
Automatically Grounding Semantically-enriched
Conceptual Models to Concrete Web Services

Eran Toch, Avigdor Gal and Dov Dori

Technion – Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract. The paper provides a conceptual framework for designing and exe-
cuting business processes using semantic Web services. We envision a world in
which a designer defines a “virtual“ Web service as part of a business process,
while requiring the system to look for actual Web services that match the spec-
ifications of the designer and can be invoked whenever the virtual Web ser-
vice is activated. We take a conceptual modeling approach, identifying the inter-
relationships between ontology concepts and syntactic Web services. We then
propose a generic algorithm for ranking top-K Web services in a decreasing order
of their benefit vis-́a-vis the semantic Web service. We conclude with a discus-
sion on extending the proposed model to handle uncertainty as a result of concept
mismatch and the desired properties of a schema matching algorithm to support
Web service identification.

1 Introduction

Web services allow universal connectivity and interoperability of applications and ser-
vices, using well-accepted standards as UDDI, WSDL, and SOAP. Current Web ser-
vice standards have focused on operational details for implementation and execution.
A major challenge to the architecture of Web services is that current standards support
syntactic, rather than semantic description of Web service capabilities.

A recent development enables the specification of semantic Web services. The se-
mantic Web [5] aims to extend the World-Wide-Web by representing data on the Web
in a meaningful and machine-interpretable form. The semantic Web is based on a set of
XML-based languages that provide well-defined semantics and enable the markup of
complex taxonomic and relations between entities on the Web. Ontologies, commonly
defined as a “specification of a conceptualization,” [19] serve as the key mechanism
for the semantic Web. A leading language for ontology modeling for the semantic web
is the XML-basedWeb Ontology language (OWL)[9], providing a semantic markup
for the definition of concept classes, relations among them, and their instances. Several
methods for annotating Web services with semantic metadata have been proposed. One
of the most prominent methods is OWL-S [3], which is based on OWL. It provides an
upper ontology for Web services, enabling a description of the service’s profile, process
model and its grounding - a mapping to the syntactic definition of the concrete Web
service.

We envision a world in which some Web services have semantic descriptions, while
others are only syntactically defined. In particular, designers can define a “virtual” Web

2

service as part of their business processes, while requiring the system to look for actual
Web services that match the specifications of the designer and can be invoked whenever
the virtual Web service is activated. The design of semantic Web services can be an
iterative process, starting from rough design, and gradually refined based on feedback
from some mechanism that grounds the semantic Web service to some existing Web
services.

It is the aim of this paper to provide a conceptual framework for a model-driven
design using semantic Web services. We take a conceptual modeling approach, iden-
tifying the inter-relationships between ontology concepts and syntactic Web services.
We then propose a generic algorithm for ranking top-K Web services in a decreasing
order of their benefit vis-á-vis the semantic Web service. We conclude with a discussion
on extending the proposed model to handle uncertainty as a result of concept mismatch
and the desired properties of a schema matching algorithm to support Web service iden-
tification.

The main contribution of this work is twofold. At the conceptual level, we introduce
a method for designing business processes as a composite set of Web services. At the
algorithmic level, we provide a generic algorithm for ranking of concrete Web services
with respect to their suitability in fitting a semantic Web service description, in effect
offering a model-driven approach for service-oriented computing. The semantic Web
service serves as a conceptual model. Rather than generating a code out of the model,
the model is implemented by locating and invoking existing services. It is worth noting
that the concrete Web services are not necessarily annotated with semantic meta-data,
but rather described as WSDL documents, reflecting the current state of affairs. Finally,
we discuss the characterization of requirements for a schema matching algorithm should
satisfy to qualify for interfacing with the Semantic Web.

The rest of the paper is organized as follows. Section 2 presents the model and
formally defines the problem. The use of ontologies in ranking Web services is given
in Sect. 3. We propose an algorithm for the matching process in Sect. 4. Section 5
discusses the extension of the proposed framework to handle semantic heterogeneity.
The paper concludes with a review of related work (Sect. 6) and future work (Sect. 7).

2 Model and Problem Definition

In this section, we provide a formal definition of the two main elements of our model,
namely Web services (Sect. 2.1) and Semantic Web services (Sect. 2.2). We conclude
with a formal introduction of the problem at hand (Sect. 2.3).

2.1 Web Services

Web services are loosely coupled software components, published and invoked across
the Web. Several XML-based standards ensure the regulation of the discovery and the
interaction of Web services. In particular, UDDI allows Web services to be discovered
through a keywords search. A Web Services Description Language (WSDL) document
describes the interface and communication protocol of Web services. In this paper, we
will use a simplified definition of a WSDL Web service, ignoring namespaces, faults

3

handling, and communication issues. Therefore, a Web service is a quadruple,WS=
(T,M,O,A), where:

– T is a finite set of types. A type can be primitive (e.g., integer) or complex, de-
scribed by an XML schema.

– M is a finite set of messages. Each message is defined by a name and a type,t ∈ T.
– O is a finite set of operations provided by the service.
– A : M,R→ O is a finite set of assignments, each of which assigns a set of mes-

sages in{m1,m2, ...,mn} ∈M andR= {input,out put} to an operationo∈O. Each
message can serve as either an input or an output of the operation.

Current Web service architecture suffers from several limitations. In particular, al-
though Web services are designed to provide distributed interoperability among appli-
cations, lack of semantic definition of these applications make the automatic integration
and discovery of Web services a difficult task.

2.2 Semantic Web Services

Applying the advances of the Semantic Web to Web services, resulted in OWL-S [3].
OWL-S is a language for specifying Web service ontology, based on OWL, which aug-
ments current Web services architecture with semantic metadata. It provides a set of
markup language constructs for describing the properties and capabilities of Web ser-
vices, facilitating the automation of Web service tasks, including automated discovery,
execution, composition and interoperation. An OWL-S ontology includes three sec-
tions, namely a profile ontology (what the service does), a process-model ontology
(how it works) and a grounding ontology (how it can be used). The profile ontology ex-
tends the UDDI language, providing semantic annotation for the parameters the service
accepts and provides, as well as general information describing the service.

Throughout the paper, we shall use as a case study of a semantic Web service named
Book Price,a service that receives a book title and a currency, finds the book’s informa-
tion, retrieves a price quote for it and convert it into a desired currency1. Figure 1 pro-
vides a visual illustration of the service using OPM/S [15], which serves as a modeling
and visualization method for semantic Web services. OPM/S is an extension of Object-
Process Methodology (OPM) - a conceptual object-oriented and process-oriented mod-
eling language that supports the semantic Web [13, 14]. OPM/S models are composed
of two entity types, namely services (represented as ellipses), and parameters that pass
between (and possibly modified by) services, represented as rectangles. Semantics is
notated by tagging the entities with their ontological concepts in the upper-left corner
of the entity.

TheBook Priceservice takes a book name and and a desired currency and returns
the price of the book. The service is composed of three atomic services, namelyBook
Finder, Price Finder,andCurrency Converter. Book Finderreceives a book name and
produces information about the book, if the book was found.Price Finderreturns the
book price in dollars, andCurrency Converterconverts the price to the desired currency.

1 Available at: http://www.mindswap.org/2004/owl-s/services.shtml

4

Fig. 1.Book-Price Service

The example illustrates our notion of designing semantic Web services as an iterative
process. In particular, note that the output toBook Finder is a rather fuzzy term of
Book Info. As we will show later, this term is grounded in an ontology, yet it leaves
the designer some maneuvering space. The designer has no particular preference at this
time as to the exact form ofBook Info, as long as it can serve as an appropriate input to
Price Finder.

The process-model is defined as a workflow of processes, each being a quadruple
PR= (IN,OUT,E,P), whereIN is a set of input parameters,OUT is a set of output
parameters,E is a set of the process effects andP is a set of preconditions. Processes
can be atomic or composite. Atomic processes are directly invoked within a single step
and can be mapped directly to a WSDL operation. Composite processes, in contrast,
represent a complex structure of processes. Formally, a composite process augments
the process structure described above with a set of subprocesses (either atomic or com-
posite), executed according to a certain control construct (such as parallel, sequential,
conditioned etc). For instance, the three subprocesses of theBook Price Serviceare exe-
cuted sequntially starting from the top process. The last section of the OWL-S ontology
is the grounding ontology. It provides a mapping between the atomic processes to the
WSDL definition of the concrete Web service.

Elements of the profile and process-model sections, such as input and output ele-
ments, can be mapped to concepts in accompanying ontologies or to primitive XML
datatypes. To illustrate this mapping, we use the AKT portal ontology [1], visualized
in Fig. 2 using OPM, which specifies concepts related to the specification of a content
management system. TheBook Infoparameter object in the semantic Web service (Fig.
1) is mapped to aBookconcept, described in the ontology. Given an ontology with a set
of conceptsC, the functiontag : IN ∪OUT∪E∪P→C∗, maps a parameter to its un-
derlying set of concepts. A closer look at the portal ontology reveals the inner relations
between theBookconcept to other concepts. TheBookconcept is a specialization of

5

Fig. 2.The AKT Portal Ontology, visualized in OPM

thePublicationconcept.Publicationis characterized byLocation, DateandTitle, and
is a specialization ofInformation Bearing Object.

2.3 Problem Definition

Web service discovery is a process, in which a Web service is discovered to match some
specification. In this work we focus on specifications that are given as semantic Web
services. Given anatomicprocessPRand a setOP = {OP1,OP2, ...OPp} of operations
within WSDL-described Web services, letρPR = (�PR,OP) be a partial order of op-
erations, representing their relative fit forimplementing PR. Therefore, ifOPi �PR OPj

thenOPj is better suited to be executed as an implementation ofPRthenOPi . Typically,
ρPR may not be known in advance and currently a manual intervention on a grand scale
may be required to ensure a selection of a suitable Web service.

In an attempt to automate the process and avoid gross errors in the discovery process,
we propose the ranking of the best top-K suitable Web services, rather than providing
a single Web service. Formally, given a processPR, a domain ontologyON, and a set
OP = {OP1,OP2, ...,OPp} of available Web services, we wish to generate a ranked
mappingOP ′ =

{
OP(1),OP(2), ...,OP(k)

}
of K Web services such that:

– ∀i < j ≤ k OPj �PR OPi , and
– ∀k < l OPl �PR OPk.

3 Web Service Ranking using Ontologies

This section provides a conceptual ontology-based model for Web service ranking. Sec-
tion 3.1 describes context classes and mark vectors, which are the primary tools for con-
ceptual analysis of semantic Web services. Section 3.2 describes the method of ordering
results of queries for Web services. Section 3.3 provides a detailed example.

6

Table 1.Classification of Semantic Relations to context classes

Context ClassOWL relations
Exact direct mapping, owl:equivalentClass, owl:equivilantProperty,

owl:sameIndividualAs, owl:ObjectProperty, owl:DatatypeProperty
Specific owl:subClass, owl:intersectionOf, owl:oneOf, individual,

{x|∀c∈ Speci f ic,x = Ob jectProperty(c)∨x = DatatypeProperty(c)}
General owl:unionOf, super-class, inverse(property), class-of

{x|∀c∈General,x = Ob jectProperty(c)∨x = DatatypeProperty(c)}
Negation owl:complementOf, owl:disjointWith

3.1 Classification into Context Classes

We start our conceptual analysis by observing that ontologies provide a natural ranking
mechanism that can be derived from the semantics of ontological constructs. Given a
conceptc ∈C, annotated as the “anchor” concept, all concepts inC can be classified
into one of fourcontext classes, as follows:

Exact Concepts which have an identical semantic meaning asc, includingc itself and
its properties. OWL provides relations such asequivalentClassin order to define
concept equivalence.

General Concepts which supply higher-level context. For instance, thePublication
concept is a super-class of theBookconcept and therefore falls under the category
of General with respect toBook.

Specific Concepts that provide a more specific context.Bookbelongs to theSpecific
class ofPublication.

Negation Concepts which have explicit contradicting meaning. For instance, in OWL,
if classc1 disjointWithclassc2, then an instance ofc1 cannot be an instance ofc2.

While this classification is not new, careful attention should be given to properties,
to which actual instance values are attached. Recall that our goal is to rank Web ser-
vices according to their adequacy for the task at hand. Therefore, parameters from the
semantic Web service description should be mapped to input and output messages of
operations. Whenever a parameter is not grounded in a property element of an ontology,
we should translate this grounding in terms of properties. Therefore, a class is repre-
sented by a subset of its properties, while a relation is represented as a subset of the
properties of the class(es) with which it is associated. We should emphasize that this is
not generally true, and such simplification is needed due to the simple format of Web
services. If a concept is mapped to a certian context class, its properties (both object
properties and datatype properties) are added to the corresponding context class.

Given an ontology with a set of conceptsC, there are 2n− 1 possible combina-
tions of concepts fromC, ranging from individual concepts to a set of all concepts in
C. Consider any such combinationC′ ⊆C as a possible CNF query to a Web service
search engine. Let the response to such query be all Web services for which these con-
cepts are considered relevant by the search engine. For example, given a queryC′ ⊆C,
Woogle [12] returns all Web services for which all concepts inC′ appear in their WSDL
description.

7

Table 2.Mark vectors and their classifications

Exact General Specific NegationRanking Category
1 1 1 0 ACCURATE

1 1 0 0
1 0 1 0
1 0 0 0 CONTEXT-LESS

0 1 1 0 CONTEXT-ONLY

0 1 0 0
0 0 1 0
0 0 0 1 INVERSE

0 1 0 1 UNCERTAIN

0 0 1 1
0 1 1 1
1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 1

Given a conceptc∈C, a queryC′ ⊆C can be mapped to a vectormark= (e,g,s,n)
of binary variables. Each binary variable represents a different context class.e,g,s and
n represent the context classesExact, General, Specific andNegation, respectively. A
variable is assigned with a value of 1, if existsc′ ∈C such thatc′ belongs to the relvenat
context class ofc. Let us look at the AKT portal ontology (Fig. 2) for some examples.
Assuming the anchor concept isBook, then the following mapping exists: The query
{Book} and{Book∧ ISBN} are mapped to the mark vector(1,0,0,0), because they
contain concepts from theexact context class. The query{Book∧ ISBN∧Title} con-
tains bothExact concepts (BookandISBN) and aGeneral concept (Title). Hence it is
mapped to the vector(1,1,0,0).

Table 2 specifies the complete set of possible mark vectors. The right column of
the table groups the vectors into 5 ranking categories according to the matching pattern
derived from the vector. For instance, theACCURATE category contains results that
originate from both direct mapping concepts and context concepts. Thus, it has the
potential to produce results with high accuracy. TheCONTEXT-LESScategory contains
results that originated only from direct mapping concepts, without a match to supporting
context concepts.

3.2 Ranking of Mark Vectors

The ranking of the Web services relies on ranking of mark vectors, based on the mar-
ginal benefit of the concepts that form the vector. Each context class has a varying
contribution to the vector. For instance, a concept that belong to theGeneral class pro-
vide context to the query and potentially increasing its precision. On the other hand,
concepts that belong to theNegation class may lead to unwanted results. A complete
suggestion of a partial order between mark vectors is depicted in Fig. 3. Mark vectors of
the ACCURATE category are ranked higher than any other category, because their com-
patible queries contain both exact and contextual concepts. Specifically, it is considered

8

Context-Less
(1,0,0,0)

Inverse
(0,0,0,1)

Uncertain
{(0,1,0,1), (0,0,1,1), (0,1,1,1), (1,0,0,1),

 (1,1,0,1), (1,0,1,1), (1,1,1,1)}

Context-Only

(0,1,1,0)

(0,0,1,0) (0,1,0,0)

Accurate

(1,1,1,0)

(1,0,1,0) (1,1,0,0)

Fig. 3.Partial Order between Mark Vectors

more accurate than vectors of the CONTEXT-LESS and CONTEXT-ONLY categories.
However, no order is determined within these two categories. Order between vectors
within a category is relevant to the ACCURATE and CONTEXT-ONLY categories, and it
is based on the weighted sum of matching concepts. The three top classes represent pos-
itive queries, those originating from direct and contextual concepts. The three bottom
classes represent negative queries, which will retrieve empty, unfavorable or doubtful
results. Queries which are assigned to the same mark vector may have an internal rank-
ing between them, according to the number of concepts that form the query. IfC1 andC2

are two queries, and the number of concepts inC1 is higher than the number of concepts
in C2, thenC1 is considered more precise and therefore it is ranked higher.

3.3 Example

Consider theBook PriceService, as described in Figure 1, and the AKT portal ontology
(Figure 2). In order to find a grounding for the first atomic process of the service -Book
Finder - we will describe the output parameter,Book Info, using a set of concepts from
the portal ontology. The setC will be defined as all elements of the ontology (including
properties), and the anchor concept is defined asBook. The context classes forBookare
defined as follows:

9

Travel
SerkoÂ ®

K4THotel

Barnes &
Noble Quote
Service

Book Info
Service

HK ID
CheckDigit

SalesRank
and Price

Neil Finn
Travel

ISBNbook

title author

Fig. 4.Matching Results for the BookFinder Process

– Exact= {Book, ISBN}
– Speci f ic= φ
– General= {Publication,Title,Date,Location, IsAuthoredBy, IsOwnedBy. . .}
– Negation= φ

The next step is to build a set of queriesC′ ⊆ C. For instance, the following list
contains a subset of the conjunctive normal form queries that can be constructed from
concepts ofC, and their compatible mark vector:

{Book} ,{Book∧ ISBN} ⇒ (1,0,0,0)
{Book∧ ISBN∧Publication} ,{Book∧ ISBN∧Publication∧Title} . . .⇒ (1,1,0,0)

adding concepts to the query can potentially increase its precision (and decreas-
ing its recall). Therefore, each query in the list is ranked higher than the subsequent
query on its left hand side. Furthermore, queries that are assigned to mark vectors of
the ACCURATEclass are ranked higher than ones of the CONTEXT-LESSclass. Figure 4
describes the outcome of executing the queries through the Woogle search engine [12]
on real Web services. The dashed circles represent sets of services that were retrieved
according to a designated query. For instance, the following services had answered the
{Book} query:Travel SerkoA, K4THotel, Neil Finn Travel, Barnes & Noble Quote Ser-
vice andBook Info Service. The services which are included by this group belong to
two different domains: the travel domain, where the word Book is used in the context
of booking a flight, and the publication domain, which is the one we are looking for.
Intersection of this set with the set induced by{ISBN}, results in a subset of the pre-
vious set. Notice that theBook Info Service, which is the only service that answers the
requirements, is retrieved by the query{Book∧ ISBN∧Publication∧Title}. As notes,
the last query is ranked higher than{Book∧ ISBN}, so the final ranking will be:

Book Info Service≺PR Barnes & Noble Quote Service≺PR Neil Finn Travel . . .

10

Pr

p1

p2

p3

OP 1

m1

m2

m3

OP 2

m' 1

m'2

m'3

C 1

C 2

Fig. 5.Mapping between semantic processes and WSDL operations

4 Generic Ranking Algorithm

In this section we present a generic ranking algorithm that takes as input an atomic
processPR, a domain ontologyON, and a set of WSDL-described operationsOP , and
returns a set of operationsOP ′, which are ranked according to their capability of im-
plementingPR. The basic idea behind the algorithm is to infer the affinity between a
process and each operation, and use it as a measure for ranking. As demonstrated in Fig.
5 the affinity is derived from the affinity between the process’ parameters(p1, p2, ..., pk)
and the operation’s messages(m1,m2, ...,mn). As explained in Sec. 3, the mapping be-
tween parameters and messages is provided through the ontological concepts that are
tagged to the parameters. Figure 5 visualize this notion for the first parameter,p1. The
parameter is represented by conceptsC1 andC2, while they are mapped directly to the
messagem1.

An implicit assumption in the ensuing discussion is that two operations that take
the same parameters as input perform the same intended activity. Researchers have
argued against this assumption [31]. Therefore, we provide a motivation for keeping
it in this specific context. According to the model, the behavior of a semantic Web
service is expressed using composite processes. Such flexibility allows a designer to
useatomic processes for constructing composite ones. Therefore, one can assume that
PR is specified as a simple enough process, or else it would be designed as a composite
process and be further decomposed into atomic processes. While “simple-enough“ is a
vague metric, we assume that the output variance of such processes is limited, implying
that the interface of the operation is sufficient for matching. Moreover, Web service
designers who wish external programs to use their proposed Web services are expected
to develop simple, well-documented processes.

The basic idea behind the algorithm is to use the underlying ontologies in order
to produce a contextual matching of parameters, as defined in Sect. 3. The algorithm
analyzes the semantic relationships between concepts in order to produce a ranking
of the parameter matching results, which is reflected later in a ranking between the
operations.

The algorithm iterates through all the parameters of a processPR, extracting the
concepts related to that parameter. A mapping is established by procedureMatchMes-

11

Algorithm 1 Rank Operations

Input: PR, ON, OP =
{

OP1,OP2, ...,OPp
}

Output: OP ′ =
{

OP(1),OP(2), ...,OP(k)

}
Mappings← φ
Messages←

S
OPi∈OP A−1(OPi)

for all paremeter∈ PRdo
for all c∈ concept(parameter) do

Concepts← (c, “direct“)
Concepts← (related(c,ON), rtype)

end for
ParameterMapping←MatchMessages(Concepts,Messages)
Mappings←Mappings∪ (parameter,ParameterMapping)

end for
for all OPi ∈OPdo

OP ′← OP ′∪OPi
for all OP(j) ∈ OP ′ do

OP(j) �PR OP(i)⇔ score(OP(j))≥ score(OP(i))
end for

end for

sagesbetween each parameter and each message exhibited by the operation set. The
mapping is an assignmentMapping: (message, parameter)→ [0,1], assigning amatch-
ing scoreto each message-parameter pair. The overall ranking of the operations is cal-
culated by the functionscore(OP), which is described below. Finally, a ranking between
the operations is established according to the matching score.

An important aspect of the algorithm is the use of related concepts. The setConcepts
holds concepts extracted from the ontology. Each concept is tagged with its relation to
the original concept (i.e., the concept which the parameter is tagged to). For example, in
theBookPriceprocess definition described in Fig. 1, the parameterBook Infois mapped
directly to the conceptBookof the AKT portal ontology (Fig. 2). We define the concept
Book as asemantic anchorwithin the ontology, and it is tagged with thedirect tag.
Therelated(c,ON) function retrieves a list of concepts which are related to the anchor
concept in the ontologyON and tags each concept according to its semantic relation
type (rtype) to the anchor object.

After characterizing the concepts according to their semantic relation,MatchMes-
sagesis called in order to compute a matching score between the parameter and each
of the available messages. The core ofMatchMessagesis elaborated in Sec. 3. Ba-
sically, it produces a mapping between the set of concepts (that represent the OWL-S
process parameter set) and each set of messages (that specify the interface of the WSDL
operations). A precondition of the existence of any semantic correspondence between
the message and the parameter is data-type equivalence between the two. The function
MatchDataTypecompares the types of the parameters of the corresponding concepts to
be matched. For instance, if the primitive type of the direct-mapping concept of the pa-

12

rameter isxsd:string and the primitive type of the message isxsd:float, then the message
cannot match the parameter.

If the message passed the data-type test, the procedure applies a virtual matching
function, GenericMatch, in order to calculate the affinity between each concept and
each message. The abstract function can be implemented using string matching, lin-
guistic similarity or schema matching techniques2.

The last stage of the algorithm is ranking the operations according to their overall
matching score. An operationOP(j) is ranked higher than operationOP(i) if it has a
higher or equal score. The calculation is defined as the following function:

score(OP) =
1

|Parameters| ∑
pr,m∧A(m)=op

Mapping(pr,m)wpr ·∏
pr

h(OP, pr)

h(OP, pr) =

1 if pr is mapped by at least one messagem∈OP,
such thatMapping(pr,m) > 0

0 otherwise

The function averages the matching scores (Mapping) for each of the messages
that belongs to the operation (A(m) = op) and each of the process’s parameters (pr ∈
Parameters). To support situations in which a certain parameter is more crucial than
another, a weightwpr is attached to each parameter. In order to omit operations that have
only a partial mapping to the process, the result is given the value zero if mapping of the
operation does not supply a corresponding message for each of the process parameters.
Otherwise, an operation that has a single corresponding message might be ranked higher
than an operation with two corresponding messages, but with lower matching scores.

5 Web Services and Schema Matching

Schema matching is the task of matching between concepts describing the meaning
of data in various data sources (e.g.database schemata, XML DTDs, HTML form tags,
etc.). As such, schema matching is recognized as one of the basic operations required by
the process of data integration [7]. Due to its cognitive complexity [8], schema match-
ing has traditionally been performed by human experts [21]. As the automation level of
data integration increases, the ambiguity inherent in concept interpretation is becoming
a major obstacle to effective schema matching. For obvious reasons, manual concept
reconciliation in dynamic environments (with or without computer-aided tools) is inef-
ficient and at times close to impossible. Introduction of the Semantic Web vision [5] and
shifts toward machine-understandable Web resources and Web services have underlined
the pressing need for automatic schema matching.

Attempting to address these data integration needs, several heuristics for automatic
schema matching have been proposed and evaluated in the database community (e.g.,
see [4, 10, 20, 16, 25, 30, 18]). However, as one would expect, recent empirical analysis
has shown that there is no single dominant schema matcher that performs best, regard-
less of the data model and application domain [17], and such schema matcher may never

2 See [18, 28, 24, 11] for examples of matching methods

13

be found. Finally, due to the unlimited heterogeneity and ambiguity of data, none of the
existing heuristics can find optimal mappings for many pairs of schemata.

Bearing these observations in mind and striving to some robustness in the match-
ing process, an approach studied in [2, 17, 23] suggested to generate not one, butK
top-ranked mappings, examining them (either iteratively or simultaneously) until a suf-
ficiently effective mapping is found. In this work, we adopt this research direction and
aim at extending Web service ranking to support imprecise matching. Observe that an
operation that implementsPR fully is expected to have corresponding input and out-
put messages, which have the same semantics in spite of name differences. Therefore,
matching an ontology concept with a Web service input and output parameter may carry
with it a degree of uncertainty. As a simple example, consider the conceptTitle. This
concept may be matched (by one or another matching algorithm) with a conceptBook
Title, and assigned a similarity of 0.5. Title belongs to its ownExact context class, and
therefore thee variable in themarksvector should be assigned a non-negative number.
A natural extension to the approach presented in this work, to support the uncertainty
that stems from partial mappings, can be done by allowing each variable in themarks
vector to accept values in[0,1], corresponding to the similarity measure as determined
by the matching algorithm(s) of choice. Such a change entails a revision in the partial
order among differentmarksvectors, as given in Figure 3. We defer this extension to
an extended version of this work.

Even though ontology languages such as OWL provide a formal set of constructs
and relations, the construction of semantic Web services and ontologies may vary sig-
nificantly among designers. This difference, which may be due to the methodologies,
conventions, purposes and even the “style“ the designers exhibit, can greatly affect the
results of the algorithm described in this work. Therefore, an analysis of the way on-
tological knowledge is modeled and understood by humans is necessary. Specifically,
research of the implications of different relations in ontological languages such as OWL
is relevant to our work. Emerging works in this issue include [6] and [29], but further
research is needed in this field.

6 Related Work

Our work presents an approach for grounding descriptions of semantic (possibly vir-
tual) Web services, which exhibit a rich conceptual model, with physical (possibly not
semantic) Web services, through their flat WSDL description. In this section we dis-
cuss other efforts that tackle similar problems. Paolucci et al. [27] proposed a method
for matching between semantic Web services. The work uses the OWL-S profile ontol-
ogy as a method for describing the capabilities of services, and proposes an algorithm
that match service requesters and advertisers. The work requires the availability of full
semantic description of both service requester and service advertiser in order to perform
the matching. Furthermore, it requires a common ontology for both sides of the match-
ing, or at least, two connected ontologies. Our work differs primarily in the problem
definition - we are concerned with grounding services to WSDL descriptions, not with
matching semantic Web services. We demonstrate that a major contribution to a match-
ing process can be made even if ontology exists only for one side of the match. Klein

14

et al [22] have used process ontology in order to match between services. The work
proposes an indexing schema for services in order to promote efficient matching of ser-
vices. Similar to [27], [22] requires services to be semantically annotated and indexed
before matching can be executed.

METEOR-S [28] is a framework for annotating WSDL descriptions with semantic
metadata. It provides a framework for semi-automatic mapping between WSDL ele-
ments and ontological concepts. The matching algorithm is based on linguistic match-
ing at the single concept level which is enhanced with schema-based matching between
the XML schema specification of WSDL elements and the ontological structure. Our
work differs in the direction of matching and in its nature. While the matching algo-
rithm used in METEOR-S takes as input a WSDL document and matches it to an ontol-
ogy, our proposed algorithm performs the opposite task: it takes an ontology-powered
conceptual model and tries to match it with WSDL documents. The differences in ap-
proaches have considerable implications on the algorithm. While METEOR-S is basi-
cally a schema matching algorithm, our approach acknowledges the rarity of rich XML
schemas in WSDL documents. The lack of such schemas is compensated for by pro-
jecting the ontological knowledge onto keyword queries.

Our work is also related to efforts for developing matching algorithms for non-
semantic Web services. Woogle [12] is a search engine for Web services. A similar goal
is shared by [26], which uses a different algorithm. Woogle accepts keyword queries
and returns results according to semantics of the WSDL document, including message
parameters. Our proposed framework is complementary to that of Woogle in the type
of queries it accepts. Our algorithm decomposes conceptual models into keywords and
then uses a generic algorithm in order to match the keywords. Woogle can be used as
an implementation for the latter part of the algorithm.

7 Conclusion

This paper describes a conceptual framework for designing composite business processes
using semantic Web services and grounding them with existing (either semantic or
other) Web services. A designer defines a rough draft of a semantic Web service to
be searched. The system then looks for existing Web services that match the specifica-
tions to some degree and ranks them according to their fit with the proposed process
design. Modeling languages such as OPM can be used in order to quickly define and
specify the semantic Web service.

We use ontologies as the main vehicle for conveying semantics and utilize onto-
logical constructs in the ranking process. We then propose a possible extension of the
framework to handle poor Web service specifications and semantic heterogeneity. An
extended version of this work will include a fully specified methodology for designing
composite business processes in an environment with varying levels of semantic spec-
ifications. Other extensions of this work include efficient algorithmic solutions to the
ranking problem, using pruning and indexing.

References

1. The akt reference ontology. http://www.aktors.org/publications/ontology/, 2002.

15

2. A. Anaby-Tavor. Enhancing the formal similarity based matching model. Master’s thesis,
Technion-Israel Institute of Technology, May 2003.

3. A. Ankolekar, D.L. Martin, Z. Zeng, J.R. Hobbs, K. Sycara, B. Burstein, M. Paolucci, O. Las-
sila, S.A. Mcilraith, S. Narayanan, and P. Payne. DAML-S: Semantic markup for web ser-
vices. InProceedings of the International Semantic Web Workshop (SWWS), pages 411–430,
July 2001.

4. J. Berlin and A. Motro. Autoplex: Automated discovery of content for virtual databases.
In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors,Cooperative Information
Systems, 9th International Conference, CoopIS 2001, Trento, Italy, September 5-7, 2001,
Proceedings, volume 2172 ofLecture Notes in Computer Science, pages 108–122. Springer,
2001.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web.Scientific American, May
2001.

6. Abraham Bernstein, Esther Kaufmann, Christoph Bu”rki, and Mark Klein. How similar
is it? towards personalized similarity measures in ontologies. In7. Internationale Tagung
Wirtschaftsinformatik, February 2005.

7. P.A. Bernstein and S. Melnik. Meta data management. InProceedings of the IEEE CS
International Conference on Data Engineering. IEEE Computer Society, 2004.

8. B. Convent. Unsolvable problems related to the view integration approach. InProceedings
of the International Conference on Database Theory (ICDT), Rome, Italy, September 1986.
In Computer Science, Vol. 243, G. Goos and J. Hartmanis, Eds. Springer-Verlag, New York,
pp. 141-156.

9. M. Dean, G. Schreiber, F. van Harmelen, J. Hendler, I. Horrocks, M. McGuinness, P.F. Patel-
Schneider, and S. Stein. OWL web ontology language reference. Working draft, W3C,
March 2003.

10. A. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data sources:
A machine-learning approach. In Walid G. Aref, editor,Proceedings of the ACM-SIGMOD
conference on Management of Data (SIGMOD), Santa Barbara, California, May 2001. ACM
Press.

11. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. InProceedings of the eleventh international conference on World Wide
Web, pages 662–673. ACM Press, 2002.

12. Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Simlarity search
for web services. InVLDB, pages 372–383, 2004.

13. D. Dori.Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag, 2002.
14. D. Dori. Visweb - the visual semantic web: unifying human and machine knowledge repre-

sentations with object-process methodology.VLDB, 13(2):120–147, 2004.
15. D. Dori, E. Toch, and I. Reinhartz-Berger. Modeling semantic web services with opm/s a

human and machine-interpretable language. InThird International Workshop on Web Dy-
namics, WWW 2004, New York, 2004.

16. N. Fridman Noy and M.A. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. InProceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), pages 450–455, Austin, TX, 2000.

17. A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling and
evaluating automatic semantic reconciliation.VLDB Journal, 2004. to appear.

18. A. Gal, G. Modica, H.M. Jamil, and A. Eyal. Automatic ontology matching using application
semantics.AI Magazine, 2004. to appear.

19. T.R. Gruber. A translation approach to portable ontology specifications.Knowledge Acqui-
sition, 5(2):199–220, 1993.

16

20. B. He and K. Chen-Chuan Chang. Statistical schema matching across Web query interfaces.
In Proceedings of the ACM-SIGMOD conference on Management of Data (SIGMOD), pages
217–228, San Diego, California, United States, 2003. ACM Press.

21. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. InPro-
ceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 51–61. ACM Press, 1997.

22. Mark Klein and Abraham Bernstein. Towards high-precision service retrieval.IEEE Internet
Computing.

23. G. Koifman, A. Gal, and O. Shehory. Schema mapping verification. In H. Davulcu and
N. Kushmerick, editors,Proceedings of the VLDB-04 Workshop on Information Integration
on the Web, pages 52–57, Toronto, Canada, August 2004.

24. J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid. InPro-
ceedings of the International conference on very Large Data Bases (VLDB), pages 49–58,
Rome, Italy, September 2001.

25. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. InProceedings of the IEEE CS Interna-
tional Conference on Data Engineering, pages 117–140, 2002.

26. Mourad Ouzzani and Athman Bouguettaya. Efficient access to web services.IEEE Internet
Computing, 8(2):34–44, 2004.

27. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara. Semantic
matching of web services capabilities. InInternational Semantic Web Conference, pages
333–347, 2002.

28. A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Meteor-s web service annotation framework.
In Proceedings of WWW 2004, pages 553–562, New York, NY, May 2004.

29. M. Andrea Rodŕıguez and Max J. Egenhofer. Determining semantic similarity among entity
classes from different ontologies.IEEE Trans. Knowl. Data Eng., 15(2):442–456, 2003.

30. P. Rodriguez-Gianolli and J. Mylopoulos. A semantic approach to XML-based data inte-
gration. InProc. of the International Conference on Conceptual Modelling (ER’01), pages
117–132, Yokohama, Japan, 2001. Lecture Notes in Computer Science, Springer-Verlag.

31. A.M. Zaremski and J.M. Wing. Specification matching of software components.ACM
Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

