PHYSICAL REVIEW E

VOLUME 49, NUMBER 5

MAY 1994

Linear analysis of periodic-waveguide cyclotron maser interaction

Eli Jerby
Faculty of Engineering, Tel Aviv University, Ramat Aviv 69978, Israel
(Received 14 October 1993)

Following recent experimental studies, we present in this paper a linear model of the periodic-
waveguide cyclotron maser. This device is based on a cyclotron-type interaction of a nonrelativistic
electron beam with traveling waves in a metallic periodic waveguide. The kinetic model presented in
this paper incorporates the periodic-waveguide spatial wave harmonics with the cyclotron and Weibel
interactions. It results in a Pierce-type gain-dispersion equation with new coupling terms. The
dependence of the cyclotron amplification on the low impedance of the inductive periodic waveguide
and on the electron initial transverse velocity is analyzed in various operating regimes. In agreement
with experimental results, this analysis shows that amplification is feasible in certain conditions
without an initial electron transverse velocity (Voo = 0) and with a wide acceptance of electron

beam energy variation.
PACS number(s): 52.75.Ms, 42.52.4+x, 52.35.Hr

I. INTRODUCTION

Various types of well known fast-wave cyclotron maser
devices [1-11] have been developed on the basis of the
electron cyclotron instability [12]. A typical scheme of a
fast-wave cyclotron resonance maser (CRM) consists of
a relativistic electron beam which interacts with a fast
electromagnetic (em) wave in a uniform waveguide. The
electrons are spiraling in the CRM device by an axial
magnetic field which satisfies a cyclotron resonance con-
dition with the em wave and the electron beam. Rel-
ativistic effects play a dominant role in the CRM-type
devices [5]. The azimuthal bunching is a consequence of
the electron mass variation caused by the transverse elec-
tromagnetic accelerating and decelerating forces. The
electrons in these devices are injected into the interac-
tion region with an initial transverse velocity component
essential for the relativistic cyclotron interaction.

The slow-wave cyclotron (SWC) maser, in which the
em wave is slowed down by a dielectric-loaded wave-
guide, has been studied in various schemes [13-21]. The
SWC mechanism of interaction differs from that of the
fast-wave cyclotron masers though both satisfy similar
cyclotron resonance conditions. The dominant bunching
effect in the SWC stems from the V x B, axial force
component referred to the Weibel mechanism, whereas
the dominant effect in the fast-wave cyclotron devices is
the relativistic azimuthal bunching which results from
the electron energy variation § due to the stationary
V. -E, product, where V is the electron transverse cy-
clotron velocity and E, and B are the electric and mag-
netic field components of the em wave, respectively. The
typical advantages of the SWC in comparison with the
fast-wave cyclotron devices are a wider frequency band
and a lower operating electron beam energy. The SWC,
however, is more sensitive than the conventional CRM
to the electron beam energy spread [16]. In addition,
the presence of a dielectric material in the vicinity of
an electron beam introduces technical difficulties for the
dielectric-loaded SWC operation.
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Cyclotron amplifier and oscillator experiments in
metallic periodic waveguides have been conducted re-
cently at M.I.T and later at Tel Aviv University [22-25].
The periodic waveguide used in these experiments con-
sist of an array of metal posts in rectangular waveguide
as shown in Fig. 1. A low-energy electron beam (~ 8
keV, ~ 1 A) interacts in this periodic waveguide with
traveling waves in a frequency range of 8-10 GHz un-
der an axial magnetic field of 3-4 kG. Clear cyclotron
resonance conditions have been observed in these exper-
iments, both in the amplifier gain curves [22,23] and in
the oscillator output frequency [23-25]. Electronic gain
of ~ 10 dB and rf power of ~ 400 W have been measured
in the amplifier and oscillator experiments, respectively.

The similarity between the dielectric-loaded SWC
maser and the periodic-waveguide cyclotron maser stems
from the artificial dielectric properties of the periodic
waveguide [26]. The theoretical analysis presented in this
paper shows that their dominant mechanisms of opera-
tion are different despite their resemblance. They dif-
fer also in their typical spectral bandwidth and electron
spread acceptance parameters. From the technical point
of view, the use of a metallic periodic waveguide, rather
than a dielectric loaded waveguide as in the SWC maser,
alleviates the technical difficulties which result from the
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FIG. 1. A principle scheme of the periodic-waveguide cy-
clotron device.
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presence of a dielectric insulator in the vicinity of a high-
power electron beam. Hence the periodic-waveguide cy-
clotron maser has the potential to be a practical low-
voltage high-power microwave source.

In the following sections we derive a linear kinetic
model for the convective cyclotron interaction in peri-
odic waveguide and analyze its properties. The effects of
the periodic waveguide impedance and the initial trans-
verse electron velocity on the cyclotron gain are analyzed.
The feasibility of amplification with zero initial trans-
verse electron velocity component is discussed. The op-
erating frequency bandwidth of the periodic-waveguide
cyclotron and its electron spread acceptance are evalu-
ated in comparison with the known CRM and SWC de-

vices. o

II. DERIVATION OF DISPERSION RELATION

A kinetic linear model is derived in this section for
the convective cyclotron instability in periodic wave-
guide. We assume a tenuous electron beam spiraling

along a uniform axial magnetic field. The electrons inter- .

act with traveling wave harmonics in the periodic wave-
guide shown in Fig. 1.

Assuming a slowly varying wave amplitude A(z) along
the interaction region, the em wave propagating in the
periodic waveguide is described as a composition of spa-
tial harmonics, -

Ea: (Z) = A(Z) Z ezn¢n(ms y)e_jﬁnzv

7 77(1a)

Hll(z) = A(Z) E hyn¢n(x: y)e—jﬁ"z, o (15)

where e., and hy, are the nth harmonic electric and
magnetic field coefficients, respectively, and On(z,y) is
their transverse profile. The harmonic wave number
Bn(w) is determined by the waveguide dispersion rela-
tion. In this analysis we use without loss of generality
the relations derived in the Appendix for the periodic
waveguide employed in our experiments [22-25]. This
waveguide, shown in Fig. 1, consists of an array of metal
posts in a rectangular metal tube. The results of this
analysis are applicable to other periodic waveguides as
well (and in particular to the slotted periodic waveguide
in Ref. [27]). )

The wave equation for the H, magnetic field compo-
nent is given by

V2H, + e.k*H, = —~8,J, + 8,1, 2)

where €, is the relative dielectric constant of the medinm
(er =1 for a metallic periodic waveguide, and > 1 for
a dielectric loaded waveguide) and k = w/c is the free
space wave number. The axial current J, is out of the
cyclotron resonance and therefore the term 8,J, is con-
sidered negligible in this analysis. The dominant current
component J; is computed in the linear regime by

J:n = __e—/./.-/ Pcz 7f1c(P0vz:w) dsPO’ (3)
mo Po Yo
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where P, is the % component of the characteristic line
P.(Pg) of the zero-order Vlasov equation, f1e(Po, 2,w)
is the electron first-order distribution function, and e
and mg are the electron charge and rest mass, respec-
tively. The characteristic line describes the momentum
of a single electron spiraling along the axial magnetic field
By = 2B, and is given by

P, = %Py, cos(k.z + ap)
+¥Poy sin(kcz + ag) + 2P,,. (4)

The initial values of the characteristic line are given in
cylindrical coordinates by the initial axial and radial elec-
tron velocity components, Py, and Py, respectively, and
by ap, the initial phase of the electron gyromotion. These
are related to the Cartesian (P, Poy, Po,) initial mo-
mentum components by

Poy = “Pga: + Pozy, (5a)
ag = tan™?! Doy (5b)
Ox

Both Cartesian and cylindrical coordinate systems are
used simultaneously in the following analysis.
The relativistic factor in Eq. (3) is given by

=14 (B + PRy /m3en. (6)

It should be emphasized that relativistic effects must be
taken into account in this analysis as in the cyclotron
resonance maser analysis [5] even though the interaction
‘may occur with a low energy (yo ~ 1) electron beam
(note that the electron energies in our recent experiments
[22-25] are less than 10 keV).

The cyclotron wave number in Eq. (4) is given by
ke = we/Vo, where Vo, = Py, /vyomyo is the axial veloc-
ity component of the electron. The relativistic cyclotron
frequency w, is given by

we = 22 e : (M)
Yo

where w.o = eBg,/my is the nonrelativistic cyclotron fre-
quency.

The first-order distribution function fi.(Po,z,w) in
Eq. (3) is the solution of the first-order Vlasov equa-
tion integrated along the zero-order characteristic lines
(4) as follows:

.o P, a
walc(POa Zy w) + ~Yomn Eflc + Flc * Vpngc(PO) = 09

(8)

where fo.(Po) is the electron zero-order distribution
function at the entrance (z = 0) to the interaction region.
The first-order force induced by the transverse fields (1a)
and (1b) along the characteristics in the periodic wave-
guide is given by,

" P, . Peo
_ _ H,|. 9
Flc = —€ [X (E:c Yo OuﬂHy) + Z’Yon 0“0 y] ( )
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Assuming a uniform initial azimuthal distribution of
the electron beam, the function fo.(Po) is independent
of ag. Consequently, 8foc/8Poz = (Poz/PoL)8foc/0Ps.,
and the Vlasov equation (8) is rewritten in the form

POz

jwfic(Por, Poz, 2,w) + f1c

af Oc
0P,

=e (Ez _ Lo uOHy) cos(kez + a0) m5—
Yo™m
fOc

Py
+e’Y cos(kcz + ao)uoHy (10)
o

Equations (2), (3), and (10) form a linear set of partial
differential equations. In order to solve them, we apply

Laplace transform on the z dimension,

A(s) = ‘/zA(z)e_“dz, (11)

. el. P, 17 - )
flc(PD_LaPOza3aw) = % [Jw + '__0—3] {[eJ ° (Em(s _]kc) -
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and rewrite Egs. (2), (3), and (10) in the s domain as
follows. The wave equation (2) is transformed to

2
(86_ I e,kz) 1, (s,0) — (3 + 8,) Hy (w, 2 = 0)

= —s8J,(s,w), (12)

where the current J, (s,w) is given in s plane by a Laplace
transform of Eq. (3) in the form

gy [ | L, S te it

fedoo flc(s + ]kc)]d3P0. (13)

jz(s, w) =

The first-order distribution function fi. is given by the
solution of the transformed first-order Vlasov equation
(10) as follows:

POz Y .
H,(s — jk
~mg y(8—17 c))

Yo™o
— = . POz ry . afOc
joo _
v (Bula-t ko)~ Sy (o-+ 3k ) | G
/_L()Po_]_ joo 7 . —ico 13 . afOc
= Jed ™ H (5 — jke) + e T H, (8 + jk. . 14
+ Yoo [ y(s — jke) y(8+7J )] 9P, (14)

Substituting the distribution function (14) into the current integral (13) results in the expression

- P, . P, jweo |~
Jx(s,w)ﬁ‘- / / Por [ 0z _ JWeo
2mo Jp,, JP,, YO Yomo Yo

)] 6f0c PO_L
3P0_L omo

{fso-

fOc

poHy(8) 75~ 35, }Pudpudpo,, (15)

where we assume that the dominant poles are located in s plane in the vicinity of the cyclotron resonance condition

P .
jw + 0z JWeo
Yoo Yo

~ 0,

(16)

and that the cyclotron sideband harmonics, E.(s + j2k.) and fly(s + j2k.), are negligible.
After an integration by parts and some further algebraic steps, Eq. (15) results in

Jo(s,w) =

we? / / 1 ( Py,
mo Jp,, JPs. Y0 Yoo

pZ . P
-2 (jor B
2v5mg Yom

, .—jwco/’m)_l [Em(s) _ Lo uoHy(s>]

Yoo

-2 .
2 . w = -~
s — jweo/Yo 1Y Fo(s) + spoHy(8)| b foePo1dPoLdPo,. a7
0 c?

In the ideal case of a cold and azimuthaly uniform electron beam, the zero-order electron distribution on-axis

foc(Po) is approximated by

fo(Po) = 8(Por — Py ) 6(Po, — Poz) o,

1
2w Py

(18)

where ng is the electron density. Substituting Eq. (17) in the ideal limit (18) into the wave equation (12), results in

the dispersion equation
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8? .
(5"!!—2 + 32 + Grk2> Hy(s,w) - (3 + aZ)Hy(w7z = 0)

Ve 1

1 2 N,
= —€owpogo (T, y) 2 j(w—we) + Vo,

9 _V{Ea: (3) - %zuoﬁy(*q) -

e 2+ auo 15| b

(19)

where wyo = y/e?ng/ 76751&6 iis‘”rtﬁherprlé.sma ﬁ'equency; 'g(; (m,‘ y) is the electron beam density profile, and V,, = P, /7omo
and Vo1 = Py1 /Jomo are the average electron axial and perpendicular velocity components, respectively.

In the limit of a plane em wave (E, = —jwuoﬁy/s) and a transversly uniform electron beam (go = 1), we obtain
as a benchmark for Eq. (19) the known dispersion relation for the cyclotron resonance maser [2-8]
2 . & > L2 '
32+€,-k2 — 12129_ ]w+3%z_ K]i k2+82 _ o (20)
2 2 | jlw—w)+ sV, 2 [j{w — we) + sV, ]?

The factor 1/2 in the right hand side of Eq. (20) stems from the linear polarization of the wave in our analysis.
Varjants of this equation are applicable in general to uniform waveguide cyclotron masers including dielectric-loaded
SWC’s. :

In a periodic waveguide, the harmonic content of the em field components (1a) and (1Db) is transformed to

Em(s’w) = \/l:—':oz hyn:ZAnd’n (y)z(8'+ jﬁn)a o (213.)

Hy(s,0) = Y hyndn(¥)A(s + 3Ba), ’ (21b)
where the normalized impedance of the nth spatial harmonic is defined here as
5 € €xn h ) . o -
N e ' ' : : 21c
Ho hy'n. ( )

Substituting Egs. (21a), (21b), and (21c) into Eq. (19) results in a generalized dispersion equation,

Z(s _‘.7&811.) [(3 + ]ﬂn)fi(s + J,Bn) - AO] hyn¢n(y)

1 2 8 N ~ 1., ijm + sc - .
= w. A Ty — Py — = . Y B, A(s+ 7Bmn), 22
2690(1:, y) p0 J( c) sV, { m 2 L _7( c) + sV, ym 771(y) (3 J 771) ( )

where 8., = Vp, /e and Bel =V, J_‘/‘C are the normalized electron vélocity components.

In order to find the growth rate of the wave amplitude A(z), we eliminate the transverse dependence of Eq. (22) by
multiplying its both sides by E*, = > n€an®n(y)d(s — jB,), and integrating them over the waveguide cross section.
The assumption of a slowly varying amplitude, dA(z)/dz < (,A(z), is transformed to s plane as |A(8)| > |A(s—3Bn)|
and 8| < B, for n # 0. Hence Eq. (22) is further simplified under this assumption to

-1
. 1 . — 1Pm
SA(S) —Ag = *—szo [Z(s - 2.7,31;)1?71] Z ](w — wc;'*' gf—‘—]ﬁm)ffnz Ffm

5 2 la jwZm+ (s = jBm)c
x Zm - ez — o ez - — - . N
{ Oer = 3P So—w + (= 3BV

where the effective cross section area and the em power flow of the nth harmonic are defined as

®, = / / 2 dz dy, (242)
zJy

Pn = ®nel hyn, - o ' (24b)

} pmfi(f’), (23)

respectively, and the corresponding electron beam filling factor is defined as
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Fy, =‘I>;1//go(m,y)¢idwdy-
zJy
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(24c)

An interaction with the nth harmonic requires an operation in the vicinity of the cyclotron resonance w—we—8, Vo, ~
0. Assuming that the various harmonic resonances are not coupled (i.e., that |w — w. — BmVoz| > 0 for any m # n),
the dominant term in the sum over m in the right hand side of Eq. (23) is the nth term. Hence the dispersion relation
of the periodic-waveguide cyclotron interaction is further simplified to

S = 1

A(s) = {3[.7(("’ - wc) + (3 _jﬁn)VOz]z + élic‘wioanCn(s) [[J(w '_'wc) + (3 —jﬁn)VOzl

X(Zn — Bez) — '2“/B§J_[jwzn +(s— jﬁn)C]} } [i(w — we) + (8 = §Bm)Vo:]" Ao, (25)

where C,,(3) is defined as the nth harmonic power flow
ratio,

(3 -7 ﬂn)pn
Cn(s) = = — —. - 26
The dimensionless operating parameters of the

periodic-waveguide cyclotron interaction are defined as
follows. The tuning parameter for the nth harmonic is

é\'n. = (w — We — ,BnVOz)TOs

where 7o = L/Vs, is the electron time of flight along
the interaction length L. The normalized space-charge
parameter is

(27a)

"

0, = wypTo,

(27b)

and the dimensionless wave number variables are defined
as

8 =jsL, (27¢)
k=kL, (27d)
Bn = ﬁnL- (278)

This notation leads to a simplified gain-dispersion rela-
tion as follows:

3—0,)2
~ra A ( 1 =) ~— Ao, (28)
3(8 — 0,)% — 5Kn(8)Fy,Cn(s)02
where &,(s), the complex coupling coefficient of the
periodic-waveguide cyclotron interaction, is given by

Kn(8) = Bez(§ - én)(zn _Bez) + %_3_1_(2721» - 8- Bn)

(29)

The gain-dispersion equation in Eq. (28) resembles the
Pierce equation which is valid in general for a wide range
of traveling wave devices and free-electron lasers. The
coupling term in Eq. (29), however, is more complicated
and it incorporates different opposing effects, including
the CRM and the Weibel effects. Each effect becomes
dominant in the periodic-waveguide cyclotron operation
in a different regime of the operating parameters Zy, ez,
and B.;. The general dispersion relation of the interac-
tion (28) and (29) is analyzed in the following sections in
various limits of the harmonic impedance for 8., = 0 and
B.1 # 0, and the physical interpretation of the various

operating regimes is discussed.

A(3) =

III. ANALYSIS OF THE PERIODIC-WAVEGUIDE
CYCLOTRON INTERACTION

In this section we analyze‘the gain-dispersion equa-
tion (28) at the fundamental harmonic (n = 0) in var-
ious operating regimes. In particular, we analyze the
conditions for amplification in an on-axis injection of
the electron beam into the periodic waveguide (Be1 =
0). The periodic-waveguide cyclotron properties are dis-
cussed also for 8.1 # 0, in view of the known CRM and
SWC types of interaction. In the following analysis we
identify four different effects incorporated in the periodic-
waveguide cyclotron interaction [these effects are indi-
cated by el-e4 in the following Egs. (31) and (38)]. Each
effect dominates in a different operating regime. Numer-
ical solutions of Eq. (28) for parameters corresponding
to ongoing experiments are presented in order to demon-
strate the features of the periodic-waveguide cyclotron
maser.

A. Zero initial transverse velocity (B.. = 0)

The gain-dispersion equation for a fundamental har-
monic (n = 0) interaction with a zero initial transverse
velocity (BeL = 0) results from Eqgs. (28) and (29) as
follows: .

A(3) = . _$—00 —Ao.
8(3 — 00) — 3Bez(Zo — Bex) F7, Co(8)0%

In case that (p 3> max |3;|, where §; denotes the poles
of Eq. (28), we assume that the harmonic ratio Co(3)
is weakly dependent on § and that it is dominated by
the fundamental harmonic [i.e., Co(8) = Co(0) ~ 1/2].
The response of the periodic-waveguide cyclotron de-
pends then on the coupling parameter

(30)

el e
1L~ - .
Qo = —1662( Zy — Pez )FfoCO(O)epv (31)

2

where el and e2 denote two opposing effects discussed
later in this section. Using Eq. (31), the poles and the
residues of Eq. (30) are given by

(32a) |

. 1. /5
512 = 5(90 + /62 + 4Qo),
ri,2 = 1+00/4/6% + 4Qo, (32b)

respectively, and the wave amplitude at 2 = L results in
the analytical expression
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2 A .
g 6o J 4 A
—_ . I8 — — 2
A(L)= A4, E rie Ao{ (1 + — ) exp [ 5 (6o +4/65 + 4Q0)] X
=1 90 + 4Q0

+(1_L) exp [_g(aﬂ_\/m)]}.

V03 +4Qo

Equation (32c) has a different tendency for Q¢ > 0 and
for Qo < 0. In a uniform waveguide, in which Z, > 1
for the fundamental TE mode, the coupling parameter
Qo (31) attains always positive real values. Thus the
radiation power evolved along the interaction region is
given by

|A(L)|? = A2 [cosz<%\/§§ + 4Q0) -
62 . v \
+m$n2(%,/eg+4qo )] (33)

which corresponds to a radiation absorption in the vicin-
ity of the cyclotron resonance ég ~ 0. The interaction is
characterized in this case by radiation power loss rather
than gain. o

In an inductive periodic waveguide, the coupling pa-
rameter (Jo may reach negative values or complex values
[22]. For Qo < 0, Eq. (32c) yields a positive radiation
gain. The coupling parameter Qo (31) becomes negative
for a low harmonic impedance,

Zo < ,Bez
The fundamental harmonic impedance of the waveguide
shown in Fig. 1 (as well as the periodic waveguide pre-
sented in Ref. [27]) is given in Eq. (A7) by Zo & Bok/k3,.

Hence, the amplification condition of Eq. (34) is satisfied
in the wave number range

o (39)

= g -

Bo < Bezbio, - )
k

In this operating regime, the periodic-waveguide cy-

clotron interaction may provide amplification even with-

out initial electron transverse velocity component [as re-

sults from Eq. (32c) for Qo < 0]. The power growth for

an optimal tuning (éo = 0) is given by

|A(L)|* = A% cosh®(+1/]Qa]), T (38)

which corresponds to an exponential growth along the
interaction region. T

A physical interpretation for the amplification condi-
tion in Eq. (35) is proposed on the basis of Poynting
theorem. The integral

1/ E.J*dV (37)
2 )y

describes the radiation power evolved in a volume V due
to a current source J. In an ordinary cyclotron interac-
tion, in the limit 3. = 0, the transverse force component
in Eq. (9) is dominated by E., since E, > Vo, uoH,.

(32¢)

I
Hence the radiation power is absorbed by the electron
beam due to the transverse acceleration of the electrons

by the radiation force as shown in Fig. 2. The coupling

parameter (Jg is dominated then by the term marked el
in Eq. (31) which corresponds to the radiation absorp-
tion effect. )

In an inductive periodic waveguide near cutoff, when
the condition (35) is satisfied, the transverse force com-
ponent in Eq. (9) is reversed (i.e., B, < Vo,poHy) and
is dominated by the magnetic field component. Conse-
quently, the corresponding term marked e2 is dominant
in Eq. (31). The directions of the electron accelera-
tion and the induced current are reversed in this case,
and Eq. (37) may result then in radiation amplification
rather than absorption. Energy is transferred in this
process from the electron beam to the electromagnetic
wave. The electron longitudinal velocity component is
converted by the Vg, poHy magnetic force to a transverse
velocity component as shown in Fig. 2. The transverse
ac current induced in this mechanism appears in an op-
posite phase to the current induced by the electric field
component, and consequently, Eq. (37) yields stimulated
emission of radiation rather than absorption. The emis-
sion of radiation corresponds to the term e2 in Eq. (31)

(e) (e2)

Ex F,
— By, V.
P /Boz v, A Boz Yoz
H
Fx y
3) - C (ed)

FIG. 2. Figurative descriptions of the four cyclotron ef-
fects incorporated in the periodic-waveguide cyclotron inter-
action: (el) transverse electron acceleration by the electric
field component; (e2) transverse electron acceleration by the
magnetic field component (opposite to el); (e3) relativistic
azimuthal bunching due to the electric field component; (e4)
axial bunching due to the magnetic field component.
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TABLE I. Parameters for numerical examples.
Example No.1 Example No. 2
Fig. 3: ~ Figs. 4(a), 4(b), 4(c):

Electron beam energy Ues [keV] ~ 8 ~8
Electron beam current Loy [A] ~ 0.75 ~ 0.25
Rectangular tube axb [in.?] 0.9%0.4 0.9%x0.4
Metal post array:
Periodicity P [mm] 20 - 20
Post diameter t [mm] 1.5 1.5
Post distance d [mm] 6.4 6.4
Length L [cm] 170 50
Frequency w/2m [GHz] 8.2 9.4
Solenoid field Be: [kG] 2.95 3.07
Injection angle Bes/Be: 0 0, 0.5, 1.0
Gain condition Eq. (35) satisfied violated

and it dominates when the gain condition (35) is satisfied.
The analysis presented in this section provides an ex-
planation for the mechanism of the interaction observed
at M.I.T [22,23]. Its experimental parameters are listed
as example 1 in Table I. No means are used in this ampli-
fier experiment to spin up the electrons at the entrance
to the interaction region. This periodic-waveguide cy-
clotron maser operates at ~ 8.2 GHz. Thus, for k=292
m~L, ko= 175 m~!, and B.,=0.2, Eq. (35) results in
Bo < 20 m™! for a positive amplification. The result of
Eq. (30) for the power gain (|4(z)|?/A3) in these con-
ditions is shown in Fig. 3 as a function of the electron
beam energy. This theoretical result, which shows gain
without an initial transverse velocity, agrees well with
the experimental observation reported in Refs. [22,23].

B. Nonzero initial transverse velocity (8., 7 0)

The evaluation of the periodic-waveguide cyclotron
performance in the 8., 7# 0 operating regime requires
a numerical solution of the third-order gain-dispersion
equation (28) with the full complex coupling coefficient
(29). Figure 4 demonstrates the effect of B # 0 for the
parameters listed as example 2 in Table I. In this exam-
ple the frequency and wave number are slightly higher

30 T T T

20t

rf gain

(0] 5 10 15
electron energy [keV]

FIG. 3. Gain vs electron energy results from_Eq. £30) for
the parameters of example No. 1 in Table I with 8.1 /Be. = 0.

than that of the previous example and consequently the
amplification condition (35) is violated. The result in
Fig. 4(a) shows that for B.; = 0 the radiation is ab-
sorbed by the electron beam (as opposed to the previous
example). The term marked el in Eq. (31) is domi-
nant, hence the radiation power is spent near resonance
on a transverse acceleration of the electrons in growing
cyclotron trajectories. For 8., > 0, other effects dom-
inate the periodic-waveguide cyclotron operation and it
is reversed to an amplifier, as demonstrated in Figs. 4(b)
and 4(c) for Beyi/Be: = 0.5 and 1.0, respectively. The
synchronism conditions for examples No. 1 and No. 2 are
shown in Fig. 5.

The physical interpretation of the interaction in this
regime corresponds to the known CRM and SWC inter-
actions. The second term in the right hand side of Eq.
(29),

e3 ed

1, 72 T
3Pei(kZo — 5= Fo), (38)
describes the coupling contributed by the initial trans-
verse velocity of the electron beam. It consists of two
terms illustrated in Fig. 2; the first term marked as €3
in Eq. (38) stems from the azimuthal bunching effect
induced in the spiraling electron beam by the transverse
electric field component E; in the force equation (9). The
energy transfer between the spiraling electrons and the
em wave due to this component can be described by the
known relativistic relation

y:-%vu.m. (39)
Hence this interaction component (e3) corresponds to the
known CRM-type relativistic azimuthal bunching effect
as appears in the periodic waveguide cyclotron interac-
tion. '

The other interaction component marked as e4 in Eq.
(38) stems from the Vo1 x H, axial bunching force.
This component, referred to as Weibel interaction, op-

poses the effect of the CRM-type azimuthal bunching. In
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the dielectric-loaded SWC interaction, this axial bunch-
ing force is the dominant effect [as results from Eq. (38)
when ,60 the normalized axial wave number is greater
than the normalized waveguide impedance kZ,]. In the
periodic-waveguide cyclotron interaction, the CRM-type
azimuthal bunching dominates the Weibel axial bunching
for the fundamental harmonic operation (n = 0) when
the impedance expression (A7) for the inductive periodic
waveguide is valid.

The periodic-waveguide cyclotron interaction for
Bel # 0 is dominated by an azimuthal CRM-type inter-
action rather than a longitudinal SWC-type interaction
despite the resemblance of the artificial-dielectric peri-
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FIG. 4. Gain vs electron energy results from Egs. (28)

and (29) for the parameters of example No. 2 in Table I, with

(2) Ber/Bez =0, (b) Ber/Bex = 0.5, and (c) Ber/Bes = 1.0.
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odic waveguide to the SWC dielectric loaded waveguide.
It should be noted, however, that the dielectric loaded
SWC may also operate in a dominated azimuthal CRM-
type interaction near cutoff as demonstrated clearly in
Ref. [16]. A possible advantage of the periodic-waveguide
cyclotron in this respect is that a near-cutoff operation in
the fundamental mode is feasible in much higher frequen-
cies than in an empty or a dielectric-loaded waveguide
with the same dimensions.

C. Electron energy acceptance

The electron energy acceptance (AU = Avomc?) for
the periodic-waveguide cyclotron interaction can be esti-

‘mated by Eq. (27a). The derivative of 6o by ~o yields

7 2
A% _ 1 t—1 4, (40)
Yo kg 'Yn - w/wc

where l::c = w.L/Vo., and 7o, = 1/4/1—-32,.. In the
nonrelativistic limit (yo & 7o, ¢ 1), the relative electron

energy acceptance for f.; = 0 and v, # Vw/w:) can
be approximated by

§E= DAyo o 286, (41)
Uo -1 k(2 -wfw)’

where Uy = (7o — 1)mc? is the optimal electron kinetic
energy for the periodic-waveguide cyclotron interaction.
Assuming Af, = 2, Eq. (41) yields AU/Uy = 32% for
the parameters of example No. 1. The same result is
obtained by Eq. (30) in Fig. 3, where AU (full width
at half maximum)= 2.8 keV and U, = 8.6 keV. This
theoretical estimate of the energy acceptance agrees well
with the experimental result. In the amplifier experi-
ment [22,23], the energy bandwidth of the measured gain
curves is ~ 1/3 of the center energy.

The wide electron beam acceptance feature of the
periodic-waveguide cyclotron interaction alleviates the
electron beam quality requirements in terms of energy

- spread and energy variation. It may also result in a high-

efficiency operation in the nonlinear regime.
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FIG. 5. Brillouin diagram of the inductive periodic wave-
" guide and electron beam lines for examples No. 1 and No. 2.




IV. CONCLUSIONS

The theoretical model for the periodic waveguide cy-
clotron interaction presented in this paper confirms the
recent experimental results presented in Refs. [22-25].
These studies show that the periodic-waveguide cyclotron
interaction has the following interesting features.

(a) The coupling may occur at the cyclotron frequency
near waveguide cutoff with a low-energy electron beam
without an initial transverse velocity component.

(b) The acceptance of the interaction to electron en-
ergy variation is considerably wide. Both theory and ex-
periment show an energy detuning ratio of AU/Uy ~ 1/3
for the parameters of example No. 1 in Table I.

(c) With a nonzero initial transverse velocity, the
periodic-waveguide cyclotron interaction combines fea-
tures of both CRM and SWC interactions. In the funda-
mental harmonic, however, it is dominated by the CRM
azimuthal bunching effect.

(d) The use of a metallic periodic waveguide to slow
down the wave alleviates technical difficulties typical to
dielectric-loaded SWC devices.

Both experimental and theoretical studies indicate
that the periodic-waveguide cyclotron concept may lead
to the development of a compact source of microwave and
millimeter radiation. The theoretical study presented in
this paper provides a basis for further studies proposed
as follows.

(a) Analysis of the waveguide dispersion and losses ef-
fect on the cyclotron interaction.

fects.

(c) Extension of the present studies to other waveguide
structures and in other frequency ranges.

(d) Analysis of the spontaneous emission of radia-
tion and absolute cyclotron instabilities in periodic wave-
guides.

(e) A nonlinear analysis including a tapering of the
metal-post array and/or the magnetic field.

(f) Analysis of backward-wave oscillations in the
periodic-waveguide cyclotron oscillator experiment
[24,25].

(g) Analysis of the interaction with high-order spatial
harmonics.

Execution of these proposed studies may extend our un-
derstanding of the periodic-waveguide cyclotron interac-
tion as a basis for a high-power, high-efficiency, and low-
voltage source of microwave radiation.
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(b) Analysis of energy spread and angular spread ef-
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APPENDIX A: THE INDUCTIVE
METAL-POST PERIODIC WAVEGUIDE

The impedance approximation of the periodic wave-
guide shown in Fig. 1 results from the following transmis-
sion line analysis. The dispersion relation of this periodic
waveguide is given by [26] as

1.
cos(Bop) = cos(kigp) + EBsm(kmp), (A1)
where p is the period, k19 = 1/(w/c)? — (7/a)? is the
wave number of the fundamental TE;o mode, and a is the

waveguide width. The susceptance B of a symmetrlcal
pair of posts is glven approximately by

B = 262(d)¢(2) | kuo Z M ,

2
n=3,5,. o

where a, = /(nw/a)? — k2 and'q&ng(x) = sin(nrz/a)
are the TE,o mode decay rate and transverse profile,
respectively, d is the distance between the post and the
waveguide wall, and ¢ is the radius of the metal post.
Equation (A1) determines the dispersion relation w(8)
of the periodic waveguide shown in Fig. 1.

Using Floquet’s theorem, the wave between two adja-
cent obstacles is described as

E.(0<z<p)

(A2)

_ 4+ —7ki02 —_ ikioz
= ejoPr0e 7% + elyP10e’ 0

+ Z €n0¢n0(€~a"2+e°‘“("“1’)e—iﬁop)‘
n=3,5,...

(A3)

Hence the wave in each unit cell is composed of a for-
ward (ef) and a backward (e;,) components of the fun-
damental TE;o mode of the rectangular waveguide and
of evanescent higher modes (eng) in the vicinity of the
obstacles. The reflection coefficient for the TE{o; mode
for a given By [as results from Eq. (A1)] is found to be

_ e _kap Sln[(km - /30)17/2]
ei”o =¢ sin[(k10 + Bo)p/2]’ (44

and the wave components of the zero harmonic in
Egs. (1a) and (1b) result in

ezoPo = 46-1I_0¢10 ﬂ eJ(ﬁo k10)p/2

B3 -
x sin[(Bo — km)P/ 2]
+m__; em0¢m0ﬁ + gn (AS)

and

eJ i (Bo—k10)p/2

o) @

2
hyodo = m( 291045103
[

X Sin{(ﬂo — klo)p/Z]

+ Z em0¢m0ﬁ2

m=3,5,.
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Each term is composed of two components, the first is
contributed by the propagating fundamental mode, while
the second (3 €mo...) introduces the evanescent higher
modes effect. The latter is negligible in the transmission
frequency bands of the waveguide, when o # 0. The
wave impedance for the fundamental harmonic is deter-
mined then by the propagating mode and it results in

Zog@, — i e

.

(A7)

as in the slotted periodic waveguide presented in Ref.
[27).

In the cutoff limit By — 0, the zero harmonic
impedance is dominated by the evanescent modes and
is given by

ELI JERBY 49

A k
0) ~
Zo(Bo — 0) 2e 10 sin(k10p/2)
(3 )
m=3,5,... m

which results in a complex number. The com-
plex impedance in the cutoff limit corresponds to the
stored em energy in the coupled-cavity structure in the
transition frequency from transmission to cutoff (the
impedance becomes pure imaginary in the stop band fre-
quencies). The effect of a complex impedance on the
periodic-waveguide cyclotron interaction is presented in
Ref. [22].
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