
Generating and Optimizing Graphical User
Interfaces for Semantic Service Compositions

Eran Toch1, Iris Reinhartz-Berger2, Avigdor Gal1, and Dov Dori1

1 Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology

erant@tx.technion.ac.il, dori@ie.technion.ac.il, avigal@ie.technion.ac.il
2 Department of Information Systems

University of Haifa
iris@mis.hevra.haifa.ac.il

1 Background

Semantic Web service composition is a discovery process in which a given set
of requirements are fulfilled by dynamically locating and assembling semanti-
cally annotated services [5, 6]. Semantic annotation of Web services is a set of
models that describe its properties (e.g., inputs, outputs, process), in a formal
language such as OWL-S [2]. These models provide an unambiguous description
of service properties by relating them to concepts belonging to Web ontologies.
While dynamic service composition provides a flexible applications which can
change according to service failures and other factors, it raises several questions
regarding the way users interact with the generated applications. Specifically, it
raises a challenge for usability, which is defined as the effectiveness, efficiency
and satisfaction in which users perform tasks using a given system [1].

In traditional software development processes, the user interface is manually
designed, implemented and tested in order to ensure its usability. In contrast,
in dynamically composed applications, the functionality is not established dur-
ing the design of the system. Therefore, the user interface cannot be designed,
let alone tested, for usability. The conclusion is that the user interface should
be generated dynamically as well, reflecting the temporal functionality of the
application.

The field of automatic generation of user interfaces attempts to formally
define the elements of user interfaces, including presentation and interaction
[4]. However, they do not deal with usability optimization as they presume the
models are designed with usability in mind. Therefore, this approach will not
suffice for dynamic compositions, as these compositions are not optimized for
usability. The contribution of our work is in suggesting a method for optimizing
the usability of dynamically composed applications, using formal methods.

2 Optimization by Model Transformation

In order to address the problem of usability in dynamically-created compositions,
we present Liquid-Interface, a framework for user-interface generation and



optimization1. The framework generates Web-based user interfaces by analyzing
the semantic properties of compositions defined in OWL-S [2]. Liquid-Interface
applies an optimization technique to improve the usability of the user-interface,
and specifically the way users navigate the applciation.

Liquid-Interface derives semantic concepts from the service description, visu-
ally expressing them using interface widgets. For example, concepts that express
dates are displayed using a calendar, and concepts that have a bounded set
of values (e.g. countries or currencies) are displayed as combo-box lists. Other
semantic characteristics are expressed using user interface elements, including
cardinality, concept generalization, multi-lingual concepts, and input validity
checks.

Navigation optimization modifies the process execution order of the origi-
nal OWL-S [2] model according to a set of user interaction design patterns [3].
We created a taxonomy of user interaction design patterns, which are relevant
to navigation, and expressing them using formal mathematical models. For ex-
ample, the Flat and Narrow Tree design pattern defines optimal measures to
link distribution between the pages. The patterns are used in order to assign
a usability score to a configuration of the application’s navigational properties.
These properties include the number of links between processes, the number of
fields within a process, and so fourth. The optimization process searches for a
configuration with an optimal accumulative score. Heuristic methods are used
in order to bound the search space. The Liquid-Interface framework exhibit an
open architecture that allows new design patterns to be defined and added dy-
namically to the optimization process. Preliminary results prove the feasibility of
our approach, and reveal interesting relations between design patterns, including
patterns that contradict, or reinforce, each other.

References

1. ISO 9241-11. Ergonomic requirements for office work with visual display terminals,
part 11: Guidance on usability, 1998.

2. A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. Daml-s: Seman-
tic markup for web services. In Proceedings of the International Semantic Web
Workshop (SWWS), pages 411–430, July 13 2001.

3. Jan Borchers. A Pattern Approach to Interaction Design. John Wiley & Sons, Inc.,
2001. Foreword By-Frank Buschmann.

4. Deepali Khushraj and Ora Lassila. Ontological approach to generating personalized
user interfaces for web services. In International Semantic Web Conference, pages
916–927, 2005.

5. Matthias Klusch. Semantic service coordination. In H. Schuldt M. Schumacher,
H. Helin, editor, CASCOM - Intelligent Service Coordination in the Semantic Web,
chapter 4. Birkhaeuser Verlag, Springer, 2008.

6. Eran Toch, Avigdor Gal, Iris Reinhartz-Berger, and Dov Dori. A semantic approach
to approximate service retrieval. ACM Trans. Inter. Tech., 8(1):2, 2007.

1
The Framework can be used and downloaded at: http://dori.technion.ac.il/liquidInterface


