Computer Arithmetic - Spring 1999

Assignment No. 1

Course homepage: http://www.eng.tau.ac.il/~guy/arith99/arith_home.html

Deadline: June 16th - before the beginning of the lecture.

Questions:

- 1. Prove Claim 8 in Lecture Notes #2 (FP division, part 2).
- 2. Draw a block diagram of a whole unsigned adder CLA(n) based on a PPC(n). Explain the functionality of each block. There is no need to deal with binary encodings.
- 3. The description of CLA(n) given in class did not address the issue of how the alphabet $\{0, 1, 2\}$ is encoded. Three encodings are given in the Table below:

symbol	binary encoding	"hot one" encoding	"g & p" encoding
0	00	001	00
1	01	010	01
2	10	100	10 or 11

- (a) Design the blocks of each part of the CLA(n) with respect to each encoding (gate level designs).
- (b) Which encoding do you think is best in terms of delay and in terms of cost?
- 4. Consider the following $2 \times k$ binary matrix

Assume that a bit in position (i, j) has a weight of $(-1)^i \cdot 2^j$, where the rows are indexed [0:1] and the columns are indexed [k-1:0].

Prove that the value represented by the matrix is in the range $\{-2^{k-1}, \ldots, +2^{k-1}\}$.

- 5. Prove that Booth₁ recoding replaces every block of consecutive ones with a block of $1, 0, \ldots, 0, (-1)$. Namely, if $x_n, \ldots, x_0 = Booth_1(b_{n-1}, \ldots, b_0)$, and $b_{i+1}b_i \ldots b_j b_{j-1} = 01 \cdots 10$, then $x_{i+1}x_i \ldots x_j x_{j-1} = 10 \cdots 0(-1)0$.
- 6. Consider a random binary string of n bits $b_{n-1} \cdots b_0$ (the bits are i.i.d. $\{0, 1\}$ random variables with $Pr(b_i = 0) = Pr(b_i = 1) = 1/2$). Let $x_n, \ldots, x_0 = Booth_1(b_{n-1}, \ldots, b_0)$. Let w(b) denote the number of non-zero bits in b and w(x) denote the number of non-zero bits in x. Prove or refute that

$$E[w(b)] > E[w(x)]$$