically using the KLT package [12]. Typically, we obtain
around 150 matching points between frames. We replace lost
feature points with new ones to maintain a constant number of
about 150 point matches. The algorithm performs the threading
operation in a robust statistics framework. Following the LMeDS
(Least of Median Squares) approach [7], we sample groups of six
points and recover the motion parameters from them. We then
choose the group that had the largest support and recompute the
motion parameters again in a least-squares manner.

Fig. 4 shows a number of frames from a sequence of 40 frames.
The sequence was taken with a hand-held cam-corder that
produced images of size 360� 240. The reference plane was
manually selected to correspond to the table in the scene. The
associated homography matrix computed from views 1 and 2 of
the sequence was fed into the threading process which then
progressed through the remaining images of the sequence. Note
that the table gradually moves out of the field of view. The
threading process produces as a byproduct, the homography
matrices between adjacent views along the sequence, which all
should correspond to the selected plane arising from the table in
the scene. Fig. 5 shows the warped images between pairs of images

cascaded through from the last to the first imagesÐnote that the

plane is stabilized in the warped sequence, while the objects
outside the table plane suffer from parallax effects. The plane
stabilization application (and accuracy of) is demonstrated also in
the ªhelicopterº sequence (Fig. 1). This sequence consists of

35 frames of size 360� 240. Here, the ground is selected as the
reference plane and its homography matrix is fed into the
threading process which then progressed through the remaining
33 images. Fig. 2 shows the stabilized images. Note that the roof
suffers from parallax effects. Also, the car on the road is duplicated

because it was actually moving while the sequence was taken.
The ego-motion aspect of the threading process is demon-

strated in Fig. 3 using the helicopter sequence. The threading

process provides the camera matrices, fundamental matrices,
and the trifocal tensors. For example, the quality of the
fundamental matrix can be measured by the proximity of the
epipolar lines to respective matching points. The extended

threading algorithm was applied with a sliding window of five
images. For the demonstration, we computed the fundamental
matrices between the first image and several intermediate
frames, directly from the recovered camera matrices, and used
points that the KLT algorithm tracked throughout the sequence.

One can observe, that the epipolar lines pass through the
matching points. The median distance of points to their
corresponding epipolar line reaches a peak of about 1.5 pixels
at frame 15 and remains similar from there until the end of the
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Fig. 5. Accuracy evaluation of plane stabilization. The desk was manually chosen
as the reference plane in the first two frames. (a) and (b) display the overlay of
frame 1 and frames 25 and 40, respectively, warped toward the first frame. The
desk is aligned to a subpixel level while objects on the desk exhibit displacements
porportional to their parallax.

Fig. 6. Accuracy evaluation of recovered fundamental matrices from the threading
process. (a) and (b) are images 1 and 20, respectively, with a number of tracked
points superimposed. The distance to the epipolar lines is about 0.7 pixels. (c) and
(d) are images 1 and 35, respectively, with a number of tracked points super-
imposed. The distance to the epipolar lines is about 1.4 pixels.

Fig. 3. Accuracy evaluation of recovered fundamental matrices from the threading
process. (a) and (b) are images 1 and 20, respectively, with a number of tracked

points superimposed. The distance to the epipolar lines is about 1.5 pixels. (c) and
(d) are images 1 and 34, respectively, with a number of tracked points
superimposed. The distance to the epipolar lines remains about 1.5 pixels.

Fig. 4. The ºDeskº experiment consists of 80 frames. We have subsampled the

sequence by taking every other frame. (a) and (b) show frames 0 and 40 from the

subsampled sequence. The size of the images is 360� 240.



sequence. This accuracy provides an indication to the error

accumulation of the threading process over the integration of

many views (in this case 35 views). A similar example, for the

desk sequence, is given in Fig. 6. In this case, the error is less

than one pixel for the first 30 frames and only then does it start

to rise up to about 1.4 pixels in frame 40.

6 CONCLUSION

We have introduced an efficient method for concatenating

fundamental matrices along a sequence of images using the

trifocal tensor as an intermediate ªglueºÐhence, the term

ªthreading.º The process is captured by a simple equation (4)

which relies on an already computed fundamental matrix and a

choice of gauge (coordinate frame) captured by a homography

matrix of a reference plane. The threading equation then uses

matching points with the next view in the sequence (at least six

matching points) to produce the basic elements for constructing

projection matrices, fundamental matrices, and trifocal tensors.

Thus, the projection matrices constructed are guaranteed to

comply with the chosen gauge, i.e., the homography matrices,

thus computed, all correspond to a single reference planeÐwe

have referred to that property as a establishing a ªconsistentº

camera trajectory (see Appendix). We have also shown how to

extend the basic scheme to handle larger sequence segments

(beyond three images) for better numerical stability.
We have highlighted two aspects of the threading process. First,

is the image stabilization aspect arising from the byproduct of

recovering homography matrices arising from a single plane. For

example, Figs. 5 and 2 demonstrate the stabilization of a selected

plane across a sequence in which the plane gradually moves out of

the field of view. Recent approches for plane stabilization across

sequences [15] attempt also to perform under these conditions, but

here, the stabilization is established in the context of tracking

3D points rather than coplanar points. In other words, the

stabilization process uses all the information in the scene (captured

by matching points) and, thereby, need not deal with the issue of

maintaining a continues segmentation of the chosen plane from the

scene throughout the sequence. The second aspect that was

highlighted was the recovery of projection matrices.

APPENDIX

ON CONSISTENT CAMERA TRAJECTORY

A set of projective camera matrices is consistent if all its

homography matrices are due to the same (arbitrary) reference

plane. Here, we show why this is true.
Let Mj � �Aj; vj�, j � 0; :::; J , be a set of J camera matrices and

let Pk, k � 1; :::;K be a set of 3D points represented under some

projective frame. The J images of the K points are described by

pkj �MjPk. Without loss of generality and to save on adding

further notations, we will continue using the same symbols, i.e.,

M0 � �I; 0� and Mj � �Aj; vj�. The matrices Aj are not unique as

they belong to a 4-parameter family as follows: Consider three

arbitrary scalars, a; b; c, arranged in a vector n and a fourth scalar �.

The coordinate transform represented by

W � I 0
n> �

� �
: �9�

clearly satisfies �I; 0�W � �I; 0�, thus, the choice of canonical

representation is not affected by the change of coordinates induced

by W . Also, Wÿ1Pk changes only the fourth coordinate �k which

becomes 1
� ��k ÿ n>pko�. Likewise, �Aj; vj�W � ��Aj � vjn>;�vj�.

Therefore, for every choice of n; �, we have a corresponding

coordinate frame that consists of �Aj � vjn> instead of Aj and
1
� ��k ÿ n>pio� instead of �k.

The family of matrices �Aj � vjn> are 2D collineations
(homographies) mapping the first view onto view j through a
2D plane, a reference plane, whose position in space is represented
by n; �. For example, if P is some point on the plane corresponding
to n � 0 and p; p0 are its projections onto views 0; j, then Ajp � p0
and vice-versa.

Since n; � are shared among all the camera matrices, then a
necessary and sufficient condition for a set of camera matrices
�I; 0�; �Aj; vj�, j � 1; :::; J , to be consistent with a single 3D scene
reconstruction is that the homography matrices Aj form a
subgroup, i.e., they all correspond to the same reference plane.
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