Computer Arithmetic - Spring 1999

Assignment No. 1
Course homepage: http://www.eng.tau.ac.il/~guy/arith99/arith_home.html
Deadline: June 16th - before the beginning of the lecture.

Questions:

1. Prove Claim 8 in Lecture Notes \#2 (FP division, part 2).
2. Draw a block diagram of a whole unsigned adder $C L A(n)$ based on a $P P C(n)$. Explain the functionality of each block. There is no need to deal with binary encodings.
3. The description of $C L A(n)$ given in class did not address the issue of how the alphabet $\{0,1,2\}$ is encoded. Three encodings are given in the Table below:

symbol	binary encoding	"hot one" encoding	"g \& p" encoding
0	00	001	00
1	01	010	01
2	10	100	10 or 11

(a) Design the blocks of each part of the $C L A(n)$ with respect to each encoding (gate level designs).
(b) Which encoding do you think is best in terms of delay and in terms of cost?
4. Consider the following $2 \times k$ binary matrix

$$
\begin{array}{cccc}
b_{k-1} & b_{k-2} & \cdots & b_{0} \\
h_{k}
\end{array}
$$

Assume that a bit in position (i, j) has a weight of $(-1)^{i} \cdot 2^{j}$, where the rows are indexed $[0: 1]$ and the columns are indexed $[k-1: 0]$.
Prove that the value represented by the matrix is in the range $\left\{-2^{k-1}, \ldots,+2^{k-1}\right\}$.
5. Prove that Booth ${ }_{1}$ recoding replaces every block of consecutive ones with a block of $1,0, \ldots, 0,(-1)$. Namely, if $x_{n}, \ldots, x_{0}=$ Booth $_{1}\left(b_{n-1}, \ldots, b_{0}\right)$, and $b_{i+1} b_{i} \ldots b_{j} b_{j-1}=01 \cdots 10$, then $x_{i+1} x_{i} \ldots x_{j} x_{j-1}=$ $10 \cdots 0(-1) 0$.
6. Consider a random binary string of n bits $b_{n-1} \cdots b_{0}$ (the bits are i.i.d. $\{0,1\}$ random variables with $\left.\operatorname{Pr}\left(b_{i}=0\right)=\operatorname{Pr}\left(b_{i}=1\right)=1 / 2\right)$. Let $x_{n}, \ldots, x_{0}=\operatorname{Booth}_{1}\left(b_{n-1}, \ldots, b_{0}\right)$. Let $w(b)$ denote the number of non-zero bits in b and $w(x)$ denote the number of non-zero bits in x. Prove or refute that

$$
E[w(b)]>E[w(x)]
$$

