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Abstract

The rigidness of enterprise software systems is a fundamental problem in information

systems engineering, demonstrated by the high expenses involved in developing new sys-

tems or enhancing existing ones. The problem is becoming acute as the pace of changes

in information systems becomes faster.

The field of Semantic Web addresses this problem by formally specifying Web ser-

vices and extending the current World-Wide-Web with formal languages and ontologies

that describe domain knowledge. However, most works in the field deal with automati-

cally inferring Web service compositions using logic-based methods. This approach has

severe limitations when dealing with incomplete and uncertain information, which is the

wide spread case of Web services. Furthermore, experiments we conducted indicate that

the notion of similarity used by logic-based service discovery approaches is not com-

patible with the perception of human subjects. Rather, humans employ a much broader

concept of similarity, which includes relations between services and similarities between

instance sets.

This research advocates for approximate service retrieval in which the retrieval pro-

cess returns approximate results. The basic question of this research is, therefore: what

is considered valid approximation in service retrieval? For answering this question, we

defined and evaluated a set of similarity (affinity) patterns for semantic Web services, i.e.,

semantically annotated Web services. The patterns are based on both semantic approx-

imation and functional approximation: semantic approximation is done using the struc-

ture of the ontology, while the functional approximation uses the composition structure.

Similarity is calculated by measuring the inherent information value lost in bridging the

differences between two services. In comparison to the state-of-the-art works in the field

of semantic Web service retrieval, our approach produced results with better recall and

with equal precision.

As the new notion of approximate similarity imposes new challenges on the char-

acteristics and complexity of service retrieval algorithms, we present in this research an

1



efficient method for approximate retrieval of Web services, which is based on indexing of

semantic and functional service properties. Our results show that this index allows us to

present an algorithm for query processing which is sub-linear in time complexity on the

average case.

Finally, we demonstrated a proof of concept of our approach by developing OPOS-

SUM, a search engine for Web services. The results of this search engine are automatically

transferred into a Web-based user interface, called Liquid-Interface, allowing the user to

immediately use prototypes that simulate the approximate compositions functionality.
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Chapter 1

Introduction

Web services are distributed software components, accessed through the World Wide Web.

They are considered primary objects to be reused and combined in the process of design-

ing and implementing new applications. An important step in this process is to find the

required Web services and to arrange them according to the desired application plan. Se-

mantic description of Web services (known as semantic Web services) are considered the

primary mechanism in providing a precise and rich data model for Web services. Semantic

Web services aim to resolve the heterogeneity at the level of Web service specifications

(including naming of parameters and a description of the service behavior), and to en-

able automated discovery and composition of Web services. Languages such as OWL-S

[2] and WSML [29] provide an unambiguous description by mapping service properties

(such as input and output parameters) to common concepts and by providing additional

meta-data regarding the service. The concepts are defined in ontologies [6] on the seman-

tic Web [12], which serve as the key mechanism to globally define and reference common

understanding.

A major portion of the research involved in semantic Web services has been in the

context of Web service retrieval, which is the process of matching between a query and

a set of existing services. It incorporates two levels of matching: service discovery and

service composition. In service discovery, appropriate Web services are selected based on

their matching with the query. However, in many cases, no single service can satisfy the

query. Therefore, service composition yields a structured set of services, which together

solve the problem at hand. Most retrieval approaches use logic-based proof inferencing in

order to compare queries and service descriptions. Service properties and query elements

are represented using description logics concept sets. If the concepts are identical, or the

concepts of the services are subsumed by the concepts of the query, then the matching is
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perfect. If the concepts of the query are subsumed by the concepts of the query, then the

matching is partial [58, 50, 49].

The problem is that in real-world settings, the process of service retrieval requires

a significant amount of approximation. It is often the case that only partial solutions to

a query exist, as Web services are created autonomously without a-priori knowledge of

their intended use. Partiality has two different aspects in this context: only part of the

query can be matched or the whole query can be matched to less-than-perfect answers. Of

course, the combination of the two aspects also exists, i.e., the only suitable results answer

imperfectly only part of the query. While approximation is essential, existing approaches

exhibit a very limited notion of approximation. The only means for approximation offered

by these methods rely on concept hierarchies. For example, if an ontology includes some

hierarchal structure (for instance, hospital is a type of organization), then a query asking

for organization might receive hospital as a result. However, concept hierarchies cannot

express valid approximations, as hierarchies are limited by nature. As a result, logic-based

approaches often yield low recall [49, 69]. As a motivating example for this problem,

consider the following query:

Example 1: Query. Find a set of services that accepts an address and returns the direc-

tions to the closest hospital.

Let us assume that the service repository only includes a service that accepts a lon-

gitude/latitude input parameter and returns the closest hospital. Human engineers would

build a transformation function between the parameter longitude/latitude and the param-

eter address in order to answer the first half of the query. However, current retrieval

approaches would fail to do so and would return a null answer.

In an attempt to answer queries such as that in Example 1, we advocate for approx-

imate service retrieval. Our approach has the benefit of using existing services for in-

creased reusability while limiting the number of required services, since adding missing

code is always an option. Naturally, a human Web service composer is intuitively inter-

ested in finding the most similar composition for her needs, thus reducing the amount

of coding needed. Therefore, there is a need for ranking search results according to the

amount of modifications required for their utilization. The basic question of this research

is therefore what is considered valid approximation in service retrieval?
While the amount of research in semantic Web service discovery and composition is

fairly large (we counted over 500 different articles), we did not find a satisfactory answer

to this significant research question. The framing of the question suggests two interesting

aspects. First, when does a service approximate another service? This question calls for

5



a similarity measure for semantic Web services. While similarity measures exist in many

fields, such as information retrieval and database research, they are absent from the field

of service retrieval. Second, when is an approximation valid? In other words, when does

a similar approximate service becomes too remote from the original? We seek, therefore,

for an imprecise notion of similarity.

In this thesis we define and evaluate a set of approximation schema for semantic Web

services. We have identified two dimensions of approximation: functional and seman-

tic. Functional approximation relaxes the matching between the structure of the query

and the structure of the services. Semantic approximation relaxes the matching between

the concepts in the query and the concepts of the result. We provide a broader definition

of approximation than the one of current approaches, which includes relations between

services and concept hierarchies. For each dimension we defined a small set of affin-

ity patterns, based on the structure of the ontology for semantic approximation and the

composition structure for functional approximation. The patterns provide a quantitative

distance metric for service similarity, which draws inspiration from information-theoretic

approaches. Similarity is calculated by measuring the inherent information value lost in

bridging the semantic and functional differences between two services.

The similarity measure is evaluated for relevance and correctness as judged by hu-

man subjects. The evaluation took the form of an experiment, in which software and

information system engineering students were asked to rank different aspects of similar-

ity in a service retrieval scenario. Our findings show that the notion of similarity used by

logic-based service discovery approaches is not compatible with the perception of human

subjects. Rather, humans employ a much broader concept of similarity, which includes el-

ements such as relations between services and similarities between instance sets. Further-

more, human subjects evaluate similarities in a much softer form than prior approaches

predict. We used the results from the experiment to enforce our definition of similarity

measure.

The notion of approximate similarity measure requires updating the service retrieval

paradigm, specifically, the syntax and semantics of queries. We introduce a query lan-

guage, which is based on a tree-structure. The language allows the user to write queries in

keyword-based language (similar to the ones used in search engines for the Web, such as

Google), and an OPM (Object-Process Methodology) modeling language [32]. The basis

of the query semantics definition is a graph-based model for representing the relations

between Web services.

Approximate query evaluation has several implications regarding space and time com-

plexity. For example, how do different approximation methods affect processing com-
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Figure 1.1: The OPOSSUM search engine

plexity? We present an efficient method for approximate retrieval of Web services, which

is based on efficient indexing of semantic and functional service properties. The retrieval

process relies on graph-based indexing, in which connected services can be approximately

composed, where graph distance represents service relevance. The algorithm provides

service ranking that is based on the certainty of matching with a query. The index data

structures allows us to present a sub-linear service retrieval algorithm by using a two-level

index mechanism, representing concepts and compositions. We use semantic clustering

techniques in order to supply a compact representation of the index. We formally prove

the correctness of the index and experimentally show its measures of preciseness and

scalability.

We demonstrate a proof of concept of our results by developing OPOSSUM, dis-

played in Figure 1.2. OPOSSUM (Object-PrOcess-SemanticS Unified Matching) is a

search engine for Web services which employs the methods presented in this research,

including approximation methods based on semantic and functional similarity. The re-

sults of the search engine are transferred into another system, called Liquid-Interface,

which automatically creates a prototype of the composition (see Figure 5.13). Together,

the two systems allow the user to approximate search for Web services on the Web, and

7



Figure 1.2: The service prototype

to immediately use a prototype that simulates the composition functionality.

The rest of the thesis is structured as follows:

• Chapter 2 covers the background of the work, including Web services, semantic

Web services, ontologies, and current approaches for service retrieval.

• Chapter 3 provides a definition of similarity measures for Web services and de-

scribes their experimental evaluation.

• Chapter 4 studies how the similarity measures defined in the previous chapter can

be used in a service retrieval framework. The chapter contains a description of the

syntax and semantics of a query language for service retrieval and it describes a

method for building service repositories for approximate service retrieval.

• Approximate retrieval leads to significant complexity challenges. Chapter 5 inves-

tigates efficient methods for indexing and query evaluation.

• The research is concluded in Chapter 6, which includes a summary of the results

and a review of future directions and open problems.

• Appendixes 7.1 - 7.2 describe the Object-Process Methodology (OPM) and a method

for aligning ontologes.

8



Chapter 2

Background

In this chapter we describe the basic framework of our study and review existing re-

search. We present the notion of service representation and matching, and introduce the

mathematical model behind service retrieval. Following this introduction we classify and

present existing methods for service retrieval according to several properties.

2.1 Service Representation

We distinguish between two main types of service representation: syntactic representa-

tion and semantic representation. Formally, the definition depends on the type of service

meta-data description. In syntactic descriptions, service properties are described using a

flat set of text labels {l1, l2, . . . , ln}, where each label is a textual token. In semantic de-

scriptions, properties are mapped to a complex data structures, which operate within the

context of the Semantic Web. As these data structures are formal, and more importantly,

commonly shared by stakeholders, semantic representation enables common semantics to

emerge. For example, if two business parties commonly agree on a single ontology for

describing their product information, they can communicate with each other with confi-

dence, using the common vocabulary. We describe the two types of service representation

in the following subsections.

2.1.1 Syntactic Service Representation

In syntactic service representation, the relations between service properties are defined,

while their meaning is left unspecified. Several XML-based standards [18] ensure the

regulation of the discovery and communication between Web services. A WSDL (Web

Services Description Language) [25] document describes the interface and communica-

9



<wsdl:definitions targetNamespace="http://math.example.com" name=”MathFunctionsDef”> 

<wsdl:message name="addIntResponse"> 

 <wsdl:part name="addIntReturn" type="xsd:int" />  

</wsdl:message> 

<wsdl:message name="addIntRequest"> 

 <wsdl:part name="a" type="xsd:int" />  

 <wsdl:part name="b" type="xsd:int" />  

</wsdl:message> 

<wsdl:portType name="AddFunction"> 

 <wsdl:operation name="addInt" parameterOrder="a b"> 

  <wsdl:input message="impl:addIntRequest" name="addIntRequest" />  

  <wsdl:output message="impl:addIntResponse" name="addIntResponse" />  

 </wsdl:operation> 

</wsdl:portType> 

<service name=”MathFunctions”/> 

</wsdl:definitions> 

Figure 2.1: An example of a WSDL document

tion protocol of Web services. An example of a WSDL document is presented in Figure

2.1. A WSDL port-type describes the interfaces (legal operations) exposed by a Web ser-

vice. Each port-type is described as a set of operations (e.g., AddInt). Each operation

exhibits a set of typed input and output parameters, such as addIntRequest and addIntRe-

sponse. All types are defined in the XML Schema standard [16]. A type can be primitive

(e.g., integer - xsd:integer) or complex (described by a complex XML schema structure).

It is important to emphasize that WSDL describe only the “flat” interface of the oper-

ation (what the operation receives and sends), and not the logic behind the operation’s

functionality (its pre-conditions and post-conditions, for example). The UDDI (Universal

Description, Discovery, and Integration) protocol [9] extends the descriptions provided by

WSDL, enabling Web services to be published and discovered through keyword search.

Substantial work, both academic and industrial, has been carried out to leverage Web

services for enterprise computing. One of the main efforts is Service Oriented Architec-

ture (SOA), which relates the different functional units of applications using Web-services

as components which are combined by an orchestration model. SOA enables applications

to be dynamically altered and updated according to business needs. The heart of SOA is

the language in which the orchestration model is described. Currently, the most prominent

SOA language is the Business Process Execution Language for Web Services (BPEL4WS)

[76]. This language is an initiative by IBM, BEA, Microsoft and other companies, and

is supported by several products, including IBM WebSphere Business Integration Server

[27] and Oracle Process Server [28].

SOA is a significant step towards flexible computing, but due to lack of automation

10



it realizes only some of the potential of Web services. Since services are linked to busi-

ness processes manually, SOA standards aim to solve mainly communication management

problems. For instance, SOA products require XML schemas to be manually mapped to

each other. The knowledge represented by these schemas remains isolated and cannot

be automatically inferred or shared. Thus, SOA does not address more inherent prob-

lems such as the inflexible nature of applications. This drawback is primarily due to lack

of semantic definition of Web services and applications. Web services provide syntactic

information (such as message types), but they do not expose their actual function and

meaning. This makes automatic integration and discovery of Web services a difficult task.

2.1.2 The Semantic Web

Semantic Web services aspire to augment the Web service architecture with additional

components that would enable automatic discovery, integration and interoperation of Web

services. The corner stone of this semantic Web services are semantic descriptions that

allow formal and common description of Web service properties. In this section, we

describe the current approach towards semantic Web services, which uses the Semantic

Web as a framework for establishing semantic Web services.

Ontology is commonly defined as a “specification of a conceptualization” [41].

While the term is borrowed from philosophy, has a narrower definition in the field of

Computer Science and AI, representing shared knowledge, described in a formal manner

[42]. Ontology enables concepts to be shared among developers and systems, providing

for a common vocabulary with defined semantics. The Semantic Web [12] is a recent de-

velopment that implements the notion of ontologies on the scale of the World Wide Web.

The Semantic Web aims to extend the World-Wide-Web by representing data on the Web

in a meaningful, formal and machine-interpretable form.

XML

RDF

RDF/SOWL

Query Rules

Unicode URI

Figure 2.2: Layers of the Semantic Web
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The actual implementation of the Semantic Web is a set of languages for formalizing

knowledge, sharing common concepts and organizing information. Figure 2.2 depicts the

Semantic Web stack: the set of languages that forms the Semantic Web. The visualization

of the stack is borrowed from Tim Barners-Lee’s illustration [10], but includes only the

portion which is relevant to this research. The two bottom layers of the stack form the

foundation of the Semantic Web, are part of the current World-Wide-Web, and are not

unique for the Semantic Web. The lowest level of the stack includes technical standards.

Unicode [78] is a standard for encoding multilingual characters. The URI (Unified Re-

source Identifier) [11] standard provides a framework for uniquely identifying resources

(URLs, which are used to locate Web addresses, are the most common instance of URIs.)

XML (Extensible Markup Language) [18] is a standard language for describing the struc-

ture of data, and is used as the foundation of Semantic Web languages syntax and type

system.

RDF (Resource Description Framework) [54] defines a notation for the representation

of information, based on a graph structure, where nodes are resources and edges are re-

lations between them. OWL (Web Ontology Language) [6] and RDF/S (RDF Schema)

[19] augment the RDF vocabulary with methods to describe domain knowledge using on-

tologies. For instance, OWL and RDF/S can be used in order to describe the healthcare

domain, as depicted in Figure 2.3. Designed as an ontology definition language, OWL

allows greater expressiveness than RDF, mainly with respect to constraint definition and

support for reasoning. OWL’s utilization of RDF is also expressed in the ability to dis-

tribute sub-ontologies and manage them over the Web.

OWL comes in three versions, which differ in their expressiveness: OWL Lite, OWL-

DL (Description Logic) and OWL-Full. OWL Lite and OWL DL are basically very ex-

pressive description logics with an RDF syntax. They are based on considerable existing

body of knowledge driven by description logic research, in particular the decidability and

complexity of key inference problems. OWL-Full contains additional constructs, which

result in no guarantee of reasoning computability. For this reason, we disregard the con-

structs of OWL-Full and refer to OWL-Lite and OWL-DL by the term “OWL”.

OWL and RDF/S are used as the basis of the top layer of the Semantic Web stack

(Figure 2.2), which consists of query and rule languages. This layer is responsible for

discovering, inferring, and analyzing semantic information. The standard query language

for the Semantic Web is SPARQL [59], which is used to query RDF graph-based data

structures using a language similar (in some sense) to SQL. One outcome of this research,

languages for querying semantic services, can be considered part of this layer.

As OWL constructs are used extensively in our research, we define a subset of OWL
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which we will use throughout the research1. We use a model of semantic which has close

resemblance to ontology models in the field of description logics, for example in Baader

et al. [3] and in Horrocks and Patel-Schneider [44]. However, we eliminated several fea-

tures of OWL which are not used in service description [75], including value restrictions,

concept intersection and concept union. This allowed us to simplify the definition of the

ontology semantics. The definition requires a notion of datatypes, such as integer, float,

string etc. In OWL, datatypes are taken from XML-Schema [16], and are denoted as D.

Definition 1: Ontology. An Ontology O is a tuple: O = 〈C, I, R, P, F,A〉, where:

• C is a set of concept classes.

• I is a set of individuals (also referred to as instances).

• R : C × C is a set of relations between concept classes.

• P : C × label → D describes datatype properties by mapping concept classes to

datatypes (e.g., integer, string), where a text label defines each property.

• F : I → C defines the set of facts derived from the ontology as a mapping function

between instances and concept classes.

• A is a set of axioms defined on concept classes, relations and properties. The ax-

ioms are defined below.

The semantics of an OWL ontology is specified as the assignment of the facts function

(F ) with relations to the axioms that the ontology includes (A). Given an individual

i ∈ I and a class C ∈ C, we denote by i ∈ CI the notion that i is an instance of C in

an interpretation set I. According to the ontology definition, it implies that there exist

a mapping F (i) = C. Similarly, we define an interpretation set for relations RI and

datatype properties P I .

This simple definition of the relations between instances and concept classes allows

us to define the axioms. These axioms form the structure of the ontology. Axioms in

this context are specific to each individual ontology. For example, an axiom asserting

that Hospital is a subclass of Organization results in the condition that the interpretation

set of Hospital (all the instances which belong to HospitalI) must be a subset of the

interpretation set of Organization. Therefore, if Mount Carmel Hospital is an instance of

Hospital, it is also an instance of Organization. If the concept Hospital has some relation

to another concept (e.g., Ward), then the relation between the individual Mount Carmel
1For a formal definition of the syntax and semantics of OWL, the kind reader is referred to [6].
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Hospital and some individual of Ward holds. An ontology O is considered valid if it

follows the ontology axioms, which are derived from a set of constructs that are used in

order to express semantic relations between ontology entities.

Construct Name Syntax Semantics
A concept class C CI

An instance i of C i : C i ∈ CI
Concept subclass C1 v C2 CI1 ⊆ CI2
Class Negation ¬C1 OI \ CI1
Equivalent class C1 ≡ C2 CI1 = CI2
Datatype property C.p(l) {∀i ∈ CI | i.p(l) ∈ P I}
Object property (relation) C1 → C2 {∀i1 ∈ CI1 , i2 ∈ CI2 | (i1, i2) ∈ RI}
At least restriction C1 →(>n) C2 {∀i ∈ CI1 | ∃ik ∈ CI2 , #{(i, ik) ∈ RI} > n}
At most restriction C1 →(6m) C2 {∀i ∈ CI1 | ∃ik ∈ CI2 , #{(i, ik) ∈ RI} 6 m}

Table 2.1: Abbreviated syntax and semantics of OWL

Table 2.1 defines the semantics of ontology constructs according to the effect their

axioms have on the interpretation of an ontology. We define by OI the set of all possi-

ble interpretations of the ontology (all possible concept instance assignments). The first

column states the name of the constructor. The second column provides the syntax of the

mathematical notation of the construct. We would use this mathematical notation through-

out the research. The third column defines the semantics of the construct by describing

the interpretation set which is the result of applying the construct. The notation #{. . .}
denotes the number of elements of a set.

In order to exemplify the different ontology constructs, we use a graphical representa-

tion of the ontology structure. Figure 2.3 depicts an example of an ontology for the health-

care domain. The graphical visualization is based on OPM (Object-Process Methodology)

[32], which includes a graphical language for system specification. OPM is described in

Appendix 7.1. The relations between OPM and OWL were described in [33]. The leg-

end of the diagram includes the visual method to describe constructs: subclass, instance,

datatype property and object property (relations). The different elements of the diagram

are as follows:

• Concept classes (e.g., Hospital, Patient).

• Instances (e.g., Mount Carmel Hospital, Mount Sinai Hospital). In the mathemati-

cal notation, the same expression would be written as:

MountCarmelHospital : Hospital.
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Figure 2.3: An example of healthcare domain ontology

• Datatype properties, which define labeled value frames for concepts (e.g., patient

has an health insurance number). Datatype properties are atomic, i.e., they do not

refer to any additional elements.

• Object properties, which define relations between classes (e.g., patient takes drug).

• Subclass relations, which define generalization relations between concept classes

(e.g., Hospital is a Medical Center and Patient is a Person). In the mathematical

notation, the same expression would be written as Hospital vMedical Center.

• Instance relations, which define the interpretation sets derived from the ontology

(e.g., Mount Carmel Hospital is classified to the concept class hospital). The di-

agram does not notate the indirect interpretations which can be inferred from the

ontology (e.g., Mount Sinai Hospital is an Organization).
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• Cardinality participation constraints, which define the number restriction (al least

and at most). The constraints are represented as small tags near the end of the

object properties. They follow OPM’s convention which is described in Table 7.1

in Appendix 7.1. For example, the label 2..m is interpreted as a relation which

connects at least 2 instances, with no upper boundary. The label + is interpreted

as a relation which connects at least 1 instance with no upper boundary. If no tag

is presented, then the default cardinality takes place, in which the instance must be

related to a single instance.

2.1.3 Semantic Service Representation

Find Nearest 
Emergency Center

Medical Center
output

Check Hospital 
Availability

Hospital
input

Service Operations Ontology

Figure 2.4: An example of Semantic Web Services

Semantic Web services are Web services that are formally described using ontologies.

Semantic Web services annotation languages enable service properties to be formalized

by mapping properties to ontology concepts, as depicted in Figure 2.4. Several seman-

tic annotation languages for Web services exist. These include OWL-S (OWL-Services)

[2], WSML (Web Service Modeling Language) [29] and WSDL-S/SAWSDL [1]. The

languages vary in their expressibility, modus operandi and approach. While OWL-S and

WSML provide a thorough process definition (similar to that of BPEL4WS), WSDL-S is

more lightweight and only adds semantic operation mapping to WSDL.

In this work, we refer mainly to OWL-S because of its wide acceptance in the re-

search community and its tight integration with OWL and the Semantic Web. An OWL-S

ontology includes three sections:

1. The Service Profile, which describes the properties of a service that are viewable
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externally, including categories, input/output interfaces, expected users etc.

2. The Process Model, which defines the control flow of the service by representing the

active components of the service as processes. The process model define for each

process its inputs, outputs, effects and preconditions. It also specifies the execution

flow of the processes. There are three types of processes: atomic processes, which

are executed in a single call, and composite processes, which comprise other pro-

cesses. A composite process is executed according to a control construct type, such

as parallel execution, sequential execution, or conditional execution. Each process

has its own property specification, similarly to the service profile specification.

3. The Service Grounding, which links the process model to communication-level pro-

tocols. Specifically, it links atomic processes to WSDL-defined operations.

2.2 Approaches to Service Retrieval

Service 1

Service Repository

OP1

OP2

OP3

OP4

OP1 OP4

OP1

OP2

OP3

OP4

Input Output

OP4OP3 OP5

OP1 OP2 OP4

OP9OP6 OP8OP7

Service 2

Service 3

Figure 2.5: The service retrieval model

Service retrieval is the process of matching a query to a set of existing services. It

incorporates two stages: service discovery and service composition. Service discovery is

the process of selecting appropriate Web services based on their match to a given query

(sometimes referred to as “matchmaking”). Service composition is an addition to service

discovery, in which the result might contain operations from different services. As a

major subset of existing research approaches cover only one of the stages, we present a

single model of service retrieval, which incorporates both service discovery and service

composition. In our model, which is depicted in Figure 2.5, a query is evaluated against a
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repository of Web services, and returns a result set as an output. The two stages of service

retrieval can be categorized according to the expressibility of their queries, the type of the

repository and the type of the result set, as well as their algorithms, performance, etc.

2.2.1 Classification of Approaches

Having defined the notion of service retrieval, we can characterize retrieval approaches

and investigate how they differ from each other. Table 2.2 identifies several categories

of service retrieval, which are based on two dimensions: matching process and matching

resulution:

• Matching process: We distinguish between semantic-based and syntactic-based

matching of services. In the latter case, the matching process is based on matching

the textual properties of the service representation with the query. The semantic-

based matching can be further divided into three categories:

– Logic inference retrieval.

– non-logic retrieval.

– hybrid retrieval, which combines logic and non-logic retrieval.

• Matching resolution: The granularity of the service descriptions may be:

– Black-box: The matching process considers solely the interface of services. In

this case, queries and results are often simple, containing graphs with a single

operation.

– White-box: The inner structure of each service in the service repository is

considered. In this case, queries and results are often complex, and are defined

as graphs with several operations.

– Composition: The retrieval process might mix operations from different ser-

vices, resulting in the creation of a new artifact.

The rest of this section discusses the different categories of service retrieval. Note that

due to the enormous amount of papers and tools, this review only includes representative

members of the categories. An extensive review is provided in [49].

2.2.2 Semantic Approaches

In this section we review semantic approaches to service retrieval. In this family of re-

trieval methods, the input and the repository of the process are semantically annotated

using languages described in Section such 2.1.3 as OWL-S.
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Semantic SyntacticLogic Non-Logic Hybrid

Black-box
OWLS-UDDI [58] Klein [48] LARKS [67] UDDI [9]
Inter-OWL-S [66] HotBlu [26] OWLS-MX [50] Woogle [31]
MAMAS [57] Hau et al. [43] RDQL [14]

White-box
Mediator [74] RE-Search [65]
Bansal and Vidal [5] BP-QL [7]

Matrix-match [4]

Composition
SHOP2 [77] DIANE [52]
OWLS-XPlan [51]
State-Comp [71]

Table 2.2: Categories of service retrieval

Logic-based Approaches

Logic-based Approaches are based on reasoning over the ontological descriptions of Web

services. Matchmakers, such as OWLS-UDDI [58] by Paolucci et al. and Inter-OWL-S

[66] by Sirin et al., perform matching according to OWL-S profile properties. The OWL-

S profile ontology describes the capabilities of services according to their input, output,

effect and precondition properties in a black-box mode, where the inner procedure of the

services is not taken into account.
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C1
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Figure 2.6: Categories of logic matching degrees

Logic-based methods classify matching degrees into four categories: exact, plugin,

subsumes and disjoint. These categories were originally defined by Zaremski and Wing

in 1996 [79]. As these categories are used as general means for comparison, we define

them accurately. Let CQ = {C1, C2, . . . , Cn} be the set of concepts related to a given

query and CR = {C1, C2, . . . , Cm} a set of concepts related to a given result. Figure

2.6 describes the four degrees graphically, in the simplified case where there is a single

concept for either the query and the result. In each of the example, CR is more specific

concept than CQ (for example, CQ is a person and CR is a patient).
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Exact Exact matching is defined as perfect identification of the query properties (e.g.,

input) with the result properties, such that CQ ≡ CR.

Plugin The concepts of the result are fully contained in the concepts of the query, such

that CR v CQ. In other words, at least one concept in the query has a concept in

the result which is more specific. For example, the user looked for a service that

finds the name of a person and received a service that returns the name of a patient.

As all patients are persons, the result does not contradict the axioms of the query.

Subsumes The concepts of the query are fully contained in the concepts of the result,

such that CR w CQ. In this case some of the results may not fully answer the query

in the sense of set-theory. For example, the user looked for a service that finds a

name of a patient in a given hospital, and received as a result a service that returns

the names of all the persons in the hospital.

Disjoint None of the concepts of the result can be related to any concept of the query,

such that CR u CQ = ∅, implying that the result is not applicable to the query.

Logic-based white-box retrieval, in which the process model is exploited as a mean

for retrieval, is relatively new. One example is Mediator [74], where OWL-S service

process models are mapped into equivalent logical statements that are then evaluated by

a model checker. Another example is given by Bansal and Vidal [5] who developed a

matchmaker that follows the process model of OWL-S [2], matching control constructs as

well as operations. The two methods suffer from a common drawback, which is limited

recall, i.e., they are prone to return results with low recall. As the final result depends on

the success of all the matchings, the chances for a successful retrieval with low-recall is

even lower.

Non-logic Methods

Non-logic based matching use a variety of methods, including text similarity, structured

graph matching, or numeric concept distance computations over ontologies. They differ

from syntactic methods, as they still use the ontology as a resource for matching.

A matchmaker by Klein and Bernstein [48] combines signature matching (by match-

ing input/output parameters) and specification matching (by matching precondition/effect

parameters). Each signature and specification of both the query and the repository services

are transformed to a single graph-based structure, which is used for the matching process.

Constantinescu and Faltings [26] use a numeric method in order to encode service prop-
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erties. Their primary motivation was to use the numeric representation for efficient type

matching through a numeric distance function.

The research of non-logic methods is rather preliminary, but it has yielded some in-

teresting results. Constantinescu and Faltings use a numeric distance measure in order to

provide an efficient inference process without losing the semantics of the logic-inference

process [26]. Numeric and graph-based methods can provide higher expressibility and

approximation than logic inference. For example, Hau et al. [43] define similarity met-

ric between services according to the inferencibility of each OWL service description

construct. Their method provides a softer measure for similarity while keeping a formal

and explainable similarity framework. The set of relaxations is based purely on concept

hierarchies.

Hybrid Approaches

Hybrid matchmakers combine logic-based methods with other matching methods, espe-

cially from the information retrieval (IR) field. LARKS [67] by Sycara et al. introduces

similarity matching and type signature matching along with logic-based matching of con-

cept classes. Type matching by examining the XML Schema types [16] provides another

measure in addition to concept class matching.

Klusch et al. experimentally evaluated the contribution of hybrid matchmakers in

OWLS-MX [50]. They compare pure logic matching, syntactic information retrieval,

and hybrid methods that combine the two. Their findings show that hybrid approaches

outperform both logic-based approaches and pure IR methods. Another hybrid match-

maker is RDQL by Bernstein and Kiefer [14], which is based on extending SPARQL with

imprecise query constructs. The extension includes syntactic similarity metrics, such as

token-based comparison, TF/IDF and the Levenshtein metric [15]. User-defined threshold

specifies the extent of relaxation.

Hybrid approaches have two drawbacks, the most serious one being their explainabil-

ity. As they use methods taken from text and string analysis (such as TF/IDF), they lack

the ability to explain why one service was preferred over another service in the matching

process. Explainability is an attractive feature of logic based methods, as inference can

be used to prove (or disprove) to the user that a selection is valid. This feature enables the

user of applications such as automated service composition that require high confidence,

which can be provided by of logical support to the composition. Therefore, This type of

application cannot be based on hybrid methods. Furthermore, as the hybrid approach use

a multitude of matching methods, finding the root basis for a matching decision is often

difficult.
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2.2.3 Syntactic Approaches

In syntactic matching, the operations are described using a simple set of labels l1, l2, . . . , ln,

rather than a structured ontology. In an abstract manner, UDDI [9], the industry standard

for locating Web services through keyword and category search, is based on this model.

The main drawback of UDDI and with other keyword-based approaches is lack of suffi-

cient information for describing Web services. Web service interfaces are defined using

WSDL descriptions, which contain limited information regarding Web service operations.

Therefore, keyword search solutions fail in providing satisfactory recall for Web service

search [2, 66]. Woogle [31] aims at confronting this problem by using text clustering

techniques. Text-based methods can be easily deployed on large cortexts of services, but

they fail when exact matching is required. For example, when querying a Web services

search engine, such as Woogle, using the term “book”, results belonging to two different

domains will be retrieved: the publication domain, where the word book defines a printed

text, and the travel domain, where the word book is used in the context of booking a flight.

While syntactic methods fall short in black-box discovery, they demonstate interesting

results in white-box discovery, which focuses on the analysis of process models. BP-QL

[7, 8] is a query language for BPEL4WS [76] process definitions. It uses a graph-based

visual query language that represents a BPEL script and searches for a subgraph iso-

morphism in a repository of BPEL scripts. While BP-QL supports an expressive query

language, it ignores semantic attributes of services. Shen et al. [65] encode semantic Web

services and queries as regular expressions, defining matching as the intersection between

them. Indexing methods for regular expressions were introduced to enhance behavioral

matching performance. Bae et al. [4] suggest a similar matching strategy, where pro-

cesses are represented as matrices. These methods differ from our approach in two main

aspects. First, they evaluate a query against each service independently. The result is that

potential compositions that might be created from operations in different services are not

considered. Second, these methods provide limited support for approximate matching and

do not rank results according to their semantic and compositional certainty.

2.2.4 Service Composition

In Web service composition, several operations from possible different services are bun-

dled together to form a new service. Service composition raises additional challenges on

top of the challenges posed by service discovery, which is evising an execution plan which

satisfies the given query. Most composition planners are based on the classical state-based

AI planning paradigm, in which queries and operations describe their effect on the world
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state and their preconditions. In OWL-S and WSML (but not in WSDL-S/SAWSDL),

these elements can be specified using the effects/precondition elements within the profile

or process models. Semantic Web services are translated into state transition machines,

and the composition problem is defined as a planning problem over the available services,

with the required composition defined as the planning goal. OWL-S based planners in-

clude SHOP2 [77], GOLOG-SCP [56], State-Comp [71], and OWLS-XPlan [51].

One limitation of service composition is mutual semantic correspondence: the sepa-

ration between service discovery and composition. In service composition the semantic

properties of operations must correspond to each other, as well as to the query. How-

ever, most composition planners effectively use very simple semantic annotation and tend

to ignore this problem. A counter example to this rule is the DIANE [52] matchmaker,

which combines operation interface matching with composition planning. DIANE uses

logic-based methods, in particularly the plug-in/subsumes matching strategy for operation

matching. Therefore, the approach exhibits low recall, which limits the amount of feasible

compositions.
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Chapter 3

Approximate Service Similarity

The motivation of this chapter is to propose a schema for ontology-based approximate

retrieval including discovery and composition of Web services. The basic concepts of re-

trieval are services, which are the data entities to be searched, operations, which are the

basic elements for composition, and compositions, which are the results of the retrieval

process. We formally define these concepts in Section 3.1. In Section 3.2 we address the

challenge of approximate service retrieval by defining approximation in service retrieval,

unifying two different concepts of composition variability: semantic and functional. In

order to achieve this goal we propose virtual operations as a general model for measuring

the affinity between two compositions. The model estimates the number of operations

required to bridge the gap between the compositions. The types of feasible virtual opera-

tions define the different aspects of similarities between compositions. We express them

using a small set of affinity patterns, which formally define each construction types and

assign to them a given certainty.

The affinity patterns are evaluated for relevance and correctness for human subjects.

Section 3.3 describes the experiment we carried out to evaluate the affinity patterns. Our

main finding is that the notion of similarity used by logic-based service discovery ap-

proaches (descibed in Section 2.2.2) is not compatible with the perception of human sub-

jects. Rather, they employ a much broader concept of similarity, which includes elements

such as relations between services and similarities between instance sets. Furthermore,

human subjects evaluate similarities in a softer form than prior approaches have predicted.
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3.1 Definitions

3.1.1 Services and Operations

The basic components of service retrieval are operations and services. We formally define

an operation as follows:

Definition 2: Operation (OP ). An operation is a tupleOP ≡ 〈Props, label〉, such that

• Props is a set of properties, p1, p2, . . . , pn. Each property is taken from a single

type domain: pi ∈ Input |Output |Effect |Provider |Def | . . .

• label : Props → O is a labeling relation that associates a property from the set

Props with a concept taken from an ontology O (as defined in Section 2.1.2).

There might be several concepts for each property.

Operations are basically a mapping between the set of properties and an ontology,

(denoted by O), to which operation parameters refer. We define an operation as a spec-

ification of an atomic function, performing an atomic task, which is not further divided.

Operations are defined using an unbounded set of properties, specifying meta-data about

the functionality of the operation. The operation model allows an unbounded number of

properties, including inputs, outputs, effects, and definitions. Other types of properties

can be assigned, reflecting organizational concerns (e.g., department, provider) or quali-

tative concerns (e.g., price, quality of service). Our definition of an operation is similar

to the definition of an atomic process in OWL-S (see Section 2.1.3), and is based on the

syntactic definition of a WSDL operation (see Section 2.1.1).

In the same manner as in WSDL, a service is defined as a set of operations. The

specification of services does not convey any information about the execution order of

the operations. We ignore the notion of port-type, which reflects communication protocol

aspects, which go beyond the scope of this research. We assume that each service is

provided by a single provider. We define a service as follows:

Definition 3: Service. A service, S, is a set of operations:

S = {OP1, OP2, . . . , OPn}, provided by a single provider.

3.1.2 Compositions

A central concept in this work is composition, which is used as the basic model behind

both queries and results. It is defined as a directed graph, where vertices represent oper-
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ations and edges represent data flows. The composition captures information about how

data flows from one operation to another.

Definition 4: Composition (Com). A composition is a directe and connected graph

Com ≡ 〈OP, F lows〉, where:

• OP = {OP1, OP2, . . . , OPn} is a set of operations.

• Flows ⊆ OP ×OP is a set of directed data flows between operations.

A data flow represents a (possibly empty) set of data items which are passed from one

operation to another. In order for an operation to operate, all the operations which are

connected to it must be executed beforehand. Note that this definition has some common

ground with another widespread type of process definition, which is the hierarchical ex-

ecution ordering of operations. We chose to define compositions according to their data

flow dependencies for three reasons:

1. Dependencies are more general than execution order (data dependency induces ex-

ecution order dependency, but not vice versa).

2. Dependencies are the widespread approach in service composition research (see

[4, 65]).

3. Dependencies are more suitable to our method of static service dependency analy-

sis.

3.2 Service Similarity Patterns

We begin by defining service affinity, which describes the resemblance between two com-

positions. We wish to define a general metric, which will cover the two aspects that

differentiate between two compositions:

• Semantic affinity: How the operations match each other with respect to their se-

mantic properties.

• Functional affinity: How the structure of the composition, which defines its oper-

ational procedure, match each other.

In Section 3.2.1 we present the notion of virtual operations, the mechanism for defining

the affinity schema. We then define a distance metric that quantifies the semantic and

functional affinities. In Sections 3.2.3 and 3.2.4 we respectively present semantic and
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functional affinity patterns. These patterns form our hypothesis for approximate retrieval.

The hypothesis is evaluated in Section 3.3.

3.2.1 Adjustment-Based Affinity

Find 
Nearest 
Hospital

Address

input

Hospital

output

Find 
Nearest 
Hospital'

Longitude/Latiutude

input

Hospital

output

Address

Longitude/Latiutude

is located in

City

Street

Number

Zip

Operation a Operation b Ontology

Figure 3.1: An example for affinity between operations

In this section we define a general model for analyzing and measuring the affinity

between any two compositions. Consider the following example, which presents two

operations that can potentially answer the query presented in Example 1 (“Find a set of

services that accept an address and return the directions to the closest hospital”.).

Example 2: Similar Operations. Two operations, a and b, differ only in their input

parameter:

Operation a The operation Find Nearest Hospital receives an address as an input and

returns a Hospital an an output.

Operation b The operation Find Nearest Hospital’ receives a Longitude/Latitude object

as an input and returns a Hospital an an output.

The two operations can be used in order to implement a partial set of requirements set

in Example 1. Figure 3.1 depicts the two operations, as well as the (partial) ontology that

the input concepts of the two operations are mapped to. Clearly, operation a is more suit-

able for answering the requirements, as the concept Address is common to both the query

and the operation. However, what if the service repository contains only operation b? In
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that case, a service retrieval framework should return operation b. A human engineer can

adjust operation b to her needs. Note that in the ontology presented in Figure 3.2, the two

input parameters, Address and Longitude/Latitude, are related through an object property

relation. According to the current service retrieval approaches, the two concepts do not

exhibit any similarity, as they are not related through a generalization hierarchy. How-

ever, when observing the question of similarity in the context of engineering, it is clear

that a human engineer could find both operations useful. We are interested in describing

a model that would predict if a given composition can be interchangeable with another

composition, and if so, to what extent.

Find 
Nearest 
Hospital

Address

input

Hospital

output

Find 
Nearest 
Hospital'

Longitude/Latiutude

input

Hospital

output

Operation a Operation b

Find 
Nearest 
Hospital

Address
input

Hospital

output

Simulated Composition

VOP

Longitude/Latiutude

output

input

Figure 3.2: Operation a is simulated using operation b

Our model is based on the notion of simulating compositions. Given two composi-

tions1, Com1 and Com2, we say that Com1 simulates Com2 when Com1 is augmented

with a set of operations which imitate the functionality of Com2. The augmenting op-

erations are called virtual operations, as they reflect desired functionality, which can be

inferred, but does not necessarily exist. Figure 3.2 visualizes an example of a composi-

tion simulation. The simulated composition (in the middle) simulates operation a using

operation b. The virtual operation keeps the interface of operation a, while embedding

operation b with the addition of a virtual operation denoted by VOP, which stands for
1This definition holds for operations as well. Operations are considered a simple subset of compositions,

in which there is a single operation.
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virtual operation. It is also marked with a dotted line.

The measure of similarity depends on the extent to which a simulated composition

is useful. For example, the similarity between operation a and operation b is a measure

that depends on the difference between the simulated composition and the original com-

position. Each virtual operation construction may result in different type of uncertainty

regarding its reliability. The variations stem from the type of the construction and the

properties of each specific construction. In this section we present a model for evaluat-

ing the amount of approximation provided by augmenting an existing composition with

virtual operations.

The model quantifies the loss of information caused by using virtual operations. We

call this model the lazy programmer model. As its name hints, we imagine a programmer

whose task is to build a system using approximated matching and the ability to do some

manual coding. The programmer is given a system specification, represented by a query,

and a search engine result, which is intended to implement the requirements. The match

between the query and the result could be:

• Perfect, if the result answers the system specification perfectly, the programmer is

satisfied as implementing the system requires no effort at all.

• Partial, if the result does not fits the query perfectly, but can somehow be altered in

order to answer the query.

• Irrelevant, if the result cannot satisfy the requirements, no matter how many virtual

operations are added. In which case, the programmer would consider the result

unusable.

Let us formally define our concept of similarity. Given two compositions, Com1 and

Com2, we define similarity between them as a function on the number (and properties) of

the virtual operations which are required to simulate Com1 using Com2.

Definition 5: Simulated Composition. Given two compositions, Com1 and Com2, the

simulated composition Comv is defined of Com1 using Com2, a set of virtual operations

{V OP1, V OP2, . . . , V OPn} and data flows {F1, F2, . . . , Fn} between the virtual opera-

tions and to/from the original composition (Com2):

Comv = Com2 ∪ {V OP1, V OP2, . . . , V OPn} ∪ {F1, F2, . . . , Fn}
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Let us see how this definition is used. Given the operations in Example 2, we can set

Com1 to be operation a andCom2 to be operation b. The simulated composition in Figure

3.2 is an example for Comv. The set of virtual operations includes a single operation,

{V OP}. The set of flows is empty. This notion of simulated composition is fairly general,

and does not pause too many restriction on the way simulated compositions are built.

There is a set of possible simulated composition based on any two compositions, and not

a single one.

3.2.2 Virtual Operations

The possibility of constructing a virtual operation depends on inferencing it from the

ontology, or from other sources. Consider the ontology model in Figure 3.1. As there is a

1:1 relation between Address and Longitude/Latitude, it seems reasonable that a mapping

is possible, and an operation such as V OP can be constructed. In this section we define

a schema for evaluating the constructibility of virtual operations. We also analyze the

situations in which virtual operations can be constructed. The basic data structure of a

virtual operation is identical to the the definition of an operation (Definition 2). It is the

outcome of the construction process, described below. Virtual operations are created by

a constructor, a function that maps the two comparable compositions to a set of virtual

operations, as defined below.

Definition 6: Constructor. A constructor is a function:

Ψ : Com× Com→ Comv

Each constructor is parameterized by two properties:

• type : Ψ→ {Subclass,Relation, . . .} is a type function that assigns each construc-

tor a finite set of types, which are specified below.

• µ : Ψ→ [0, 1] represents the certainty of the construction.

The definition of the constructor frames its context: it creates a set of virtual op-

erations and flows, given two existing compositions. Note that these compositions can

include a single operation, as well as a fully fledged composition. The function µ repre-

sents the certainty of constructing the virtual operation on the loss of information in the

construction process. If the construction yields virtual operation with good preservation,

then the certainty would be high.

We define a set of axioms regarding constructors:
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Definition 7: Constructor Axioms. Given a constructor Ψ, the following holds:

1. The identity construction: Ψ(Com,Com) = ∅. Executing the construction on

two identical compositions would result in an empty construction, which returns an

empty set of operations and flows.

2. Commutativity: Ψ(Com1, Com2) = Ψ(Com2, Com1). The constructor function

is insensitive to the order of the construction.

We have segmented the possible constructors of virtual operations to a small number

of cases, which reflect possible inference over the ontology and the structure of the com-

position. In the following sub-sections, we define constructor types, each of them specify

a pattern for a given relationship between operations. The constructors are grouped in two

groups, according to the aspect they rely upon:

1. Semantic constructors, which are based on semantic properties.

2. Functional constructors, which are based on the structure of the composition graph.

3.2.3 Semantic Affinity Patterns

In this section we define a family of semantic affinity patterns. These patterns define

similarity measures of the conceptual basis of the operations. For the sake of simplicity we

say that these patterns are defined on compositions that include a single operation. Each

of the patterns represent a specific relation between two concepts in a given ontology. We

assume that there is a single ontology, O, which is a unification of all known ontologies

in the service retrieval framework. The method for unifying the ontologies is described in

Appendix 7.2.

The main challenge in designing the pattern is to provide a single frame of reference

which is adaptable to all the relations existing in an ontology. These relations, which are

described in Section 2.1.2, are very different in nature. They include:

• Set relations (subclass),

• relations between concepts (known in OWL as object properties), and

• instance classification relations.

We have decided to base our pattern approach on relational similarity rather than at-

tribute similarity. An attribute is a characteristic of an entity, whereas a relation is a

connection between two or more entities. Formally, an attribute is a predicate with one
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argument and a relation is a predicate with two or more arguments. Relations are pow-

erful for representing information, because all attributes can be represented by relations,

but not vice versa [72]. For example, the age of a person may be seen as an attribute,

Age(Person), or as relations: OlderThan(Person1, P erson2) andHasAge(Person, 50).

Using the general quality of relations, we assign an abstract relation between two

concepts as the building block of the semantic affinity patterns. We denote the relation by

R(C1, C2), of the type R : O → O. We assign a cardinality pair for each relation as a

pair of real numbers: n : R → N⊥ × N>. The cardinality pair defines the bottom and

top boundaries for relations between the instances of the concepts. For example, given a

relation R(C1, C2), if an instance of C1 can be related to either 1, 2, or 3 instances of C2,

then we would define n(R(C1, C2)) = (1, 3). The cardinality pairs are used in order to

define the certainty value of each pattern construction. A cardinality pair must preserve

the following properties:

• N ∈ [0,∞] - The cardinality boundaries range from 0 to infinity.

• N⊥ 6 N> - the bottom boundary cannot be larger than the top boundary.

• If n(R(C1, C2)) = (N⊥, N>) and N> = 0 then @R(C1, C2). A relation in which

the top boundary is equal to 0 is not valid.

We base the construction certainty on the cardinality pair, as an extension of a well-

known information based measure. Resnik [62] associates probability p with concepts in

an ontology subclass hierarchy to denote the likelihood of encountering an instance of a

concept C. If C1 v C2 then p(C1) < p(C2). The information content of a concept C

is then dened as function over the probability of its instance likelihood. Hau et al. [43]

extend this notion to semantic Web service similarity, by defining the information carried

by each concept as its set of properties, and by comparing the sets. In this work, we use

methods based on comparing relations, rather than on the properties. αi is the pattern

certainty coefficient, which distinguish between the certainty of different patterns, and is

bounded by 1, such that 0 6 αi 6 1. These differences were shown in our experimental

results (see Section 3.3.2). We define by gi the average gradient of the similarity curve of

a patterni, and define αi as: αi = 1− gi. We define the construction certainty, µ(Ψi), as

follows:

µ(Ψi) = αi
1

1 +N> −N⊥
The definition conforms to the schema of Resnik [62], as the probability of finding a re-

lated instance depends on the cardinality of the relation. For instance, if the cardinality of
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the relation is (0, 1), then finding the related instance is deterministic. However, assum-

ing uniform distribution, finding the related instance when the probability is (0, N) is 1
N .

As we cannot assume any type of distribution, we assume the worst case of the uniform

distribution. Therefore, when the top boundary is unbounded the certainty is 0:

lim
N→∞

µ(Ψi)→ 0

Set Hierarchy Pattern

The set hierarchy pattern defines how virtual operations can be constructed to define an

affinity between two operations, where the parameters concept sets are related by set

relation. As Figure 3.3 shows, an operation which has an input concept of Person can be

transformed to another operation with an input of the subclass concept concept Patient.

We define two concepts, Csup and Csub, where Csub is a subclass of Csup, such that

Csub v Csup. For example, in Figure 3.3, Csup can be the concept Person and Csub the

concept Patient. With no loss of generality, we define Csup to be the input concept of

the original composition. In order to simulate a composition that takes a concept of Csub
as input, the constructor creates a new virtual operation, denoted by V OP , which takes

a Csup as input and returns an output of Csub. The construction is based on removing

properties from the super-class. P (Ci) is the set of properties concept Ci exhibit (both

datatype properties and object proeprties). For the sake of simplicity, we define the con-

structor for a single input concept. However, the construction is identical for a set of

concepts.

Get ID

Person

input

Original Composition

input

Simulated Composition

VOP
Patient

Get ID

Person

input

Patient

Output

Figure 3.3: Constructing virtual operations according to the set hierarchy pattern
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Constructor 1: Set Hierarchy Pattern.

V OP.input = Csub

V OP.output = P (Csub \ Csup)

the constructor for the opposite case, where the original composition takes Csub as a

parameter, is identical because when the input is Csup then P (Csub \ Csup) = P (Csup).

R(C1, C2) is an abstract relation between two concepts C1 and C2, which are related

by a subclass relation. We define the cardinality pair of the relation as follows:

Bottom boundary: N⊥ = 0
Top boundary: N> = |P (C1)∪P (C2)|

|P (C1)∩P (C2)|

For example, consider the ontology described in Figure 2.3. Let us look at two concepts

related through a set of two subclass relations: Organization and Medical Center. The

property sets of the concepts are:

P (Organization) = {Address}
P (Medical Center) = {Patient,Physician,Address}

The top cardinality is calculated as the ration between the union and the intersection of

the property sets:

N> =
|{Patient,Physician,Address}|

|{Address}| = 3

Therefore, we can calculate the cardinality pair of the relation, as:

n(R(Organization,Medical Center)) = (0, 3)

The certainty of the construction is:

µ(Ψset) = αset · 1
1+3−0

= α · 1
4

Where αset is the pattern coefficient.

Relation Pattern

The relation pattern allows constructing virtual operations on the basis of OWL object

properties. We define two concepts, Cs and Cd, which are related through relation R,

such that R(Cs) = Cd. The virtual operation maps between the input concept and the
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Figure 3.4: Constructing virtual operations according to the relation pattern

related output concept.

Constructor 2: Relation Pattern.

V OP.input = Cs

V OP.output = {x : Cd |x ∈ R(Cs)}

The relation pattern is exemplified in figure 3.4, where Cs = (Patient), Cd = Drug

and R = takes. The virtual operation takes as input an instance of the type Patient and

returns an instance of the Drug concept. As most patients take more than a single drug,

the average cardinality of the relation is higher than 1. Therefore, the virtual operation

must return a set of instances, rather than a single one. The cardinality is calculates as the

basic number restrictions of the object property. For example, assuming that the average

cardinality of the relation is 3, the cardinality pair would be:

n(Patient,Drug) = (0, 3)

The certainty of the construction is:

µ(Ψrel) = αrel · 1
4

Instance Pattern

An instance pattern applies to situations in which the user specifies her query using a set of

instances, rather than a concept. For example, the user seeks a service that return reviews
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on hotels in New York, while the service-base only includes services that return review

for hotels in any city. As New York is an instance of City, rather than a concept, it requires

different handling than the set hierarchy pattern.

Let us define by I∗ some arbitrary set of instances. Let us define Ins(Ci) as the set

of all the instances which belong to the concept class Ci, such that:

Ins(Ci) = {t ∈ O | t : Ci}

The constructor is defined as follows:

Constructor 3: Instance Pattern.

V OP.input = I1, I2, . . . , In

V OP.output = {x : Ci | Ii ∈ Ins(Ci)}

We define an abstract relation between a concept class and a set of instances,R(Ci, I∗).

The cardinality is defined as follows:

Bottom boundary: N⊥ = 0
Top boundary: N> = |Ins(Ci)∪I∗|

|Ins(Ci)∩I∗|

The definition is based on the ratio between the intersection of the two instance sets and

its union. If the two sets are identical, i.e., every instance in the arbitrary instance set is

contained in the class instances, then the top boundary will be 1. In that case, the sets

would be considered equivalent. In the healthcare case (Figure 2.3), consider a situation

in which a user searches for a service which returns the current number of available beds

in Mount Carmel Hospital. We define the instance set to be:

I∗ = {Mount Carmel Hospital}

A similar concept class might be Hospital. Its instance set is:

Ins(Hospital) = {Mount Carmel Hospital,Mount Sinai Hospital}

The relation between Hospital and Mount Carmel Hospital yields the following top car-

dinality:

N> =
|{Mount Carmel Hospital,Mount Sinai Hospital}|

|{Mount Carmel Hospital}| = 2
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The certainty is defined as:

µ(Ψins) = αins · 1
3

3.2.4 Functional Affinity Patterns

Functional patterns reflect the functional similarity between compositions. They express

inexactness stemmed from the structure of the composition graph, rather than from the

semantic properties of the operations.We define the functional pattern as a framework for

calculating similarity between compositions. The patten describe a situation in which one

of the compositions has more, or less, operations than the other.

For example, in Figure 3.5, Operation b has one excessive operation, OP3, than Op-

eration a. The simulated composition is defined as the intersection of the operations,

containing all the shared operations of the compositions. In our example, the shared op-

erations are OP1 and OP2. If an operation that was removed was connecting two shared

operations, such as operation OP3 in the example, then a special virtual operation, called

the Empty Transition Virtual Operation, denoted as V OPε, connects the operations which

were removed. V OPε serves as a channel for transforming information between opera-

tions, without affecting their interface. We define the virtual operation, V OPε, using its

constructor, Ψε:

OP1

OP2

OP1

OP3

OP2

OP1

OP2

Operation (a) Operation (b)Simulated Composition

V OPε

Figure 3.5: Operation a is matched with operation b using by simulating b using a

Definition 8: Empty Transition Virtual Operation Constructor - Ψε.

Ψε(OPi, OPj) = {OPi ∪OPj ∪ V OP}
s.t. V OP.inputs = OPi.outputs ∧ V OP.outputs = OPj .outputs
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The certainty of the construction is the graph edit distance between the two original

compositions and the simulated composition. The graph edit distance is defined as the

number of node and edge deletions or insertions necessary to transform one graph into

another [23]. It is a simple measure for graph similarity, quite similar to edit distance on

strings. If the graphs are identical, the edit(Com1, Com2) = 0. If the graphs are foreign

(do not contain any common subgraph), then edit(Com1, Com2) = |Com1|+ |Com2|.
The certainty of V OMε virtual operation is set to 1, the maximal value, as we can-

not assume anything regarding the reliability of the construction. The common operation

certainty, µcommon, is calculated as the sum of the semantic certainties, over all the con-

structed virtual operations:

µcommon =
∑

Vj∈Com1∩Com2

µ(Ψi)

The calculation uses the common operations is divided by the power of the union

between the compositions. This way, identical compositions would receive the maximal

value of 1. We define the total certainty of the construction as follows:

µ(Com1, Com2) =
µcommon

|Com1 ∪ Com2|

3.2.5 Similarity Function Properties

In this section we define several properties of the similarity measurement. We define the

similarity function and prove that it is a distance metric. We then prove that the set of

affinity patterns is complete.

Similarity Metric

Virtual operations serve as a method for measuring the similarity between operations and

between compositions. In this section we formally define the similarity function and dis-

cuss its properties. The function is based on the construction certainty, which is embodied

in the certainty function: µ : Ψ → [0, 1] that represents the certainty of a given construc-

tion. Higher values indicate higher certainty and vice versa.

Definition 9: Similarity function. Let Com1 and Com2 be two compositions. Let us

define Ψ̂ = {Ψ1,Ψ2, . . . ,Ψm} as the set of all feasible constructions for the two com-

positions. We denote by Ψmax the constructor that maximizes the following constraint
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satisfaction equation:
max

Ψi

µ(Ψi)

s.t.

0 6 µ(Ψi) 6 1

The similarity function is defined as a function of the type: sim : Com×Com→ [0, 1]:

sim(Com1, Com2) = µ(Ψmax(Com1, Com2))

The function measures the resemblance between two compositions, reflecting the min-

imal amount of work necessary for adapting a composition to a query. Now, we prove that

this function is a distance metric. A distance metric (M,d), where d : M ×M → R,

satisfies four constrains: it is non-negative, it keeps the identity property, it is symmetric

and it satisfies the triangle inequality property.

Theorem 1: . The similarity function, defined in Definition 9 is a distance metric.

Proof. sim satisfies these properties as follows:

1. Non-negativity: As sim = µ(Ψmax), and µ(Ψmax) > 0 (according to Definition

9), then sim > 0.

2. Identity: Each constructor Ψ, including Ψmax, is a valid constructor and hence the

distance function preserves the identity property (see Definition 7).

3. Symmetry: Again, derived from the commutativity property in Definition 7.

4. Triangle inequality (sim(x, z) 6 sim(x, y) + sim(y, z)). Let us assume that there

exist three compositions, x, y and z, such that sim(x, z) > sim(x, y) + sim(y, z).

According to definition 9, Ψmax is the construction that yields the maximal cer-

tainty. We can construct Ψ′ = Ψmax(x, y)∪Ψmax(y, z), with µ(Ψ′) ≥ µ(Ψ(x, z)).

Because this construction is feasible, it would be chosen as the maximal certainty

construction, such that, Ψ′ = Ψmax(x, z), and sim(x, z) = µ(Ψ′). Therefore,

sim(x, z) ≯ sim(x, y) + sim(y, z)

We now define a normalized similarity function. The normalized similarity reflects

scale issues which cannot be expressed by affinity patterns. Unlike affinity patterns, which

are used to evaluate the similarity of any two compositions, the normalized similarity

function reflects results which are directly related to the context of querying a service

39



retrieval framework for services. The normalization is derived from two observations,

which are supported by our emperical findings:

• Impact ratio: The distance function depends on the relation between the size of the

compositions and the number of changes.

• Decay: The similarity decreases in a higher magnitude than the number of changes.

In our model.

For any pair of compositions, we define M to be the largest composition, such that M =
argmax(|Com1|, |Com2|).

Definition 10: Normalized Similarity.

simn(Com1, Com2) =
( |M |
|M ∪Ψmax|µ(Ψmax)

)d
The d is the decay factor, such that d > 1. As the expression within the brackets

is bounded by 1, a high decay factor would suggests a strong decrease in the similarity,

while a low decay factor would suggest a weaker decrease.

Completeness of Affinity Patterns

An important issue regarding affinity patterns are their completeness. Can they be used

to measure the similarity between any two possible compositions? In order to answer this

question we need to look at semantic and functional patterns. Proving that the functional

pattern is complete is simple: any two graphs can be compared by adding and removing

nodes and edges. Our proof regarding semantic affinity is more complex and is based on

comparing the abilities of affinity patterns with the definitions of our world. Our proposed

method for analyzing relations between concepts is based on the notion of context classes,

which form groups of concepts that allow the investigation of relations between them.

Theorem 2: . The set of semantic affinity patterns is complete.

Proof. For any given concept, Č, we define a set of context classes, each of which defines

a subset of concepts in O, according to their relation to the concept. Each concept in the

ontology is classified to one of the context classes. For example, all equivalent concepts

to concept Č would be classified to the Equivalents context class. A complete set of

semantic affinity patterns would satisfy all possible axioms within an ontology, as defined

in Definition 1:
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Context Class Definition
Equivalents {Ci ∈ O|Ci = Č}
Instances {Ci ∈ O|Ci : Č}
Types {Ci ∈ O|Canchor:Ci

}
Subclasses {Ci ∈ O|Ci v Č}
Superclasses {Ci ∈ O|Č v Ci}
Properties {Pi ∈ O|Pi ∈ P (Č)}
Relations {Ci ∈ O|∃R,R(Č) = Ci}
Composed {Ci ∈ O|∃C1, C2, . . . , Cn, C1 ∈ Class(C2) . . . Cn ∈ Class(Č)}
Unrelated {Ci ∈ O|Ci /∈ Class(Č)}

Table 3.1: Context classes

The set of context classes is complete. All the classes until the Composed class

cover all the axioms of the ontology. Theorizing on the ontology as a graph, these classes

define all direct relations between every two concepts. A concept which has an indirect

relation to the anchor concept is defined through the Composed class as a concept which

is related to the anchor concept through a set of C1, C2, . . . , Cn concepts. The context

class Unrelated defines all concepts which are not related through any other context class

(including the composed class).

Each of the context classes is covered by an affinity pattern, as follows:

1. The set-hierarchy pattern covers all cases of the equivalent, subclass and superclass.

2. The relation pattern covers all cases of object and datatype properties.

3. The instance pattern covers all cases of instances and types.

4. Pattern composition covers all cases of the composed pattern.

5. Unrelated concepts are not similar, and therefore cannot be bridged by a virtual

pattern.

Therefore, there cannot be a pair of concepts which cannot be evaluated by the affinity

patterns. The conclusion is that the set of affinity patterns is complete.

3.3 Evaluating Affinity Patterns

The relevance of affinity patterns was measured through an experiment, with the objective

of predicting the way human users would benefit from retrieval systems that utilize the
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patterns. The patterns introduced above provide a catalogue of similarity measurement

tools. However, we need to evaluate them against a benchmark of composition similar-

ity. To this end we designed a detailed experiment, in which human subjects were asked

to assess the similarity between models. The studies of Budanitsky and Hirst [22] and

Bernstein et al. [13] show that in a setting of ontology-based knowledge systems, hu-

man judgments give the best assessments of the quality of a measure for affinity between

concepts. The first study compared WordNet [37] similarity measures, while the second

one compared an ontology for service description. For the best of our knowledge, this

experiment is the first one measuring human conceptions of similarity in the context of

semantic Web services.

3.3.1 Experiment Design

The experimental process required software and information systems engineering students

to go through a set of tasks. In each of the test case tasks the student is asked to assess a

set of pairs, each containing a query describing a simple set of requirements for a system

and a model of a possible composed system. The following sub-sections describe the

experimental setting, the research population, and the test cases used for the experiments.

Setting

The participants were asked to assess the relation between the set of requirements and

the composition, ranking and explaining their ranking. The requirements are displayed

as a short textual fragment, resembling the format of the query, in a service retrieval

framework, hence they are referred to as queries. The composition was visualized by OPM

(Object-Process Diagram), the visual formalism of OPM (Object-Process Methodology)

[32], offering a comfortable graphical user interface. An explanation of OPM is provided

in Appendix 7.1. Each test case, i.e., a query and composition pair, was displayed to the

participants using a Web-based user interface2, as shown in Figure 3.6.

The ranking is provided on a Likert scale [55] of 1 to 5, for each one of the following

three parameters:

• Usefulness: The degree to which the model can be used in order to implement the

query.

• Completeness: The degree to which the model meets all of the query’s require-

ments.
2The experimental system can be accessed at http://dori.technion.ac.il/Survey-Manager/
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Figure 3.6: A sample survey page showing the model and the feedback form

• Exactness: The degree to which the model does contain the right amount of ele-

ments, i.e., neither excessive nor missing elements.

The first parameter, usefulness, measures the correspondence between the query and the

composition in the context of reuse. The two other parameters measure the correspon-

dence in a more general context. Exactness and completeness overlap, as an exact match-

ing is also a complete matching. However, we wanted to gain a more subtle distinction

between a situation in which the composition contains excessive elements and a situation

in which the composition has missing elements. The completeness parameter would dis-

tinguish between the two cases. The participants were also asked to provide additional

text that describes their rankings, in the explanation field. In the improvement field,

they were asked to provide a textual description on what changes they would make to the

composition in order to turn it more similar to the query. The objective of the last descrip-

tion is to strengthen the aspects related to reuse, supporting the ranking according to the

usefulness parameter.

Each of the participants was presented with an introduction that includes explanations

regarding the experiment and the required feedback. The participants were also asked
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to supply demographic information on their age, years of study, and education (high-

school, bachelor, etc). Following that, each participant was presented with a sequence

of 12 query/composition pairs. The pairs were randomly selected from the possible 30

pairs, and randomly ordered. After ranking all the pairs, the participant had the option of

modifying her rankings and answers.

Research Population

The research population included 127 participants, of whom 15% were studying towards

their masters or doctoral degrees, while the other 85% were bachelor students in their 5th

semester. 70% of the students were students or graduates of the faculty of Industrial En-

gineering and Management at the Technion IIT, Israel, while the other 30% were students

or graduates of the faculty of Computer Science at the Technion IIT, Israel. 95% of the

participants took the course “Analysis and Specification of Information Systems”, taught

by the author of this thesis. For the participants who were studying towards a bachelor

degree, participating in the experiment was defined as a bonus task at the course, crediting

the participants with 3% of the final grade of the course. The grade itself was independent

of their answers. Rather, it was based on their thoughtfulness in providing the feedback.

This population is a good proxy to the general user community which is relevant to our

research, which are software engineers and system analysts. All the participants had took

at least a basic and an advance course in software engineering. All of the participants

took also at least one course in system analysis. Therefore, their education reflects the

type of education of our target population. Furthermore, we argue that their relative lack

of experience compared to skilled software engineers strengthens our results. One of the

characteristics of experienced software engineers and system analysts is their ability to

intuitively evaluate semantic and structural approximations. As we have conducted our

experiments on novice engineers, these intuitive skills are less developed.

Test Cases

Our experiment was based on a set of four ontologies in three different domains: e-

commerce, geography, and publications. We specified eight different queries, and matched

them to 3-6 different compositions in each domain (for a total of 30 different test cases).

The concepts and the relations used in each composition were taken from the ontologies.

Figure 3.7 depicts two test cases. Each set of compositions which were related to a single

query met the following criteria:
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Query: Find the price of a book 
according to the book's title

Test-case 1 Test-case 2

Query: Find the price of a book 
according to the book's title

Composition: Composition:

Figure 3.7: A sample of two test cases

• At least one composition answers the given query perfectly. We denote this com-

position as the baseline composition.

• At least one composition has a minor difference with respect to the query.

• At least one composition has a major difference with respect to the query.

The compositions and their relation to the query, were assessed by two fellow Ph.D. stu-

dents before the experiment.

In order to produce results which are relevant to our service retrieval framework, we

have used a subset of OPM’s expressibility, which does not go beyond the scope of our

definition. This scope includes processes (e.g., operations), objects (e.g., parameters),

result links (e.g., outputs and effects), consumption links (e.g., inputs and preconditions)

and states (e.g., instances). All the participants were knowledgeable in OPM.

3.3.2 Results

The results of the experiment are organized in two categories. First, we look at general

characteristics of service similarity, such as how different parameters, e.g. usefulness and

exactness, differ. Second, we evaluate each affinity pattern.
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Figure 3.8: The average score of completeness, exactness, and usefulness

A clear observation refers to the difference between the three parameters. While the

correlation between them is high (≈ 0.93), there are significant differences between their

average values. Figure 3.8 represents the average ranking for completeness (E(C)), ex-

actness (E(E)), and Usefulness (E(U)). Participants tended to give higher values to

usefulness. This is more noticeable when the baseline results are removed. The context of

reuse enables participants to accept more approximate results.

The result of higher usefulness values is supported by qualitative analysis of the text

feedback given by participants in the explanation parameter versus the improvement pa-

rameter. When describing their ranking in the explanation field, the participants tended to

base their feedback on the existing aspects of the composition. They thoroughly described

the differences between the composition and the query in terms of missing/excessive ele-

ments, different process order, different interface and so fourth. However, when describ-

ing the improvements, participants tended to be more creative, specifying new operations

and data structures, and relating them to the existing composition using inheritance, rela-

tions, etc.

Table 3.3.2 demonstrates how the same participants gave textual feedback. The task

and participant are identical for each row in the table. The left column includes frag-
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ments form the explanation field, while the right column includes fragments from the

improvement field. The context of improvement allows the participants to think of the

composition/query pair in a more flexible terms. As the context is considered less rigid,

the participants suggest changes in several aspects. Three main categories of changes

were identified in the improvement feedback:

• Altering the interface of the composition. In this category, the type of the input and

output parameters is altered in order to accommodate missing or different data. In

many cases the alteration takes the form of a filter: which adds or removes unnec-

essary information form the input and output parameters.

• Adding functionality. In this category, missing processes are added to the composi-

tion.

• Altering functionality. In this category, the inner behavior of processes is altered,

by adding loops, preconditions, etc.

Set Hierarchy Pattern
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Figure 3.9: The average ranking for subclass relations, according to the subset direction
from the baseline
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Case Explanation Feedback Improvement Feedback Category
1 “The book finding gets the isbn

but according to the query we
should search according to the
book title”

“I would replace isbn by book ti-
tle and make characrerization of
the book”

Alter interface

2 “Model is more specific, query
is more general - they should be
compatible to each other. Price
finding is unnecessary (could be
replaced with simpler solution).”

“Change ’professional book
finding’ to ’book finding’.
Change ’Computer related
book’ to ’Book’. Replace ’price
finding’ with ’price’, which will
be an attribute of ’book’.”

Alter interface

3 “There is no way to add products
to the shopping card”

“add the appropriate process
(adding product) between login
and checkout. The process ac-
cepts Product and updates the
cart.”

Add function-
ality

4 “The main issue with the model
is that it takes as an input an
existing cart, and doesn’t pro-
vide the required functionality of
adding products to a cart.”

“Add process for adding prod-
ucts the a shopping cart as the
first procss in the system (before
login); this processes should be
wrapped with something equiv-
alent to a while loop.”

Add function-
ality

5 “The search is more general, so
if person has many phone num-
bers, maybe in this search we
won’t find the number at the fac-
ulty.”

“I will customize the Person
Profile Finding to find profile
in the faculty (by generaliza-
tion/specification link.”

Alter function-
ality

6 “Why only computer related
books can be found?”

“I would add a temp result list
which is created by the Profes-
sional book finding and then a
choice should be made within
this list.”

Alter function-
ality

Table 3.2: Examples of textual feedback

The analysis of the subclass relations yields a clear patter, shown in Figure 3.9. Each

column in the graph stands for an average score given by participants for all the three test

cases related to the set hierarchy pattern. The first three columns in each series depict the

average score for completeness, exactness and usefulness, while the fourth is the average

value. The results are ordered according to their subset distance, which is their location in

the class hierarchy. Column −2 and column 2 indicate compositions including concepts
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which are more specific (minus) or more general (plus) than the baseline (0). For example,

in one of the test cases, the query was: Find the price of a book according to its title. The

concept was the catalogue used for the search process, and the location in the hierarchy

of the exhibited values were:

Concept Hierarchy location Subset distance
C++ programming books Most specified -2
Computer related books Specified -2
All books Baseline 0
All publications General 1
All products Most general 2

Table 3.3: Location of concepts within the subclass hierarchy

The average score by subset distance form a bell pattern, where the highest score for

completeness, exactness and usefulness, is received for the baseline query/composition

pairs. The curve is steeper on the left hand side of the graph, indicating that participants

tended to rank more specific compositions lower than more general compositions. In

fact, the difference between more general results becomes insignificant after the initial

difference from the baseline, so that the average score (the fourth column in each subset

distance set) of the +1 set and the +2 set are almost identical. This phenomenon recurs

in each of the test cases of the set hierarchy pattern.

Relation Pattern

The relation pattern is analyzed via the cardinality class. The certainty function µ reflects

the probability that given a concept, a related concept would be found. For the relation

pattern µ is calculated as a function over the cardinality of the relations. In Figure 3.10,

the average completeness scores are presented for three test cases (TC-1, TC-2, and TC-

3). The usefulness and exactness values behave similarly, and they are therefore omitted

from the chart for the sake of clarity. Each point along the X-axis represent a certainty

value, starting from the baseline, where the query concept is equivalent to the composition

concept, through 1 : 1 relations (such as ISBN↔ Book), 1 : 2 relations, 1 : 3 relations,

and 1 : n relations.

The results show a decline in average completeness scores as the cardinality grows.

The baseline yields the highest similarity values, while higher cardinality yields lower

similarity. The negative slope of the curve becomes moderate as the cardinality grows. In

higher values (1 : 3 − 1 : n), the curve flattens to the point of insignificance. This result
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Figure 3.10: The average completeness score ordered according to the c function

shows that similarity decays as the cardinality grows. In one of the test-cases (TC-1),

the data point in in 1:2 cardinality has an average score which is higher than the point

1:1 cardinality, due a concept which can be considered either a related concepts or a

generalized concept.

Instance Pattern

The instance pattern approximates concept classes using instances and vice versa. In the

experiment we tested only approximating a class by its instances. Figure 3.11 depicts

the results. As in previous charts, each column represents a parameter (completeness,

exactness and usefulness), the X axis represents the instance classification distances, and

the Y axis represent, the average score. The instance classification distance is derived

from the number of instances divided by the number of all possible instances. The value 0

represents perfect matching, while higher values represent descending probabilities. The

main result is the negative correlation between the instance classification distance and the

average approximation score, which average descends rather sharply when the participant

is presented with a set of instances rather than a concept class.

50



0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

5.00 

0  0.3  0.5 

A
ve
ra
ge
 a
pp

ro
xi
m
a-

on
 s
co
re
 

Instance Classifica-on Distance 

completeness 

Exactness 

Usefulness 

Average 

Figure 3.11: The average ranking according the instance-classification distance

Functional Affinity Pattern

In Figure 3.12, the results for the functional similarity pattern are displayed. The X-

axis represents the number of graph edit distance carried out between the composition

and the query, which is the edit distance defined in Section 3.2.4. These edits include

removing and adding nodes and edges. The 0 set represent is the baseline pairs set, in

which compositions are functionally equivalent to the query. The 1 set represents a single

edit, and so fourth. The Y-axis represents the approximation score, over all the test cases

and participants.

The most significant trend is apparent for usefulness, which decreases by about 25%

percent from the 0 set to the 2 set. It is not surprising that missing or excessive elements

make the composition less usable than an identical composition. The exactness parameter

was more sensitive to excessive elements, while the completeness parameter was more

sensitive to missing elements.

An interesting phenomenon is the relation between the size of the composition (the

overall number of elements within the composition), and the similarity. For example,

Table 3.3.2 compares two test cases. The first containing 5 elements and the second

9 elements. The completeness decline between the baseline (0 set) and the 1 set rises
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Figure 3.12: The average ranking according to the edit distance between the query and
the composition

Average size Average Decline
5 elements 16%
9 elements 30%

Table 3.4: The relation between composition size and completeness decline

sharply, with direct relation to the size of the composition. As the number of elements

in the composition grows, the effect of the change becomes less significant. A similar

significance

The same result is relevant to usefulness and exactness, but with lower significance.

A possible reason for that is the different contexts. While completeness requires the par-

ticipants to evaluate how the whole composition is comparable to the query, in usefulness,

the participant is focused only on the relevant parts of the composition.

3.3.3 Discussion

The experiment results provide a basis for evaluating the abstract affinity patterns pre-

sented in Section 3.2. As far as we know, this is the first experiment in which paradigms

of service retrieval were examined with human participants. The results capture character-

istics of service retrieval which were not apparent in the current research. The experiment
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did not yield exact models that can be represented with mathematical formulae but indi-

cated general trends in the patterns. These pattern trends can support or contradict existing

theories.

Two different modes for service retrieval were identified. The first one, employing

the completeness and exactness parameters, is based on semantic and functional compar-

ison between the query and the composition. The second model, which employes the

usefulness parameter, reflects the context of reuse. Participants were more forgiving for

inexactness in the reuse context, as the average score for usefulness was higher than that

for completeness and exactness. The difference between the contexts was also apparent

in the textual feedback of the participants, who suggested various means for changing the

composition in order to answer the query.

The results for the set hierarchy pattern point against the relevance of logic-based

methods for service discovery. Logic-based results assign equal importance to plugin

(more specific) and to the exact (baseline) results [49], because more specific results fol-

low the axioms of the general results. This is depicted in Figure 3.13 (a), where the

Y-axis represents some abstract similarity, while the X-axis represents the specification

dimension. The difference starts with more specific results, through the baseline results

(identical to the query), and ending with the more general results.
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Figure 3.13: Comparison of logic-based similarity versus our results

For logic-based methods (Figure 3.13 (a)), the similarity is identical for specific re-

sults and the baseline results, and it declines sharply for more general results. However,

according to our results (Figure 3.13 (b)), human participants perceive specific results as

inaccurate like general results, yielding an upside-down This notion is depicted in chart b,

where the similarity forms an upside v-shaped curve. Moreover, we discovered that that
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human participants perceive a “softer” notion of similarity than the one defined by logic-

based methods compared to [50, 58]. This result is depicted visually by the less steep

declining slope of the similarity curve, compared with the slope of logic-based methods.

The second result of the experiment is the evaluation of the relation and instance

patterns. The evaluation proved that human participants perceive relations and instance-

classifications as valid means for approximation. There is a relation between query-

composition similarity and the probability of instance selection.

The experiment allows us to set the α values, which are the pattern certainty coeffi-

cient, which is defined in page 32. The motivation behind the coefficients is to differentiate

between the similarity values of different patterns. The α value is calculated as a function

of the gradient of the similarity curve. Therefore, patterns with a steeper gradient, such as

the instances pattern, would receive a lower coefficient. The following table includes the

exact α values calculated according to the experiment.

Pattern α coefficient
Set hierarchy (general) 0.6
Set hierarchy (specific) 0.45
Relation 0.7
Instances 0.2

Table 3.5: α values for different patterns
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Chapter 4

Service Retrieval

In this chapter we discuss the syntax and semantics of query evaluation in the context of

approximate service retrieval. We introduce an extensible abstract query language, which

can be used to represent a wide variety of query language modals (Section 4.1). We

specify the semantics of approximate query evaluation using the notion of µ-satisfiability:

a mean for quantitatively matching a query segment with a set of services.

We then turn to the way service data is analyzed from service descriptions. We in-

troduce the service network - a data structure that stores information about the services

(Section 4.2), and the way it is constructed from existing Web services on the World-

Wide-Web.

4.1 Query Evaluation Semantics

In this section we provide an overview of the query evaluation semantics. Adopting a

bottom-up approach, we start with a detailed element description and continue with a

complete structure of the query. Section 4.1.2 describes extensions of the basic query

model.

4.1.1 Query Syntax

A query in the context of service retrieval is a tree of operations augmented with logical

operators. Each operation serves as a template for matching. Naturally, the data contained

in the query is sparse, with respect to the data contained in the service description. The

following structure defines how queries are abstractly specified. The abstract query is

implemented by a concrete query language, which can take the form of a keyword-based

language or a model-based language (see Section 5.3 for more details).
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Definition 11: Abstract Query, Q. A query is a directed tree Q ≡ 〈N,F lows〉, where:

• N = OP ∪{∧,∨}, whereOP = {OP1, OP2, . . . , OPn} is a set of operations and

∧,∨ are conjunction and disjunction nodes, respectively.

• Flows ⊆ N × N is a set of directed data flows between nodes. The flows are

ordered form left to right.

OP

Address

input

OP

GPS 
Position

input

∨ OP

Hospital

input
find closest

def

∧

Figure 4.1: An abstract query

We call an operation node a leaf node, and a conjunction or disjunction node a com-
posed node. For the sake of simplicity, each composed node can include a maximal

number of two flows. Figure 4.1 depicts an example of an abstract query structure. The

query formally represents the set of requirements expressed in Example 1. The require-

ments and the representation differ in one aspect: in order to exemplify the disjunction,

the query contains the input of GPS position, which is not part of the example. The top

node is the ∧ node that conjunct the rest of the query nodes. The conjunction includes the

∨ node which defines two equally acceptable query fragments: an operation that receives

an address and an operation that receives a GPS position. The other conjunctive part rep-

resent the second half of the query: An operation that is returns a hospital concept, which

is defined as the closest hospital.

We use a second notation for queries, which is based on text, rather than on diagrams,

and, hence, more compact. Operations are described using a set of label/value elements,

where colons separate the label from the value. A set of labels is separated by semi-

colons. In some cases, we omit the label from the pair. In this case, the label can be any

type of label (in - input, out-output, def-definition, etc). Conjunctions and disjunctions

are denoted by ∧ and ∨. For example, the following is the same query which is identical

to the one in Figure 4.1:
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((in,Address) ∨ (in,GPSPosition)) ∧ (out,Hospital; def, find closest)

4.1.2 Query Language Extensions

We present an extension for the query language, which allows users to write complex

queries without compromising the simple syntax of the query language. There are two

types of syntax extensions and property extensions. Syntax extensions add syntactic sugar

to the query language. In order to demonstrate our approach, we define two syntax ex-

tensions: the optional expression and the any expression. Unlike the default configura-

tion, which mandates that all the query parts be retrieved, the optional extension allows

users to define optional query phrases. For example, in the query “address ∧ hospital

∧ optional(availability)”, the last token is optional. Therefore, results which contain the

availability property will be ranked the same as results which do not contain it.

The implementation of this extension is based on rewriting the query using disjunc-

tions in the preprocessing phase. Each query of the type “x ∧ optional(y)”, will be trans-

formed to a query of the type “(x ∧ y) ∨ x”. Thus, results satisfying x and results satisfying

both x and y will be ranked equally. In order to avoid illegal queries, queries which contain

only optional expressions, such as “optional(y)”, are not allowed.

The any expression allows users to define sets of options. The user can specify differ-

ent options for a single property. For example, if the user wishes to select services with an

output which is hospital, clinic, or doctor, the following query pattern can be used: “ad-

dress ∧ any(hospital, clinic, doctor)”. This is automatically be translated to the following

pattern: “address ∧ (hospital ∨ clinic ∨ doctor)”

Property extensions allow definitions of new property categories for concepts. The

basic definitions of the query language include three types: in (for input), out (for out-

put) and def (for a concept which defines the functionality of the operations). However,

services may have more specific properties that can be used in retrieval. Examples for

interesting properties include the following:

• Price: The price of using the operation.

• Availability: The times during which the service is available.

• Provider: The organization which provides the service.

• Location: The geographical location in which the service is provided.
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• Language: The language used by the service (e.g. English, Hebrew, Arabic).

Extension properties are defined by the users by assigning a label to a specific property

of all, or some, of the semantic Web services. Thereafter, the user can use this name for

restricting the results according to a certain value of the property, writing queries such

as “flight provider:singapore location:new york”. The query evaluator maps the value

following the property name to a value of the original concept before continuing with the

retrieval process.

4.1.3 Query Matching Semantics

The result of the query evaluation is a result-set, i.e., a ranked set of results, each being

a composition of operations. A result may contain operations that originate from diverse

sources. Each result is associated with a similarity value, expressing the certainty with

which the set of operations answers the query. The notion of similarity is embodied in the

µ-satisfiability relation, defined as follows:

Definition 12: µ-satisfiability. LetR be a result, and letQ be a query. The µ-satisfiability

relation, denoted as R |=µ Q, indicates that R satisfies the requirements of Q with a cer-

tainty of µ.

We define the levels of matching recursively. The basic unit of matching is related

to a single operation, which is matched with a query leaf node (nQl
). In this case, the

matching certainty is determined according to the semantic correspondence between the

node’s concept and the operation’s concepts. The matching certainty of virtual services

is computed based on the certainty of each of the operations and the certainty of the

relation(s) between them.

In order to formally define the µ-satisfiability of an operation, we first define semantic

correspondence. We can now define the operation satisfiability of a query leaf node as

follows.

Definition 13: Operation Satisfiability. An operation OP satisfies nQl
if the following

applies: sim(nQl
, OP ) > µ̂ - the similarity between the two concepts is higher than a

threshold µ̂.

The method for calculating µ, the semantic correspondence function, is given in Sec-

tion 3.2.5.
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4.1.4 Complex Query Semantics

In order to define the semantics of complex queries, the notion of µ-satisfiability is broad-

ened from operation matching to the matching of complete queries, including conjunctive

and disjunctive operators. We say that R |=µ Q, when a query can be satisfied by a result,

in a given µ level of certainty.

In disjunction, the query is transformed into a disjunctive normal form. For instance,

the example query (depicted in Figure 4.1), which has the original form of ((in,Address)∨
(in,GPSPosition)) ∧ (out,Hospital)) will be transformed into the following form:

((in,Address) ∧ (out,Hospital))

∨
((in,GPSPosition) ∧ (out,Hospital))

A result satisfies an or-node if it satisfies one of its child nodes. Let nQ1 and nQ2 be

the child nodes of the or-node, nQ. The µ-satisfiability specification of or-node is defined

as follows:

Definition 14: Disjunction Matching. R |=µ (nQ1∨nQ2)⇔ R |=µ nQ1 ∨ R |=µ nQ2 .

The certainty is defined as µ = max {µ1, µ2}, where the certainty values of matching nQ1

and nQ2 are µ1 and µ2, respectively.

While matching an or-node is straightforward, matching an and-node is more com-

plex. An and-node can be satisfied by an ordered pair of operations. The basic assump-

tions underlying the semantics of and-nodes are the following:

• In order to allow relaxed service retrieval, an and-node can be satisfied by a compo-

sition of operations. For instance, the query (in,GPSPosition)∧(out,Hospital)
might be satisfied by a single service (find nearest medical center) or by a compo-

sition of two services (contact emergency and find nearest medical center).

• If two services satisfy an and-node with equal certainty (the ceteris paribus - “all

other things being equal” - of our model), then the shortest composition of opera-

tions will be chosen. In the context of the previous example, the service find nearest

medical center will be chosen, as its composition length is 0. The rationale of this

assumption is that any operation added to an existing composition reduces the over-

all certainty of the composition.

• The order of the elements in the query is important. If an and-node is satisfied by

a composition, the left child of the and-node (in,GPSPosition) should precede
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the right child (out,Hospital). As users search for procedural artifacts, we assume

that there is a direct link between the location of elements within the query and the

location of operations within the procedure.

In conjunction matching, the two query child nodes form a simple pattern, starting

from the leftmost node, and ending with the rightmost node. The pattern is matched

against a set of operations, resulting in a correspondence value that depends on the cor-

respondence of the nodes and the certainty of the composition. In the simplest case, the

set of operations can include a single operation. In this case, the pattern matches the op-

eration, where the left query node is matched against the inputs of the operation while the

right query node is matched against the outputs of the operations.

If the conjunction is matched against a set of operations, which include two or more

operations, then the matching must satisfy not only the query nodes, but also each op-

eration in the result must be composed to its consecutive operation. Composability of

two operations depends on their respective input and output parameters. Let us denote by

OP in a partial view of a given operation, OP , which includes only its input parameters.

We define this new view by restricting the label according to its domain. OP in is achieved

by removing all labeling which are not mapped to the input property. Similarly, we define

OP out as a partial view of an operation, which includes only its output properties.

Definition 15: Composability. Two operations, OP1 and OP2 can be composed if

sim(OP out1 , OP in2 ) > µ̂. Composed operations are denoted by OP1 ⊕OP2.

Having defining composability, we formally define the µ-satisfiability specification of

conjunction matching as follows:

Definition 16: Conjunction Matching. We say thatR |=µ (nQ1 ∧nQ2) if the following

conditions hold:

1. R contains a source and destination operations,OPs andOPd, such thatOPs, OPd ⊆
R and OPs |=µ nQ1 ∧OPd |=µ nQ2 .

2. There exists a set of operations Path = {OP1, OP2, . . . , OPk} such that:

(a) If nQi is a leaf node, Path holds a single operation, and path matching is

based on the operation as a starting or ending point.

(b) If nQi is an and-node, Path is a sequence of operations. The path matching

starts with the first operation of the sequence (if nQi is the left node), or the

last operation of the sequence (if nQi is a right node).

60



3. The overall composition certainty of the path (detailed below) is higher than a given

threshold.

Since the query has been transformed into disjunctive normal form, any node can only

be either an and-node or a leaf node. The composition certainty reflects the certainty of

the dependencies between operations. We define a composition path, OP1
...⊕OPn as the

set of edges belonging to the shortest path between two operations, OP1 and OPn. The

certainty of the composition is defined as the product of all the similarity values, as is

common in the literature [30]:

Definition 17: Composition Certainty. The certainty of a composition path, P =
OP1

...⊕OPn is defined as:

µ(P ) =
∏

(OPi,OPi+1)∈P

sim(OPi, OPi+1)

Note that Definition 16 accepts situations in which the and-node is satisfied with a

single operation, i.e., OP1 = OP2, and the path has a length of 0. Moreover, it is likely

that single-operation results will receive high certainty values, as their composition cer-

tainty is maximal. As the similarity function is bounded by 1, µ(P ), which is a product

of similarity values is also bounded by 1.

4.2 The Service Network

4.2.1 Definitions

The service network is a data model for representing approximate service composition.

The model is based on a directed graph, in which nodes represent operations and edges

represent procedural dependencies between operations. Dependencies can be either in-

ferred, by analyzing the relations between operation properties, or empirically derived

from wider-context sources, such as OWL-S specifications. Each dependency is associ-

ated with a certainty value, representing the similarity measures specified in Section 3.2.

Definition 18: Service Network. A service network is a graph

SN = 〈OP, F lows, cat, γD〉, such that

• OP = {OP1, OP2, . . . , OPn} is a set of operations.

• Flows ⊆ OP ×OP is a set of asymmetric dependencies between operations.
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• cat : Flows → {inferred, empirical} assigns a category to each of the depen-

dencies.

• γD : Flows→ [0, 1] assigns a certainty value to each dependency.

Intuitively, the service network (SN ) can be thought of as a union of all possible

compositions that can be retrieved by a retrieval framework. The basic data structure of

the service network is similar to that of a composition (Definition 4), but with several dif-

ferences: it may contain circles, it is not necessarily connected, and it contains additional

information regarding flows. The category function, cat differentiates between inferred

dependencies, which are inferred from similarity between operations, and empirical de-

pendencies, which are derived from existing service models. The certainty value, γD,

indicates the certainty values, as inferred by the similarity function.

An example of a service network is depicted in Figure 4.2. As noted above, the di-

rected arrows represent dependencies between operations. Input and output message pa-

rameters (labeled in and out respectively) are mapped to ontological concepts, described

in Figure 2.3. The directed arrows form dependencies, which represent procedural links

between operations, connecting separate operations into service networks.

In: Hospital

In: Patient Arrival Time

In: Diagnosed Symptoms

Out: Acknowledgment

Inform Hospital

In: GPS Position

Out: Medical Center

Find Nearest

Medical Center

flow

In: Address

Out: GPS Position

Find Position

In: GPS Position

Out: Arrival Time

Contact 

Emergency

flow flow

In: DateTime

In: Treatment

Out: Availability Response

Check Hospital Availability

empirical

In: DateTime

In: Treatment

Out: Availability Response

Check Room  Availability

In: DateTime

In: Treatment

Out: Availability Response

Check Personnel  Availability

empirical

empirical

empirical

inferred inferredinferred

inferred

Figure 4.2: An Example of Operations and Dependencies

In this work we focus how OWL-S service repositories can be represented by the
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service network. Services expressed in syntactic languages, such as WSDL [25], can also

be represented by the service network (see [39] and [68]). As the service network contains

certainty values for dependencies and operation properties, any mapping that maps service

properties to [0, 1] range can be used. Constructing the service network from a repository

of services is a three-step process:

1. Deriving operation properties.

2. deriving dependencies from the repository, and

3. inferring dependencies from similarities between operations.

In the first step, an operation in SN is created for each atomic process in the OWL-

S repository. In OWL-S services, there are basically four types of parameters: Inputs,

outputs, preconditions and effects. Each parameter is transformed to a service property in

the SN data structure. In order to simplify our model, and without loss of generality, the

effect parameters are transformed to output properties and the precondition parameters are

transformed to input parameters. Consider, for example, the operation Check Personnel

Availability in Figure 4.2. It contains three parameters, which are transformed to the

following instantiation:

Example 3: Check Personnel Availability. The operation is represented according to

the Operation definition:

Props = {input, output}
label = {input→ DateTime, input→ Treatment, output→ Availability Response}

The second step in the construction of the service network is learning about dependen-

cies between operations from the service models (empirical dependencies). This method

is described in Section 4.2.2. The third step is to infer dependencies by recognizing sim-

ilarities between operator parameters (inferred dependencies). This method is described

in Section 4.2.3. Appendix 7.2 describes a method for aligning ontologies, which is nec-

essary for deriving flows which rely on concepts from different ontologies.

4.2.2 Deriving Empirical Dependencies

Empirical dependencies are used when prior knowledge of relations between operations

exist. However, the transformation between external service models (such as OWL-S) to

our service base is not straightforward. In this section we define transformation rules,

in a semiformal manner. OWL-S serves as a representative of Web service specification
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languages. OWL-S was chosen as the primary language of reference, for the consider-

able amount of research and tools associated with it. WSMO [53] and BPEL4WS [76]

have adequate transformations to OWL-S, and therefore the transformation we present is

applicable for these languages as well.

The transformation starts with the atomic process - the basic component of the OWL-S

process model. Each atomic process p, which belongs to an OWL-S model is transformed

to an operationOP ∈ OP . The input and output properties ofOP are mapped to the input

and output concepts of OP . Preconditions and effects of OP are abstracted and mapped

to OP ’s input and output concepts respectively. Composite processes are represented as

dependencies between operations. The certainty that the two operations can be composed

is high, due to the fact that there is an empirical evidence of composition. Therefore, for

any type of empirical dependency, the certainty value of the dependency is: γD = 1.

OWL-S supports control constructs, such as conditional execution and parallel ex-

ecution, in order to coordinate the execution of groups of operations. For instance, in

OWL-S, the execution of an atomic process can be dependent on a specific result of an-

other one. However, these constructs are not supported by the service model, as they

provide over-specification which is not needed by the retrieval framework, as defined in

this work. Therefore, complex control constructs are transformed to simple dependencies

between operations. In this process, some information is lost. All conditional control con-

structs, such as if-then-else and repeat-until, are transformed to empirical dependencies

between participating processes, without the actual condition logic. The following list

specifies transformation patterns for OWL-S control constructs. A visual representation

of the patterns is depicted in Figure 4.3.

OP1

OP2

OP3

empirical

empirical

OP (if)

OP(then) OP(else)

empirical empirical

OP (repeat)

OP (until)

empirical
empirical

OP(source)

OP1 OP2 OP3

empirical empirical
empirical

OP(source)

OP1 OP2 OP3

empirical empiricalempirical

OP(dest)

empirical
empirical

empirical

(1) 
Sequence

(2) 
If-Then-Else

(3) 
Repeat-Until

(4) 
Split

(5) 
Split + Join

Figure 4.3: Transformation Patterns for OWL-S Control Constructs

1. sequence: The control construct is mapped to a set of empirical dependencies be-

tween the operations, ordered according to the original order of the atomic pro-

cesses.
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2. if-then-else: Empirical dependencies are added between the operation that de-

scribes the condition (the if operation) and the conditioned operations: the then

and the else.

3. repeat-until: An empirical dependency is added from the conditioned operation

(repeat) to the condition operation (until) and vice versa. Note that this construct

generate a cycle of dependencies, which is resolved in the construction of the index

(see Section 5.1.2).

4. split: For each split construct, a special operation, OP(source) is added to the ser-

vice network, representing the beginning of the operation split. An empirical de-

pendency will be added from OP(source) to each of the operations belonging to the

split.

5. split+join: Similarly to the transformation pattern for split, anOP(source) operation

will be added, as well as a synchronization operation OP(dest). Empirical depen-

dencies will be added to OP(dest) from all operations taking part in the construct

(excluding OP(source)).

4.2.3 Inferring Dependencies

Inferred dependencies are used as a mean for representing relations between operations

which are not related a-priori in the original OWL-S description. These dependencies

enable compositions which are based on operations from different services, a core feature

of service composition. The inference process starts with a set OP of operations which

originates form copying the OWL-S operation properties. The process goes through all

possible pairs of operations, trying to establish similarity between the input and precondi-

tion parameters of the first operation and the output and effect parameters of the second.

For the sake of simplicity, we refer only to input and output parameters. If the similarity

is positive, and higher than a threshold µ̂, then the relation between the operations is rep-

resented by a directed edge in the service network, with a given certainty, represented by

the certainty value γD.

We relax the original definition dependency inference by allowing a matching of a

subset of the parameters. Rather than requiring all input parameters to be matched with

compatible output parameters, only a subset of input parameters is required to be matched.

For example, in Figure 4.2, the operation inform hospital receives three parameters, while

inferred dependency can be derived on the basis of a single parameter (i.e., hospital). In
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calculating the certainty, we give higher certainties to dependencies that satisfy as much

of the input parameters of the operation.

The calculation of the certainty is done by comparing the parameters of each pair of

operations. Given two operations, a source operationOPs and destination operationOPd,

we define the set of output parameter concept of OPs as outs1, out
s
2, . . . , out

s
n and the set

of output parameter concepts of OPd as

ind1, in
d
2, . . . , in

d
m. We define a dependency between the operations as (OPs, OPd). We

define a feasible pair of parameters pf = (outis, in
j
d) as a pair that contains an output

parameter from the source operation and an input parameter from the destination operation

which has a similarity value higher than the threshold µ̂. As our similarity function is

defined on operations rather than on concepts, we define a special similarity function,

simp that evaluates the similarity on an operation that contains the parameter. As there

might be several pairs that contain the parameters, we chose the one with the maximal

certainty that still :
pf (i, j) = argmaxi,jsimp(out

i
s, in

j
d)

s.t. simp(outis, in
j
d) > µ̂

We denote by FP the set of all feasible pairs with maximal certainty. We then calculate

the certainty value of the dependency:

γD(OPs, OPd) =
1
n

∑
∀pf (i,j)

simp(outis, in
j
d)

Dependencies are added to the service network if, and only if, γD(OPs, OPd) > µ̂.
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Chapter 5

Algorithms for Efficient Retrieval

This chapter describes efficient algorithms and methods for evaluating approximate ser-

vice compositions. The approximate query semantics described in Chapter 4 has several

implications regarding space and time complexity. For example, how different approxi-

mation methods affect processing complexity? What is the effect of threshold values for

retrieval satisfiability? In this chapter we investigate these implications and others.

Section 5.1 describes data structures and algorithms for efficient query evaluation.

Two concerns direct us in this section. The first is query evaluation time complexity. Our

assumption is that users will use service retrieval in way similar to the way they use Inter-

net search engines. In this mode, queries are refined through an iterative process, which

requires receiving immediate results from the retrieval framework. Therefore, we dis-

cuss indexing approaches that trade time complexity with space complexity. Our second

concern is the scalability of indexing methods for a large number of services. In Sec-

tion 5.2 we evaluate our indexing methods with respect to precision, processing time, and

scalability.

5.1 Efficient Query Evaluation

The service network data structure compactly represents operations and compositions for

efficient retrieval. In this section we describe additional data structures and algorithms

which allow efficient query evaluation and results ranking based on the semantics de-

scribed in Section 4.1.3. The additional data structures include Iconcepts, which is an

index for semantic properties, and Iservices, an index for compositions. We describe each

of these indices in the following sections. Finally, algorithms for efficient query evaluation

are specified using these indices.
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Medical Center
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0.5

0.5
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in GPS Position

Hospital 0.5

1 Find Nearest
Medical Center

in City 0.4

Figure 5.1: An example of Iconcepts - the concepts index

5.1.1 Concepts Index

Iconcepts is based on a hash table, where each entry represents a concept, pointing to an

operation in the service network. Formally, Iconcepts induces the following function:

Iconcepts : C × Props→ OP

C is defined as a set of concepts, Props = {input, output, def, . . . } is a property type

(as defined in Definition 2), and OP is a set of operations. Each mapping is associated

with a certainty function which reflects the semantic affinity between the concept and the

concepts of the operation:

γC : Iconcepts → [0, 1]

Figure 5.1 is an instance of Iconcepts, which reflects the healthcare services running ex-

ample (Figure 4.2). Concepts that serve as keys of Iconcepts are derived from the service

model. For instance, GPS position is associated with an input parameter of the find near-

est medical center operation, with a certainty of γI = 1. hospital is associated with an

output parameter of find nearest medical center, with γI = 0.5. In this case, γI reflects a

lower certainty, originating from the distance between the hospital concept and the medi-

cal center concept - the actual concept related to find nearest medical center.

Iconcepts is expanded with additional concepts that convey a broader meaning, in order

to retrieve approximate services. Expanding the index is carried out through the index

construction process. Constructing Iconcepts is a multi-phase process, in which a basic

set of concepts is expanded with concepts that increase the retrieval scope of the index.

The Iconcepts construction algorithm starts with the basic set of concepts derived from the
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service network. We denote the concept set as Cinit and define it as follows:

Cinit =
⋃

OPi∈OP,pi∈Props
label(OPi, pi)

WhereOP is the set of operations of the service network, and label is the concept labeling

function in Definition 2. Each of the concepts is mapped through Iconcepts to its designated

operation. As this set is known to be related to an operation, the certainty value, γC is

set to 1 for each of the mappings. At the second step, Iconcepts is augmented with other

concepts which provide an approximate semantic correspondence, as defined in Section

4.1.3. The augmented set is denoted by Capprox, and is defined as the set of concepts

which include semantically related concepts. Concepts in this set are the result of some

virtual operation which receives as input a concept in Cinit. It is formally defined as:

Capprox = {C ∈ O|∃Ĉ ∈ Cinit, C → sim(C, Ĉ) > µ̂}

In order to efficiently find Capprox, we first find and map all possible similarities be-

tween concepts in the ontology, and later use this mapping to produce approximations

for the operations. As many operations share the same concepts, this order of calculation

saves the need to recalculate concepts which are common to several operations. Another

method for limiting the complexity of the construction is to search the ontology graph

through a DFS (Depth First Search). As semantically similar concepts are related through

the ontology, a walk through neighboring concepts can efficiently find all similar con-

cepts. Before describing the algorithm, let us define several data structures. We define a

similarity mapping function:

conceptRelation : Cinit → Capprox

The certainty values are expressed using another function:

simRelation : conceptRelation→ [0, 1]

The first for loop in Algorithm 5.1 goes through all the concepts of the ontology

and populates the semantic approximation mapping, conceptRelation. Recursive Search

Algorithm is specified next, representing a DFS on the ontology graph. After the mapping

has been obtained, the next for loop goes through all the operations, and all the concepts

in Cinit that are mapped to the given operation. The approximated concepts for each

operation OPi are accessed through C̃i, and added to the Iconcepts index. The→ indicates
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a mapping a concept pair to a certainty value.

Algorithm 5.1 Operation indexing in Iconcepts
for all Cr ∈ Cinit do

Recursive Search(Cr)
end for
for all OPi ∈ OP do
Ci =

⋃
pi∈Props

label(OPi, pi)

C̃i =
⋃

pi∈Props
conceptRelation(C)

for all C ∈ C̃i do
Iconcepts = Iconcepts ∪ {(C, pj)→ OPi}

end for
end for

Algorithm 5.2 Recursive Search
Input: Cr - a root concept, Cn - the node concept
if Cn = ∅ then
Cn = Cr

end if
for all C related to Cn in the ontology O do

if (Cr, C) /∈ conceptRelation then
if sim(Cr, C) > µ̂ then
conceptRelation = conceptRelation ∪ (Cr, C)
simRelation = simRelation ∪ {(Cr, C)→ sim(Cr, C)}
Recursive Search(Cr, C)
conceptRelation = conceptRelation ∪ (Cn, C)
simRelation = simRelation ∪ {(Cn, C)→ sim(Cn, C)}

end if
end if

end for

In order to validity of the algorithm, we first prove that the operations in the ontology

are classified to interconnected components. Given three operations, OPx, OPy andOPz ,

ifOPx is not similar toOPy (sim(OPx, OPy) = 0), butOPy is similar toOPz , thenOPx
cannot be similar to OPz . As can be seen in Figure 5.2, which provides a visualization of

this situation, similar services form an interconnected component within a disconnected

graph. If some similarity occurs between the parameters of operations that belong to

an interconnected component, then the similarity is larger than zero for any connected

operation. We formally define and prove this observation:
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Figure 5.2: Interconnected components on the

Lemma 1: Similarity Chaining. Given the operationsOPx, OPy andOPz , if sim(OPx, OPy) =
0 and sim(OPy, OPz) > 0 then sim(OPx, OPz) = 0.

Proof. Let us assume that given the same setting, the conclusion is that

sim(OPx, OPz) > 0. Therefore, there is some virtual operation construction Ψ(OPx, OPz),

that provides a non-negative cost. So, we can build a constructor Ψ(OPx, OPy) that pro-

vides a non-negative cost as:

• sim(OPx, OPz) > 0 (according to the assumption)

• sim(OPy, OPz) > 0 (according to the lemma’s setting)

• sim is a non-negative distance metric.

Therefore, sim(OPx, OPy) > 0, in contradiction with the lemma’s settings.

Lemma 1 helps us proving the that the DFS in the algorithm finds all the necessary

similarities and with an optimal certainty. Let us define this notion formally:

Theorem 3: . Given an ontology O and a set of initial concepts Cinit:

1. All ontology concepts with over-threshold similarity are traversed.

2. The certainty is optimal.

Proof. For each concept C, if C ∈ Cinit, then it is traversed by the first loop in algo-

rithm 5.1. If C /∈ Cinit, then it will be traversed by algorithm 5.2. Let us assume nega-

tively that for some concept, C ′ /∈ Cinit, there exists an approximate concept C ∈ Cinit,
but it not traversed by algorithm. Therefore, there must be a path of related concepts,

C,C1, . . . Cn−1, C
′ which was not discovered by the algorithm. However, for the second

concept in the path C1, there must be a path as proved in Lemma 1, as it is directly related
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to C and C ∈ Cinit. Inductively, the rest of the path, C3, . . . , Cn−1 must be discovered

by the algorithm as well. Therefore, there is a discoverable path to C ′. The similarity be-

tween C and C ′ is the optimal according to the definition of the similarity function.

5.1.2 Composition Index

Iservices represents the structural summary of the service network, using a directed graph.

Given two operations, the objective of Iservices is to efficiently answer whether a com-

posite service, starting with the first operation and ending with the second, can be con-

structed, and to calculate the certainty of the composition. Hypothetically, this task can be

performed using the service base itself, by exhaustively searching for all possible compo-

sitions on the operation graph. Furthermore, indexing each path will result in an exponen-

tial number of index entries. Therefore, our main design goal was to design an index with

minimal number of nodes and edges that would enable efficient traversal of the service

network without compromising the precision of the results.

The design of Iservices is based on principles taken from semantic routing in peer-to-

peer networks. [64] and [63] proposed the use of semantic clustering to classify peer nodes

to concepts and provide efficient traversal in peer-to-peer networks. In both methods the

underlying ontology is segmented according to a multi-dimensional hierarchy, and each

concept is assigned with an identifier that enables an efficient routing from source to

destination concepts. We also noticed some resemblance with IR clustering methods [46].

The first step in constructing the composition index is to reduce the data structure that

represents the composition. We define Iservices as follows:

Definition 19: Iservices Index. Iservices is a labeled directed graph Iservices ≡ 〈C, E, γS〉,
where:

• C is the set of all concepts stored in Capprox.

• E ⊆ C × C is a set of directed relations between concepts.

• γS : E → [0, 1] is a function which maps each relation to a certainty value.

The index is built by inferring relations between concepts according to the probability

that the service retrieval framework would return a composition that includes the concept.

Figure 5.3 depicts an example of the way the Iservices index is created. The left side of

the diagram includes an example of the service network, which is used as a basis of the

index. The lightning arrow from operation OP1 to OP2 represents a dependency. The

certainty values γD for dependencies and γC for concepts are also displayed. The right
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Figure 5.3: An example of the construction of Iservices

side of the diagram depict a part of the service network. C1 has a relation to C3 because

in the service network there is a path from C1 to C2 that goes through operations OP1

and OP2. According to the query semantics, the service retrieval framework would return

the composition OP1 → OP2 for a query that starts with C1 and ends with C3 with the

certainty of a · c · d. Therefore, an edge e = (C1, C2) ∈ E is constructed if one of the

following cases occur:

• If there is exists an operation, OP1, for which C1 is mapped to an input concept

and C2 is mapped to the output concept. This case is exemplified in the relations

between C1 and C2 in Figure 5.3.

• If there exists two operations, OP1 and OP2, for which C1 is mapped to the input

concept of OP1, C3 is mapped to the output concept of OP2 and there exists a de-

pendency between OP1 and OP2. This case is exemplified in the relations between

C1 and C3 in Figure 5.3.

Figure 5.4 depicts how the service network of Figure 4.2 (page 62) is represented as by

Iservices.

The action of adding an edge is subject to checking the overall certainty of the edge.

The certainty of an edge, e = (C1, C2), is calculated on the basis of the certainties of

the concepts and dependencies. γC denotes the certainty of a concept mapping and γD
denotes the certainty of a dependency between operations. The same certainty calculations
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Figure 5.4: An example of Iservices

are exemplified in Figure 5.3.

γS(e) =


γC(C1) · γC(C2) C1, C2 ∈ OPi
γC(C1) · γC(C2) · γD(d) C1 ∈ OPi, C2 ∈ OPj , d = (OPi, OPj)
0 otherwise

If the certainty is lower than the threshold µ̂ it is nullified, and the edge is not added to the

index.

Theorem 4: Iservices validity. All possible compositions that can be achieved from the

service network can be achieved from Iservices.

Proof. Let us assume that there exists a composition which can be retrieved from the

service network, but cannot be retrieved from Iservices with the same certainty. There are

two possible options:

1. Iservices does not contain the composition. The construction process of Iservices
excludes this case, as:

• Each concept which is mapped to an operation in OP is also part of Iservices.
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• Each path in SN is included in Iservices.

2. Iservices does contain the composition, but the certainty of path is below the thresh-

old of the composition in the SN . However, as the certainty of an edge in the

Iservices is directly derived from the certainty of SN (compare the definition of γS
(page 74) and the definition of the composition certainty (page 61).

One of the benefits of constructing Iservices is the reduction in the size of the com-

position graph. Our experimental results show that by constructing Iservices, the number

of edges was reduced by 36% (from 26,250 edges to 16,538 edges on a graph contain-

ing). However, the worst-case time complexity of evaluating a query over Iservices is

NP-complete. As a query is a graph and Iservices is a graph, finding a composition is re-

ducible to the problem subgraph isomorphism, which is in NP-complete in the worst-case,

regarding time complexity [73].

In order to reduce the complexity, we organize the concepts to multidimensional and

hierarchical clusters. Figure 5.5 visualizes the concepts, framed by the relevant clusters.

Concept clusters are obtained by using the algorithm described in [40] for hierarchical

clustering of OWL ontologies. All concepts within a cluster have close affinity to each

other. For example, the concepts Hospital and Drug are located within the same cluster

as they share similar concepts and have interrelated dependencies. Clusters are organized

according to a hierarchy, where 0-level clusters represent atomic clusters (e.g., the cluster

holding Address, GPS Position and Map), 1-level clusters contain 0-level clusters, etc.

The number of edges in the index is reduced by replacing dependencies between op-

erations with dependencies between respective clusters. For example, the dependencies

between Address and Hospital, and between GPS Position and Hospital are replaced by

a single dependency between the their corresponding clusters. Dependencies exist only

between clusters of the same level. When evaluating a path that crosses multi-level clus-

ters, higher level edges will be evaluated if lower ones do not satisfy the query. Thus, the

search space is reduced. This method is efficient mainly due to the nature of the service

network. Empirical results show that the service network is a sparse graph, and that most

connections are between operations with similar semantics.

As operations contain several parameters, there is no guarantee that all of the param-

eters’ concepts will belong to the same cluster. Therefore, concepts are organized into

multi-dimensional clusters, which reflect their different semantic affinities. For instance,

the concept GPS Position has relations with geographical concepts and medical concepts.

Multi-dimensional clustering is feasible as the number of parameters associated with an
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Figure 5.5: An example set of clusters

operation is bounded, and low. Empirical results show that over 90% of the services in

our benchmark have 4 or less parameters. Around 60% of the services have 3 or less

parameters.

5.1.3 Query Evaluation

In this section, we present an algorithm which evaluates the query against the service

repository, using the indices discussed above. Given a query Q, and the indices, the algo-

rithm returns a set of results,
{
R(1), R(2), ..., R(k)

}
, ranked according to their certainty.

The algorithm uses several sub-procedurs:

• toDNF (query): Transforms the query into into disjunctive normal form.

• pc(node): Finds the property type (input, output, etc) of a query node.

• Prune(set): Takes a set of compositions and removes all compositions with µ-
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Algorithm 5.3 Evaluate Query
Input: Q, Iconcepts, Iservices
Output: R =

{
R(1), R(2), ..., R(k)

}
R ← φ
C = toDNF (Q)
for all Ci ∈ C do
n = Ci.left-node
Ssource ← Iconcepts(l(n), pc(n))
Ssource ← Prune(Ssource)
if C.right-node = φ then
R ← R∪ Ssource

else
ndest = Ci.right-node
Sdest ← Iconcepts(l(ndest), pc(ndest))
Sdest ← Prune(Sdest)
for all OPi ∈ Ssource, OPj ∈ Sdest do
Scompose ← Scompose ∪Route(OPi, OPj , Iservices)
Scompose ← Prune(Scompose)

end for
R ← R∪ Scompose

end if
end for
Return Rank(R)

satisfiability values lower than the threshold µ̂.

• Route(OPsource, OPdest, Iservices): Finds a path on Iservices starting with opera-

tion OPsource and ending with operation OPdest.

The algorithm starts with transforming the query into disjunctive normal form, re-

sulting in a set of query parts, C. If a query part includes a single query node, then the

results contains operations from Iconcepts. The results are filtered by the Prune function,

which removes compositions with lower certainty value than the threshold. If the query

part includes more than a single node, then it contains a conjunction. The algorithm uses

the Route function to find paths between origin operations (associated with the left-hand

query node) and destination operations (associated with the right-hand query node). The

function Rank ranks the virtual services according to their certainty.

We denote by |C| the number of disjunctions in the query. |OP | represents the number

of operations associated in Iconcepts with a given query node (with certainty higher than

the threshold). |R| is the number of results, N is the number of peers (operations) and b
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is the hypercube base - the number of dimensions needed to segment the ontology.

Theorem 5: Query evaluation complexity. The query evaluation algorithm complexity

is given by:

O(|C| · (|OP |2 · 1
2

logbN) + |R| log |R|)

Proof. The main algorithm loop depends on the number of disjunctions, and runs in |C|
steps. The routing function iterates over the cartesian product of the operations returned

by Iconcepts. The complexity of Route is calculated in [63] to be 1
2 logbN , Finally, the

complexity of the ranking of the results (|R| log |R|) is added to the general complexity.

5.2 Experimental Evaluation

In this section, we evaluate our approach in three ways: a) by analyzing the precision

of the search engine; b) by comparing precision and performance to OWLS-MX [50];

c) by evaluating the scalability of our approach through simulation. The evaluation was

based on an implementation of our framework using Java and MySQL server. A dedicated

personal computer running Windows XP with 1.5GB RAM and a 50GB hard disk ROM

was used for all the experiments.

We used OWLS-TC, an existing benchmark for semantic service retrieval, supplied

by [50]. OWLS-TC includes than 1463 services, which are semantically annotated using

more than 40 different ontologies, from various domains, including economy, communi-

cation, and healthcare. In addition, OWLS-TC includes a set of predefined queries and

relevance sets that enable analyzing precision values of query results. OWLS-TC was

augmented with queries and relevance sets that reflect composed services.

5.2.1 Precision and Recall

Ranking serves as the main method for expressing relevance and this is also the case in

our approach. Therefore, we had measured the precision of the results in the top-K places,

as depicted in Figure 5.6. Precision at top-K is calculated as Lq,k∩Sq

Lq,k
, where Sq is defined

in the benchmark as the set of services that are relevant to a query q, and Lq,k is the top k

results on the list. The results show that services with high certainty (and therefore high

ranking) were found to be more relevant than services with low certainty. We explain the

descent in precision around the top 3 and 4 results by the precedence of shorter services,
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Figure 5.6: Average precision at top K

derived from the method of calculating the compositional certainty. If this precedence

will be canceled, the precision of the top 1 and 2 places will descend.

In Figure 5.7 the precision and recall of our approach is compared to OWLS-MX

Logic. The comparison is carried out only for queries that can be answered through sub-

class approximation, as OWLS-MX Logic does not support broader approximation. We

adopted an evaluation strategy used by [50] which measures the average recall/precision

for a given set of queries using a micro-averaging technique. Let Q be the set of test

queries taken from OWLS-TC, Sq is the set of relevant services for a query q ∈ Q, and

S as the sum of all services which answer some query in Q, such that S =
⋃
q∈Q

Sq. We

define byRq all the results which were returned for a query q. For each query q, we define

the set of relevant services up to a constant λ steps up to its maximum recall value, and

measure the number |Bλq| of relevant services retrieved at each of these steps. We chose

λ = 20 in order to be consistent with the OWLS-MX evaluation. Similarly, we measure

precision with the number |Bλ| of retrieved services at each step λ. The micro-averaging
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Figure 5.7: Recall-Precision comparison with OWLS-MX

of recall and precision is calculated for each of the steps, and is defined as:

Precisionλ =
1
|Q|

∑
q∈Q

|Sq ∩Bλq|
|Bλ| , Recallλ =

1
|Q|

∑
q∈Q

|Sq ∩Bλq|
|S|

Each 0.1 points at the y-axis and at the x axis represents a λ step. The results show

that while the two approaches behave similarly at high precision results, the logic-based

approach has a sharp decline in precision for results which are have recall below 0.6. In

contrast, our approach provides a gradual decline in precision, exhibiting flexible retrieval

by returning results which have lower precision. While our approach returns also less

precise results, our ranking mechanism ranks them below more precise results.

5.2.2 Performance and Scalability

We compared the precision/recall values of our approach with those of OWLS-MX by

running the OWLS-TC queries. OWLS-MX was chosen as it exhibit a leading and char-

acterizing approach to logic-based methods. Our results match our precision/recall perfor-

mance to those of OWLS-MX. However, the two methods vary considerably in the query

response time.

Table 5.2.2 presents a comparison of average response time of our approach and

OWLS-MX.1 The right hand column shows the percentage of the performance of our

approach in relations to the performance of OWLS-MX. OWLS-MX is 63 times slower
1The average query response time we measured of OWLS-MX were slightly higher than those reported

in [50]. The difference can be attributed to the different hardware configurations of the testing platforms.
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than our approach on average. The results clearly show the benefits of an indexing mech-

anism, which improves the performance of the query evaluation algorithms by an order of

one or two magnitudes.

Query OWLS-MX Our approach Percentage
hospital investigating 1710 33 1.93%
book price 1647 35 2.13%
country skilled occupation 1742 20 1.15%
car price service 1682 15 0.89%
geopolitical entity weather process 1364 27 1.98%
government degree scholarship 1782 32 1.80%
novel author 1662 40 2.41%

Table 5.1: Average query response time of our approach vs. OWLS-MX (measured in
ms)

The scalability of our approach was evaluated by simulating large numbers of seman-

tic Web services. Using the OWLS-TC benchmark services as the core, 2500 additional

services were simulated by imitating the properties of core services. The number of edges

in the service network graph exceeded 120,000. The service generation function was pa-

rameterized using 3 random variables: p - the number of parameters, nc - whether to

associate the parameter with a new concept or with an existing one, c - the identity of the

associated concept, if nc is false.

Figure 5.8 shows the average query response time as a function of the number of

services in the index. The trendline represents a linear trend line on top of the discrete

measurements. While the number of services increased by a factor of 6 (from 500 to

3000), the average response time increased only by a factor of 2.3 (from 15 ms to around

35 ms). The results exhibit the scalability of our indexing approach.

Figure 5.9 provide information about the same experiment from a different angle. The

number of index entries grows linearly with the number of services. This is the result of

bounding the similarity values by a threshold.

5.3 Implementation

In order to provide a proof-of-concept and to create a testbed for the experimental evalua-

tion, we developed OPOSSUM (Object-PrOcedure-SemanticS Unified Matching), a Web-

based search engine for Web services2. OPOSSUM crawls the Web for WSDL and OWL-
2The code is distributed under open-source license, and can be downloaded from

http://projects.semwebcentral.org/projects/opossum/
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Figure 5.8: Precessing time for query evaluation

S descriptions, transforming them into ontology-based models of the Web services. It does

so by automatically augmenting the service properties with existing concepts, which are

collected from ontologies on the Semantic Web [12]. The following sections describe the

architecture of the search engine. The implementation includes components which are not

part of the research of this thesis, such as Liquid-Interface and the query parser. However,

we discuss them as they illustrate the implacability of our approach.

5.3.1 Architecture

The architecture of OPOSSUM resembles the architecture of traditional, text-oriented,

search engines [20], but with several notable changes: Queries and search results are

expressed and represented differently. Furthermore, the index system is built to support

compositions, and follows the structure defined in Section 5.1.2. Technologically, the

system is based on MySQL 5.0 as a database server [45], Apache Tomcat [38] as a Web

application server, and the Java programming language. Additional components includes

the Jena Semantic Web Framework [61], and the OWL-S API [24].

Figure 5.10 depicts the main components of OPOSSUM, and the relations between
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Figure 5.9: Index size as a factor of the number of services

them. The search engine allows queries entered by two modals: through a text-based

query language and through a system modeling tool (OPCAT [34]). Following is a de-

scription of the main components of the system.

• Query Parser: When a user submits a query to a Web server, the Web server runs

the Query Parser, which analyzes the text of the query and constructs a model

of the query. An on-the-fly query analyzer matches query terms against concepts

stored in the concepts index. The Query Parser receives queries in two forms: (1)

as a simple keyword query language (similar to the one used by Google and other

search engine); (2) as an OPM model created by the Opcat tool [32].

• Query Processor: The Query Processor receives a query model and processes it

according to the algorithm described in Section 5.1.3. A screenshot of the results

page is shown in Figure 5.12.

• Crawler: The Web crawling (downloading of Web services WSDL, OWL-S and

ontology documents) is done by several distributed crawlers, operating offline. The

crawlers download the Web content, parse it and add the content to the designated

index. The crawler follows the algorithm described in Section 5.1, including the

concepts index (Iconcepts) and the composition index (Iservices).
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Figure 5.10: The Architecture of the OPOSSUM Search Engine

• Ranker: A-prioiri ranking is defined using a technique called ServiceRank. It is

the equivalent of PageRank [20] in Information Retrieval. The output of ranking

process is a number representing the usefulness of a service, which is general and

unrelated to any specific query. The ranking is calculated in a batch mode, without

considering any specific query.

The calculation is based on the number of incoming and outgoing links to other

services, and is based on a model of a “random designer”, which is similar to the

random surfer undermining PageRank. We imagine a designer who wants to com-

pose a service, and chooses an arbitrary atomic service to start with. The designer

then flips a coin and chooses whether to add to the composition a linked service or

to abandon the composition and start over. Roughly, a useful service is a service

which has high probability to be picked up by the designer, and this usefulness de-

pends on the number of incoming links and the usefulness of the linked services.

The rank is calculated on the base of the Eigenvalue of the network matrix described

in Section 5.1.2.
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Figure 5.11: The homepage of the OPOSSUM Search Engine

Figure 5.12: The results page of the OPOSSUM Search Engine
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5.3.2 Liquid Interface

In traditional software development processes, the user interface is derived from the re-

quirements and desired functionality of the application model. It can be carefully designed

and tested in order to ensure its usability. In contrast, in dynamically composed applica-

tions, the functionality is not set during the design of the system. Therefore, the user

interface cannot be designed, let alone tested for usability. The conclusion is that the user

interface should be generated dynamically as well, reflecting the temporary functionality

of the application. Liquid-Interface [70] is a framework for generating and optimizing

graphical user interfaces (GUI) from models of semantic Web services3.

Automatic User Interface Generation

The field of automatic generation of user interfaces attempts to formally define the el-

ements of user interfaces, including presentation and interaction, and using the formal

model in order to generate user interfaces [60, 47]. While model-based user interfaces

provide the foundations for automatic generation of user interfaces, they do not deal with

usability optimization as they presume the models are already usable. However, this ap-

proach will not suffice for dynamic compositions, as these compositions are not optimized

for usability.

In Liquid-Interface, we provide a model of user interface generation and optimization

for dynamically-composed applications. Our framework automatically generates form-

based user interface, as seen in Figure 5.13, from dynamic compositions. The Framework

can be used online at:

http://dori.technion.ac.il/liquidInterface. The code is distributed under open-source li-

cense, and can be downloaded from

http://projects.semwebcentral.org/projects/liquidinterface/. The composition is created by

submitting queries in a natural language to a service matcher. The output of the generation

process is a prototype: a visual presentation of a design that approximates what the final

application will look and behave. The prototype then goes through a process of optimiza-

tions, in which the model is transformed according to a set of design patterns that reflect

the usability of the application.

The input to the generation process is a model of dynamically-composed application,

written in OWL-S. The parts of the OWL-S model which are relevant to this part of the

research are the process model, which defines the execution order of the processes, and the

process specification, which defines the input and output parameters of processes using
3Liquid-Interface was implemented by Amir Lahav and Leonid Goifman.
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Figure 5.13: The Liquid-Interface UI Generator

ontological concepts.

The user interface generation process creates a Web-form for each sub-process, gen-

erating the form’s fields from the input and output parameters. The navigation between

the forms is based on the execution order of the sub-processes. For instance, if the pro-

cesses are ordered in a sequential form, then the user would be able to navigate between

the forms through a wizard-like fashion, using next and back buttons. If the sup-processes

are ordered as parallel, the user would be able to interact with each of the processes using

independent tabs.

Optimization by Model Transformation

The usability of the user interface is enhanced through two dimensions:

• Optimizing semantics: The user interface is brought nearer to the user’s concepts

and vocabulary by providing additional information and explanations taken from

ontologies which are related to the application.

• Optimizing navigation: This optimization deals with modifying the navigation of

the application with the intention of making it more usable, secure and manageable.
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The semantic optimization process is based on analyzing semantic concepts, which

are part of the OWL-S process specification. In OWL-S, each input and output parameter

is mapped to a concept that formally defines its essence. In order to provide richer se-

mantics to the users, these concepts are expressed using interface widgets. For example,

as the Patient concept contains several properties, such as name, insurance company and

symptoms, these concepts are displayed as additional fields, presented in the context of

the parent field. The type of the user interface widget is adjusted to the semantic type of

the concept. For example, concepts that express dates are displayed using a calendar, and

concepts that have a bounded set of values (e.g. countries or currencies) are displayed as

lists. Other semantic characteristics are expressed using user interface elements, including

cardinality, concept generalization, multi-lingual concepts, and input validity checks.

Navigation optimization modifies the process execution order of the original OWL-S

model according to a set of user interaction design patterns. As measures for evaluating

the quality of user interface navigation are rather vague, we created a taxonomy of user in-

teraction design patterns, selecting patterns which are relevant to navigation. For example,

the Flat and Narrow Tree design pattern [17] defines optimal measures to link distribution

between the pages. Each of the selected patterns were modeled as functions that assign a

navigational score to a configuration of the application’s navigational properties, such as

the number of links between pages and the number of fields within a page. The Liquid-

Interface framework includes an open architecture that allows new design patterns to be

defined and added dynamically to the optimization process, in a given order.

We had tested the implementation with several different compositions from various

sources and observed an improvement in the overall usability of the application. The

preliminary results also reveal interesting relations between design patterns, including

patterns that contradict (or enforce) each other.
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Chapter 6

Conclusions

Ring the bells that still can ring

Forget your perfect offering

There is a crack in everything

That’s how the light gets in.

Leonard Cohen, ”Anthem”

The objective of the proposed research is to address the rigidness of current semantic

service discovery and composition by defining and evaluating approximate service re-

trieval. As services can vary considerably in their structure and behavior, the chances of

a perfect match are low. Thus, current methods are limited in their utilization with real-

world services. The song “Anthem” by Leonard Cohen suggests that one should “forget

your perfect offering” and that “there is a crack in everything”. We believe that this

is the case with semantic Web services. Our results show that perfect compositions of

real-world services are hard to achieve, and that human users can handle a considerable

amount of approximation in the context of service retrieval.

In approximate service retrieval we relax some of the constrains of traditional service

retrieval in order to increase the recall of the retrieval process. The research investigates

two aspects: The user-perception of the retrieval process and second the properties of the

approximation algorithms, including their precision and satisfiability.
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6.1 Summary of Results

We identified four affinity patterns that capture the essence of similarity between compo-

sitions of service operations.

1. Set hierarchy pattern,

2. relation pattern,

3. instance-classification pattern, and

4. functional affinity pattern.

We have proved that the list of affinity pattern is complete and that they are sufficient to

capture the similarity between every two compositions. While the first patterns formally

defines a notion of similarity which is already discussed in the research of semantic Web

service composition, the last three patterns define a new notion of similarity. Unlike logic-

based similarity methods, the patterns define flexible means of similarity. Unlike text-

based similarity methods, the outcome of the matching process is explainable and rooted

in formal ontological structure. Therefore, our similarity measures exhibit some desired

properties, such as explainability, as each similarity-based decision can be analyzed and

explained to the user.

The experimental results provide a basis for evaluating the patterns. As far as we

know, this is the first experiment in which paradigms of service retrieval were examined

with human participants. The experiment contradict several wide spread assumptions in

the literature of service retrieval. Logic-based methods assign equal importance to plu-

gin (more specific) and to the exact (baseline) results [49], because more specific results

follow the axioms of the general results. However, according to our results, human partici-

pants perceive specific results as inaccurate like general results. Moreover, we discovered

that human participants perceive a “softer” notion of similarity than the one defined by

logic-based methods. Our results show that there are two contexts of service similarity

that differ in their nature. The first context is based on semantic and functional compar-

ison between the query and the composition. The second context reflects service reuse.

Participants were more forgiving for inexactness in the reuse context, as the average score

for usefulness was higher than that for completeness and exactness.

Introducing approximation to service retrieval has several implications to algorithmic

and computational aspects. First, we define an efficient, graph-based data structure for

organizing services. Second, we provide a semantically-rich query language, allowing

both simple and advanced service search capabilities. Third, we analyze the complexity
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of service retrieval and provide a sub-linear service retrieval algorithm in the average case.

We suggest an indexing-based method for semantic and functional service properties.

Evaluating a graph-based query on a graph index is reducible to the problem of sub-

graph isomorphism, and is therefore NP-complete for the worst-case. However, by clus-

tering the graph according to dependency distribution, we were able to suggest an al-

gorithm which is sub-linear in time complexity for the average case. We show that our

approach is scalable to large number of services. We show that by raising the number of

services from 1 to above 3,000 (and the number of dependencies from 0 to 120,000), the

average query processing time had risen from 10 milliseconds to 30 milliseconds. Our

approach also outperforms a leading approach [50] in the field of service composition by

a one to two orders of magnitude.

Finally, we demonstrate a proof of concept of our results by developing OPOSSUM

(Object-PrOcess-SemanticS Unified Matching), a search engine for Web services which

employ the methods presented in this research, including approximation based semantic

and procedural similarity. The results of the search engine are transferred into another

system, called Liquid-Interface, which automatically creates a prototype of the composi-

tion. Together, the two systems allow the user to search for Web services on the Web, and

to immediately use a prototypes that simulates the composition functionality.

6.2 Future Directions and Open Problems

Our research can be developed in different directions for improving approximate service

retrieval. Possible future research directions include the following:

• Service analysis: In order to build searchable service repositories, it is necessary

to automatically analyze and index large collections of services from existing re-

sources, programming code, Web forms and so fourth. The research will utilize

probabilistic ontologies in order to represent services, and evaluate several analysis

methods (i.e., textual and structural analysis algorithms) that map service properties

to ontological concepts.

• Composition complexity: While our research used a heuristic-based approach to

approximate composition planning, it is not a general solution which work for any

type of ontology structure and any type of semantic service specification.

• Human-Computer interaction: The success of service retrieval depends on the way

it is used by developers, designers and novice users. Thus, the research would
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investigate how users perceive the affinity between services, the results ranking,

and other aspects of service retrieval.

• Model-driven development: An interesting research direction is to merge approx-

imate service composition with model-driven development, embedding semantic

service retrieval within service development environments. As our notion of simi-

larity is based on the mechanism of virtual operations, it is interesting to see if these

virtual operations can be automatically built.
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Chapter 7

Appendixes

7.1 Object-Process Methodology (OPM)

Object-Process Methodology (OPM) [32] is an integrated approach to the study and de-

velopment of systems in general and information systems in particular. OPM offers a

bimodal visual-lingual model representation that is both intuitive, catering for humans,

and formal so machines can process it. The basic premise of the OPM paradigm is that

objects and processes are two types of equally important classes of things. Figure 7.1 pro-

vides a legend for central OPM constructs. Processes in OPM can stand alone, allowing

intuitive modeling of the system’s behavior that involves several object classes, possibly

cutting across the system’s structure. Procedural links, such as result link and enabling

link are used to express the behavior of processes. Structural links, including specializa-

tion and characterization are used to express structural information regarding processes

and objects. The kind reader is refereed to [32] for a thorough review of OPM.

OPM is suitable for process specification, which is at the heart of Semantic Web Ser-

Relation

name

Characterization 

InstanceObject
Object

Process

Process

SpecializationResult Link

Enabling Link

Figure 7.1: OPM Legend
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vices specification. OPM-based semantic modeling and annotation has been investigated

in two relevant research directions. The Visual-Semantic Web (ViSWeb) [33] enhances

the Semantic Web and the RDF standard using OPM. In [35] it has been shown that OPM

can be used to model expressive OWL-S-based compositions. OPM includes a notation

for cardinality participation constrains. Table 7.1 defines the labels (presented in the up-

per row) and the minimal and maximal number of instances participating on the relation

(presented in the bottom row).

Symbol ? m none 1 + m..n
qmin..qmax 0..1 0..∞ 1..1 1..1 1..∞ m..n

Table 7.1: Cardinality participation constraints in OPM

OPCAT [34] is a software environment that supports OPM-based modeling through

a computerized environment. OPM has been found suitable as infrastructure for this re-

search for several reasons. OPM offers a single encompassing modeling solution for the

three aspects of Semantic Web Services modeling which are integrated into a single frame

of reference: process, structure, and semantics. This way, OPM avoids the main draw-

back of UML-based semantic modeling, namely the large number of diagram types with

overlapping modalities.

7.2 Aligning Ontologies

The service model is based on the assumption that all concepts belong to a single ontology

(O). However, the original ontologies, to which the services are related, originate from

different and heterogeneous sources. These ontologies may contain concepts with similar

meaning which differ in labeling, content or language. In order to increase the recall of

the retrieval process, the original ontologies are merged to construct O. The process of

ontology merging takes as input a set of source ontologies and returns a merged ontology,

containing a union of the elements of the ontologies, such that equivalent concepts are

merged.

We take a similar approach to [21], where several small ontologies are linked together

and merged in order to create a superset of the ontologies. The first step in merging on-

tologies is to map the relations between their concepts. We have adopted the approach of

Euzenat and Valtchev [36], which uses a combination of matching techniques in order to

map concepts. These techniques include matching by string-based terminology, lexicon-

based terminology, data-type comparison, properties comparison and relation comparison.
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The weighted contributions of all the techniques are combined to provide the final match-

ing. We have chosen this approach as it designed for OWL-Lite and is fully automatic,

making it suitable for processing large amounts of ontological data. After the ontologies

were matched, they are merged by combining equivalent concepts, including their prop-

erties and relations. Foreign concepts, without any correspondence to other concepts, are

copied to the merged ontology.
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[52] U. Küster, B. König-Ries, M. Stern, and M. Klein. Diane: an integrated approach

to automated service discovery, matchmaking and composition. In WWW ’07: Pro-

ceedings of the 16th international conference on World Wide Web, pages 1033–1042.

ACM, New York, NY, USA, 2007. ISBN 978-1-59593-654-7.

[53] R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of

wsmo and owl-s. In Proceedings of the European Conference on Web Services

(ECOWS’04), volume 3250 of Lecture Notes in Computer Science, pages 254–269.

Springer-Verlag, 2004.

100



[54] O. Lassila and R. R. Swick. Resource description framework (rdf) model and syntax

specification. W3c candidate recommendation, W3C, February 1999.

[55] R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 22

(140):1–55, 1932.

[56] S. A. McIlraith and T. C. Son. Adapting golog for composition of semantic web

services. In KR, pages 482–496, 2002.

[57] T. D. Noia, E. D. Sciascio, and F. M. Donini. Semantic matchmaking as non-

monotonic reasoning: A description logic approach. J. Artif. Intell. Res. (JAIR),

29:269–307, 2007.

[58] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara. Semantic matching of

web services capabilities. In International Semantic Web Conference, pages 333–

347, 2002.

[59] E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. W3c recom-

mendation, W3C, January 2008.

[60] A. R. Puerta and J. Eisenstein. Towards a general computational framework for

model-based interface development systems. Knowledge-Based Systems, 12:433–

442, 1999.

[61] H. Research. Jena semantic web framework. URL http://jena.

sourceforge.net/.

[62] P. Resnik. Semantic similarity in a taxonomy: An information-based measure and

its application to problems of ambiguity in natural language. Journal of Artifi-

cial Intelligence Research, 11:95–130, 1999. URL citeseer.ist.psu.edu/

resnik99semantic.html.

[63] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup: hypercubes, ontolo-

gies, and efficient search on peer-to-peer networks. Springer-Verlag, 2002.

[64] C. Schmidt and M. Parashar. A peer-to-peer approach to web service discovery.

World Wide Web Journal, 7(2):211–229, 2004. ISSN 1386-145X.

[65] Z. Shen and J. Su. Web service discovery based on behavior signatures. In 2005

IEEE International Conference on Services Computing (SCC’05), pages 279–286,

2005.

101



[66] E. Sirin, , J. Hendler, and B. Parsia. Semi-automatic composition of web services

using semantic descriptions. In Web Services: Modeling, Architecture and Infras-

tructure workshop in ICEIS 2003, April 2003. URL http://www.mindswap.

org/papers/composition.pdf.

[67] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among

heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent

Systems, 5(2):173–203, 2002. ISSN 1387-2532.

[68] E. Toch, A. Gal, and D. Dori. Automatically grounding semantically-enriched con-

ceptual models to concrete web services. In Proceedings of the International Confer-

ence on Conceptual Modeling (ER’05), volume 3716 of Lecture Notes in Computer

Science, pages 304–319, 2005.

[69] E. Toch, A. Gal, I. Reinhartz-Berger, and D. Dori. A semantic approach to approxi-

mate service retrieval. ACM Trans. Inter. Tech., 8(1):2, 2007. ISSN 1533-5399.

[70] E. Toch, I. Reinhartz-Berger, A. Gal, and D. Dori. Generating and optimizing graph-

ical user interfaces for semantic service composition. In Proceddings of the Interna-

tional Conference on Conceptual Modeling. Elsevier Science Inc., 2008.

[71] P. Traverso and M. Pistore. Automated composition of semantic web services into

executable processes. In Proceedings of the International Semantic Web Conference

2004 (ISWC’04), pages 380–394. Springer-Verlag, 2004.

[72] P. D. Turney. Similarity of semantic relations. Computational Linguistics, 32:379,

2006. URL http://www.citebase.org/abstract?id=oai:arXiv.

org:cs/0608100.

[73] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, 1976.

ISSN 0004-5411.

[74] R. Vaculin and K. Sycara. Towards automatic mediation of owl-s process models.

Web Services, 2007. ICWS 2007. IEEE International Conference on, pages 1032–

1039, 9-13 July 2007.

[75] T. D. Wang, B. Parsia, and J. A. Hendler. A survey of the web ontol-

ogy landscape. In International Semantic Web Conference, pages 682–694,

2006. URL http://www.informatik.uni-trier.de/˜ley/db/conf/

semweb/iswc2006.html#W% angPH06.

102



[76] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Analysis

of Web services composition languages: The case of bpel4ws. In Proceedings of the

International Conference on Conceptual Modeling (ER’03), volume 2813 of Lecture

Notes in Computer Science, pages 200–215. Springer-Verlag, 2003.

[77] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia. Automatic web services compo-

sition using shop2. In Twelfth World Wide Web Conference, 2003. URL http://

citeseer.ist.psu.edu/671310.html.

[78] F. Yergeau. UTF-8 - a transformation format of unicode and iso 10646, 1998.

[79] A. Zaremski and J. Wing. Specification matching of software components. ACM

Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

103


