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Abstract

The quasi-anomalous Doppler effect is proposed in this paper as a new operating regime for cyclotron-resonance masers
(CRMs). It combines features of the known normal and anomalous Doppler effects. A linear analysis of the CRM interaction
shows that the quasi-anomalous Doppler effect may occur with fast em waves in inductive (low-impedance) periodic
waveguides, and that it may produce gain without an initial rotation of the electron beam. A practical scheme of a
slotted-waveguide CRM operating in the high frequency passband is proposed for a future experiment.

1. Introduction

The tuning condition of the known cyclotron-resonance
maser (CRM) interaction is [1]

wFnw, —kV, ~0, (1

where @ and k_ are the em wave angular frequency and
axial wavenumber, respectively, V, is the initial axial
electron velocity and » is the cyclotron harmonic number.
The relativistic electron gyrofrequency is o, = eB,/ym,,
where B, is the external axial magnetic field, and e, m, and
v are the electron charge, rest mass and relativistic factor,
respectively. In terms of the em-wave phase velocity Vo =
w/k_, Eq. (1) can be written as

V., Fnw,lk, =V, ~0. )

The minus and plus signs in Eqs. (1) and (2) correspond
to the normal and anomalous Doppler effects, respectively.
The normal Doppler effect requires V,, >V, _, and conse-
quently it can be implemented in fast-wave or slow-wave
devices (V,,, = ¢, or V. <V, <, respectively). The slow-
wave cyclotron maser may employ a dielectric loaded
waveguide or a periodic waveguide, whereas the fast-wave
CRM typically uses an empty waveguide, For both fast-
and slow-wave cyclotron masers operating in the normal
Doppler regime, the initial kinetic energy of the electron
motion in the azimuthal direction is converted to radiation
energy. Thus, for a zero initial transverse velocity (V,, =
0), the cyclotron interaction results in radiation absorption
rather than gain. For a non-zero initial transverse electron
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velocity (V, . #0), the azimuthal and the axial bunching
effects oppose one another. The azimuthal bunching effect
dominates in the normal Doppler operating regime.

The anomalous Doppler effect [3-9] may occur in
slow-wave cyclotron devices in which V| <V, _. Dielectric
[3] or periodic [4,5] waveguides can be used in order to
slow down the wave and to provide the low impedance
(Z,, <V, m,, where pu, is the vacuum permeability) needed
for the anomalous Doppler interaction. For V, =0, the
kinetic energy of the longitudinal electron motion is
converted to both an azimuthal rotation and to an em wave
radiation energy. The dominant bunching effect in the
anomalous Doppler regime is the axial bunching, known as
the Weibel effect [7,9].

The dispersion diagram in Fig. la shows figuratively the
normal Doppler cyclotron interaction with a fast wave in
an empty waveguide (points A and B). Fig. 1b shows the
anomalous Doppler effect with a slow wave in a dielectric
loaded waveguide (point C).

The advantages of the CRM operation in the anomalous
Doppler regime are (a) the possibility to obtain amplifica-
tion without an initial transverse electron velocity, (b) a
high efficiency operation [6], (c) a relatively small axial
magnetic field, and (d) the absence of a backward wave
interaction (and consequently of an absolute instability)
[7]. On the other hand, the disadvantages of the CRM in
the anomalous Doppler regime are (a) the weak coupling
between the e beam and the evanescent em wave, and (b)
the electric charge and damage to the dielectric material by
the bombarding high-energy electrons.

The quasi-anomalous Doppler effect presented in this
paper combines the fast-wave features of the normal
regime with the low-impedance waveguide needed for the
anomalous Doppler effect. This combination is possible,
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Fig. 1. Dispersion diagrams of the cyclotron interaction in the
normal (a) and anomalous (b) Doppler regimes.

for instance, in a CRM interaction in a slotted periodic
waveguide operating in a high frequency passband, as
described below.

2. Linear analysis

A scheme of a CRM device in a slotted periodic
waveguide [10,11] is shown in Fig. 2. The em wave in the
periodic waveguide is given by a linear combination of
spatial harmonics, as follows

Hr,0) =A@ 2 h, é,x y) & (3a)
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Fig. 2. Schematic of a slotted periodic waveguide CRM device.

E(rD=AQ 2 e, 8, y) e (3b)
where h,, and e,, are the magnetic and electric field
components of the nth harmonic, respectively; k., and
¢,(x, y) are its axial wavenumber and transverse profile,
respectively; and A(z) is a slowly varying amplitude. The
normalized wave impedance of the nth harmonic is defined
as

~ e €
zZ = /I (3¢)
" h_vn /"’()

The gain-dispersion equation of the cyclotron interaction
in a periodic waveguide, derived in Ref. [2], is given by

(-6
(-6~ LK,()C, ()07,

A= Ay, )]

pecty

where the coupling term between the em wave and the
rotating electrons is

_ A I
k()= B~ B)Z,~ B+ B
(5)

and §=jsL, k,=k,L and k,, =k,L are the normalized
Laplace variable, the free-space wavenumber, and the nth
harmonic wavenumber, respectively. L is the interaction
length, and B, =V, /c and B,, =V, /c are the normal-
ized axial and azimuthal electron velocity components,
respectively. The slowly varying amplitude in the Laplace
space is A(§)= [ Az)e *dz, and A, = A(z=0) is its
initial value. The cycliotron tuning parameter is
R _ _ L
6, =(w+w, — V. k, ), (6)
V():.
where the minus and plus signs correspond to the normal
and anomalous Doppler cyclotron resonances, respectively.
The other operating parameters in Eq. (4) are the space-
charge parameter, 9;“ = w,oFy L/ V,, where w,, is plasma
frequency, and F, and C (§) are the electron beam filling-
factor and the p’(')wer flow ratio for the nth harmonic,
respectively. Eq. (4) is valid for the normal and the
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anomalous Doppler effects, and, consequently, to the
quasi-anomalous effect as demonstrated below for B, =
0.

Eq. (4) is reduced to a simple second order equation for
B. =0. Its poles are found analytically as

| I Y
§2=5 (6,2V6; +40,), )

where the coupling parameter, assuming C, (§)~1, is

1 . . - a2
Q() =~ Z Be:(zl) - ﬁc:)apr - (8)

In order to obtain amplification, the pole s, should have
an imaginary component. This is possible only if g, is a
complex or a negative number. For @, <0, the normalized
wave impedance Z,, must be smaller than the normalized
electron speed, i.e.

Z,<B... 9

The anomalous Doppler effect can be realized in a
dielectric waveguide. Its impedance is Z, =V /€, €,
where €, is the relative effective permittivity of the
waveguide. According to Eq. (9), the condition for amplifi-
cation without initial rotation in this case is €, > ]/B_i.

In the periodic waveguide shown in Fig. 2, the impe-
dance of the nth spatial harmonic is

>
Py

:nk()
n ~2
k =

I

. (10)

7

where l\:: :\/1 —k2_/k;, and k_, 1s the cutoff wavenumber

of the empty waveguide (without the periodic structure).
Inequality (9) can be written in this case as

, (1)

Consequently, the condition (9) can be satisfied in this
periodic waveguide with a fast harmonic in higher pass-
band. This effect is referred here as the quasi-anomalous
Doppler effect.

3. Numerical simulation and discussion

Fig. 3 shows the radiation power gain computed for a
CRM in a slotted periodic-waveguide. The operating
conditions in this case are a zero initial transverse electron
velocity, and an operating frequency in the second pass-
band.

The numerical parameters used in this illustrative exam-
ple are the following. The rectangular waveguide cross-
section i1s 0.4in. X0.9in. The depth of the periodic
grooves is 0.2 in., and their width is 1 mm. The waveguide
length is 0.5 m, and its period is 2 cm. The external axial
magnetic field B, is 3.5 kG. The electron axial velocity V,
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Fig. 3. Amplification in the quasi-anomalous Doppler regime for
vV, =0

0L

is 0.3¢, and the e-beam current is 0.5 A. The resulting em
frequency is 11.2 GHz.

The corresponding Brillouin diagram is shown in Fig. 4.
It is noted that although V,, > V,., the fast-wave normal
Doppler interaction resembles the slow-wave anomalous
Doppler interaction in the sense that it produces gain
without an initial rotation of the electrons. Additional
advantages of the quasi-anomalous operating regime are
the fast-wave interaction which alleviates the proximity
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Fig. 4. A Brillouin diagram of slotted periodic waveguide which
shows the quasi-anomalous CRM interaction.
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required in dielectric-loaded waveguides between the
electron beam and the waveguide surface. The quasi-
anomalous operation can be implemented with low-energy
electron beams.

A further experimental and theoretical study of the CRM
interaction in the quasi-anomalous regime are needed. In
particular, we plan to construct a slotted periodic wave-
guide, as proposed in this paper, in our CRM experimental
setup [12] at Tel Aviv University.
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