PHYSICAL REVIEW E VOLUME 55, NUMBER 5 MAY 1997

Linear analysis of a multibeam cyclotron-resonance maser array
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The multibeam cyclotron-resonance mad8RM) array is a new concept for compact, high-power CRM
devices operating at low voltages. The CRM array studied in this paper employs low-energy electron beams,
which are propagating in coupled channels in a two-dimensional periodic waveguide. A static magnetic field
spirals the electrons in synchronism with a spatial harmonic of the electromagnetic wave. A matrix gain-
dispersion equation of the CRM-array interaction is derived in the paper. Numerical examples are presented for
a comparison between CRM interactions of one, two, and three electron beams with various waveguide modes.
The analysis shows that the multibeam cyclotron interaction yields a considerable gain of microwaves in
selective moded.S1063-651X97)09204-Q

PACS numbg(s): 41.60—m, 84.40.1k, 52.35.Qz, 52.35.Hr

I. INTRODUCTION The periodic-waveguide cyclotrof?WC) maser is a de-
vice in which the interaction occurs in a periodically loaded
Advanced sources of high-power microwaves’M) are  waveguide[23,24). It combines the properties of fast- and
needed for scientific and technological purposes. HPM deslow-wave CRM interactions. The artificial dielectric prop-
vices are key elements in the development of novel particlerties of the periodic waveguide allow operation of the PWC
accelerators, fusion reactors, radars, communication systemgevice in new parametric regimes. In particular, a quasi-
and various industrial and medical processes. Cyclotronanomalous Doppler effect is feasible in periodic waveguides
resonance masef€RMs) and free-electron mase(BEMs)  with low harmonic impedancg25]. Experimental and theo-
have been studied intensively as HPM amplifiers and oscilretical studieg23—29 show that the PWC has the potential
lators[1,2]. Both CRM and FEM mechanisms are based onto become a compact low-voltage source of microwaves. For
resonant interactions between the amplified electromagnetigstance, the PWC-oscillator experiment conducted by Jerby

(em) wave and an electron beam. et al.[27] employs an 8 keV, 200 mA electron beam, and its
The CRM resonance condition between an em wave and @utput power is>0.4 kW, which corresponds to & 25%
copropagating electron beam is given by efficiency.
Most of the HPM generators employ a single high-energy
_ electron beam. For instance, a gyrotron producing 3 MW
w~w.+k,V,, 1)

power at 140 GHz frequency with a 45% efficien30]

employs an electron beam of 95 keV and 84 A. A cyclotron
wherew andk, are the em-wave frequency and axial waveautoresonance masg@ARM) oscillator experiment reported
number, respectively, and, is the axial electron velocity. in Ref.[31] generates 13 MW output power at 38 GHz with
The relativistic angular cyclotron frequency is an~25% efficiency employing a 500 keV, 100 A electron
w:.=eBy/ymy, wheree, my, and y are the electron charge, beam. Using a single high-current electron beam limits the
rest mass, and relativistic factor, respectively, &yds the  output radiation power by the beam energy and current. The
axial static magnetic fielf3,4]. The CRM interaction with a interaction is impeded by space-charge effects, and, in addi-
fast em wave K,=< w/c) requires a nonzero initial transverse tion, the device overhead required for a single high-power
velocity in order to amplify the em wave. The fast-wave electron beam is fairly largéhigh-voltage power supplies,
CRM interaction stems from the azimuthal electron bunchinghuge electron gun and collector, shielding system).ethe
in the spiral electron trajectories caused by the transversese of an array of low-currenthigh-perveance electron
electric field component of the em wai/&). beams may alleviate some of these difficulties.

Recent CRM studies are devoted to nonlinear analysis A two-beam cyclotron maser was proposed and studied in
[6,7], multimode analysig8], high cyclotron-harmonic op- Ref.[32]. The beams propagate with different stream veloci-
eration[7,9-11], short-pulse generatidri2], and to the de- ties in the cylindrical waveguide. The interaction between
velopment of high-power generatof40,13-15. Various the fast transverse plasma wave of one beam and the slow
prebunching mechanisms and gyroklystr8s10,13 have transverse plasma wave of the other beam results in rf power
been investigated in order to increase efficiency. gain. The radiation frequency is inversely proportional to the

Dielectric-loaded cyclotron masers6—18 are developed energy difference between the beams. Consequently, the
in order to extend the slow-wavé (> w/c) tunability and to  high-frequency radiation can be achieved for low electron
reduce the required electron energy. The slow-wave CRMenergies and axial magnetic fields. Numerical simulations
interaction is characterized by an axial electron bunching efpredict an 80 dB/m gain at 50 GHz for two nonrelativistic
fect, known as the Weibel mechanig;17,19. The anoma- beams with a 23 A/cfcurrent of each one, an 87.5 keV
lous Doppler effecf20—23 can be realized in a slow-wave mean electron energy, and a 25 keV difference between the
cyclotron with a zero initial transverse electron velocity.  beams.
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plitudes of the amplified em-wave signal as a function of the
interaction parameters. A multimode analysis of the periodic
waveguide is presented in Sec. Ill. A numerical analysis of
the PWC-array amplification with different number of elec-
tron beams and in different em modes is presented in Sec.
V.

metallic posts

II. DERIVATION OF THE CRM-ARRAY
GAIN-DISPERSION RELATION

The em wave in the 2D periodic waveguide shown in Fig.
1 is described as a superposition of linearly independent
TE o modes[38] (in this analysis, we assume that the wave
profile is uniform in thex dimension. Each mode is ex-
panded to an infinite set of spatial harmonics, and is charac-
terized by its repetitive transverse profile and axial wave
number in each unit cell of the periodic waveguide. The
harmonic profiles and axial wave numbers are determined by
a dispersion equation for each transverse mi@® Hence
The cluster klystrori33] is proposed for linear colliders. the em wave in the periodic waveguide is expressed in the
The experimental model consists of three parallel electrofiorm
beams with equal 33 A current and 370 keV energy. The
device produces 78 MW output power with a 70% effi- o o
ciency. The efficiency is larger by a factor of 2 comparing Hy(w,y,2)= 2 A(2) E oY) e 1P, (23)
with a conventional klystron employing one 100 A electron n=1 k==
beam.
The concept of the CRM array was propod@d] as a
multibeam extension of the PWC scheme in order to produce _ 2
high-power microwaves by many low-energy electron beams Edw.y.2)= nzl A”(Z)k;w enni(y)e ), (2D)
propagating in parallel directions. The device consists of a
multichannel lattice waveguide as shown in Fig. 1. The elec-

electron beams

FIG. 1. Schematic of the multibeam CRM array in a 2D periodic
waveguide.

where A, (2) is the slowly varying amplitude of thath

with the spatial em-wave harmonics, due to the axial mag&:"rIOdIC waveguide mode, the subscriptsand k denote
m nd harmonic orders, r ivedy, and h r
netic field. The various channels of the CRM array are ode and harmonic orders, respectivedy, and hy are

led h other. S istic eff di helectrlc and magnetic harmonic coefficients, respectively,
coupled to each other. Synergistic effects are expected int Bnd Ya(y) and B, are their transverse profile and axial
de_V|ce._The two_-dlmensu_)n@D) CRM array shown in Fig. wave number, respectively. The normalized harmonic im-
1 is being studied experimentally by Lei and Jef2g]. It . '

. 4 . 7 . pedance is defined as

employs a rectangular waveguide with a matrix of inductive
metal posts inside. The parameters of this waveguide are
studied in Ref[34]. Electron beams with various axial ve- - €nk
locities are injected simultaneously into the waveguide. Each Znk :h_nkzo ' ©)
electron beam flows between two adjacent rows of metal
posts. Its current is relatively small and therefore the space.,
charge effects are negligible.

The practical advantages of the proposed scheméaare
the low-voltage, low-current operation of the separated elec-
tron beams, and consequently) the alleviation of space-
charge effects, antc) the feasibility of high-power micro-
wave generation by a compact device.

The concept of the CRM array can be extended to three-
dimensional arrays. It can be developed even further to new 92
concepts of a multibeam CRM interaction inpdotonic- (& — 5 +ki+s ) Hyn(w,s)—
band-gap structure [35], and of a phased-array radiator
[36,37. *

This paper presents theoretical analysis and numerical E (w,5), (4)
calculations of the 2D PWC array. This analysis is a multi- =

mode extension of a CRM model in periodic waveguides

[24]. The 2D periodic-waveguide analysis is based here ofivhere ko= w/c is the free-space wave number asds a

the microwave theory approa¢B8,39. The gain-dispersion complex Laplace variable. Using the method of characteris-
equation of the convective PWC interaction is derived in thetic lines, the electron curreid,  induced by then’th wave-
next section. This equation relates the output and input anguide mode is givef24] by

whereZy= o/ €q is the free-space wave impedance. Ex-
pressions for the mode coupling and amplitude variation due
to the cyclotron interaction are derived in this section.

Following Ref.[24], the wave equation for the transverse
magnetic component of thrieh mode is given in the complex
Laplace space by

J
S+ E) Hyn((z),ZZO)
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Pov
Jynr (o, S)__f f -
PoL JPoz Y

Pl (jolc) B (@,9) T SuoHyw (.9)
2y%mg [jw—jwc+ (Po,/ymg)s]®

Eyn(@,8) — (Po,/ yMo) proHyn: (@,5)
jw_jwc+ (POZ/')’mO)S

fo(Poz,Po1 1X0:Y0)dPg, dPg,. 5)

The axial and azimuthal components of the initial electron momenturRgrandP,, , respectivelyx, andy, are the initial
coordinates of electron, arfg is the zero-order electron distribution function.
The distribution function of an array dfelectron beams, neglecting energy spread and emittance, is given by

|
1 — — _
fo(Poz,Po1 1X0:Y0) =orpo (P, —Po,) 8(Po,— POz)iZl Noi90i(X0+Yo), (6)

TFoL

whereng; andggi(Xo.Yo) are theith electron-beam density and transverse profile, respectively, and the bars denote average
initial values. Assuming electron beams with a circular and transversely uniform cross section, the profile function is given by

1, (Xo—Xo1) 2+ (Yo—Yoi)2<r3
0, else,

9oi(Xo0,Yo) :[ (7)

whererg;, Xgi, andyg; are the initial radius and the center coordinates, respectively, oftlthelectron beam. Equations
(2)—(6) result in a gain-dispersion equation of thth-mode CRM-array interaction as follows:

i CZ ’k’_V_OZ

n'=1k’

) | )
~ . . S
z [(Bﬁk"' SZ)An(S+JIBnk)_(S_Jﬁnk)AnO]hnk'/’nk(y) == 202( 2 azpoigoi(XanO) E [
K=o i=1 - Jw—JwC-I—VOZS
vOl jKoZnikr +S

2 (jo—jwctVoss)?

An’(5+jﬁn’k’)hn’k"pn’k’(y), (8)

where Vq,=Pg,/ymg and Vg, =Py, /ymy are the axial and azimuthal electron velocities, respectively, and
Wpoi = (engi / ymgeo) Y2 is the relativistic plasma frequency associated withitheslectron beam. Using the orthogonality of
modes and harmonics allows to reduce the transverse dependence of8)Edpy multiplying both sides by
S kemtlnkd(s—j Bnk and integrating over the waveguide cross section. This results in

o0 I 5 VA
. ~ CZyw— Vo
s—2 ) S S)—A = S— ’ r)( (,l)ﬁ F S K = .,
k;w ( 1 Brid Prid SAN( on] 2 21 k’g . (s—jBnk 2 poiT e j(0—wo— BrVos) +5 Vo,
1— Jkoz rkr+S JB rkr ~
-5 2 _ n Prri An'- €)
[[(0—wc— ﬂn/k/VOZ)+SVOZ]

The harmonic power flowp,,, and the filling factor of theéth electron bearrFf , are defined as

a (b
pnk:hnke:kfo fo wﬁk(y)dXde (103

hnkenk

anki— J f 9oi(X.Y) () dxdy, (10b)

respectively, whera andb are the transverse dimensions of the rectangular waveguide. The prquR:;nski are derived in

Appendix A for electron beams with a circular and transversely uniform cross section.

We assume that the CRM resonance conditibnis satisfied with thekth spatial harmonic of thath waveguide mode.
Consequently, th&th spatial harmonics of all the other modes are considered as close to the CRM resonance and are taken
into account in the right side of E@9). The other harmonics are assumed to be off-resonant and therefore neglected. Hence
Eq. (9) is further reduced to
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[
—2
21 prian,ki

CAZn’k_Ez _
J(0—=wc=BnVoz) +5 Vo,

- 1/ & ez
SAn(S)_AOn:_W k’g (S_Zjlgnk’)pnk’) 2 (S_j,Bn’k)pn’k{

n'=1

1— k 2 ’ +S_ ’ ~
ki L e (11
2 (J(o—wc= BnkVor) +5Vor)

Dimensionless operating parameters are introduced to simplify the equations. The CRM tuning parameter is given by

~ — L
Onrk=(0— wc= BnVo)—, (12
0z

and the space-charge parameter is define&bg§=[2iw_p0i\/an,ki]L/V_oz wherelL is the interaction length. The normalized
wave number parameters aﬁ@z koL for free spacef%nkz Bk for the kth spatial harmonic, anazst for the Laplace
variable. Using these definitions, E@.1) is rewritten in the form

w0 -1 = - .z - 2~z
A a 1 A ~y o~ n BedZnk—Bes  Ber KoZnk=S= Brrk | ~
SAn(S)_AOn:_ 2 (S+2,Bnk’)pnk’ 2 aznrk(s+ﬁn’k)pn’k - ~ nA : +i rl ~ :

2 k'=— n'=1 P S_anrk 2 (S_ 0nrk)2

WhereEZ:V_OZ/c andEL:V_m /c are the normalized axial and azimuthal electron velocities, respectively.
Equation(13) holds for any waveguide-mode order Hence a matrix equation is derived for the relation between the

column vectors\7(§)=|xn(§)| and Ay=|A,|, as follows:

T - T e B P I PP
s[sg—g]z—ggs)@_ﬁk{ﬂez[s —g][i—ﬁezgwEﬁé[koi—sg—i]]k:[sg—g]%. (14)

The matrix parameters of Eq14) are defined as follows: The resulting gain-dispersion equati¢h) and the associ-
U is a unit matrix, ang3,= |8, andz,=1|Z,, are diagonal ated coupling matrixQ,(s), Eq. (17), are a multimode gen-
matrices of harmonic wave numbers and impedances, respeeralization of the single-mode analysis of the periodic-
tively. The diagonal tuning and space-charge matrices are/aveguide CRM interaction presented in Ref24].
Oy=6,, and @pk:|@pnk|, respectively, and the nondiago- Equations(16) and(17) describe the spatial evolution of the
fal power-flow matrix is input em wave where its tranS\{erse modes are coupled by the
cyclotron interaction. The polesof Eq. (16) determine the
Cu(s)= |Cf]k,)n(s)| shift of thekth harmonic wave numbeg,, in the complex
= plane. The corresponding residues describe the variation of
~A A -t em-wave amplitudeé\,(z=L) due to the CRM interaction.
k_Z (s+2Bn1k)Parkr The different terms in E¢(16) represent various effects. The
- coupling matrixQ,(s) describes the CRM interaction with
the resonant harmonic. Its different terfig) correspond to
: (19 various operating regimes of the CRM interaction as re-
ported in Ref[24]. The space-charge matré,, represents

Finally, the matrix gain-dispersion equation of the CRM-he effect of electron current density on the CRM coupling
array interaction results in the Pierce-type fourth-order equagote that collective space-charge effects are not included in

tion as follows: this mode). The power-flow matri>Ck(§) describes the dis-

1. A tribution of the em-wave power among the different modes
[sU=84]"Ao,  and their spatial harmonics.

T (16) In the single-mode limit, Eq(16) is reduced to the scalar
gain-dispersion equatidr24] as follows:

[’

X (g—" énk)pnk

~ - ~ o~ A 1 . . ~
A($)=| s[5 U= 8,]2~ 5C(5) 05, Q(S)

where the diagonal coupling mater(é) is defined as

N Ta AT _ a 1_2 L5 _a r; A(s)= (g_bk)z A 18
Q(8) = Bed SU— O Z— BeI]+ 5 B, [koZi—SU—Bil. =, e
= === = = == S(5— 8)° = 502, Ci(5) ki(S)

7
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FIG. 2. The horizontal cross section of the 2D periodic wave-
guide. iB
The complex coupling coefficient, given by
A s — Ll o o
Ki(S) = BedS— 0 (Z— Ber) + E:Bej_(kozk_s_ﬁk)r
(19 (b)
is a scalar analog of the coupling mat@(%). The other FIG. 3. A unit cell of the periodic waveguidéa) Forward and

parameters in Eqg18) and (19) are scalar analogs of the backward em-wave components and the reflection and transmission
matrices in Eqs(16) and (17), as well. The matrix gain- coefficients.(b) An equivalent circuit of a unit cell.
dispersion relatior{16) and(17) derived in this section pre-
sents a genera| form of a CRM interaction in a multimodearée neglected in this analysis. This assumption is valid in the
periodic waveguide. range mmd/2a<1. The resulting modes of the periodic
waveguide are vertically polarized TE modes, as shown later
in this section. In the other range, of higher modes or wide
posts(i.e., wheremd~2a/ ), the analytical model should
include the complete set of empty waveguide modes, all

The periodic waveguide shown in Fig. 1 is analyzed inthe TE,,y and TM,,y mode$. In this case, which is not
this section in order to determine its modes and their spatialstudied in this paper, the periodic-waveguide modes may not
harmonic characteristic¢in the absence of the electron be purely TM or TE modes.
beams. Following Refs[38,39, the analysis begins with a The transverse row of posts acts as a partial mirror on the
single unit cell, and then is generalized by the Floquet theoincident em waves,, anda,,, as shown schematically in
rem to the entire periodic waveguide. The empty waveguidérig. 3(a) (the superscriptst and — denote forward and
parameters(i.e., the spatial-harmonic wave numbgy,,, backward waves, respectiveélhe total incident em wave is

power flow p,, and impedanc&,,) are required for the divided into even and odd components as follows:

numerical solution of the matrix gain-dispersion equation . _ _

(16) in the next section. EV(y,2)=E{"(y,2) +E{"®(y,2), (20
The horizontal cross section of the periodic waveguide is

shown in Fig. 2. The unit cell of the periodic waveguide iswhere the superscripts and e denote the odd and even

determined by the axial periad, . components of the incident electric field, respectively. These
In this analysis, we assume that the radius of the metatomponents are given by

posts,d, is small comparing to the waveguide wicth Con-

IIl. DISPERSION ANALYSIS OF THE 2D PERIODIC
WAVEGUIDE

sequently, the surface currents on the posts are directed o m

nearly along their axigi.e., thex axis in Fig. 2. Assuming E;ixofe)(y,z): E agﬁ”e)sin(—y)(ejkmzi e ikm?),
that the incident waves are vertically polarizéds the m=1 a

TEo modes of the empty waveguidéhe scattered waves (21)

from the vertical posts are composed of the same set of _ _
TEmO modes. Other modes of the empty Waveguide, inc|udWhere km is the axial wave number of theith mode. The
ing the TE,w and TM,,,y modes withm’ =0, are not sup- amplitudesa{?’® of the odd and even mode are related to the

ported then by the periodic waveguide, and therefore thepmplitudesa,, anda,, by
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ai=a®Tal. (22) V=|Vnl=las+a,|, (249
In this analysis, the modes may be either propagating or .
evanescent. 1=l =|am—anl, (24b

The currents induced on the surface of posts generate the B
scattered em wave in order to satisfy the boundary condirespectively. The transfer matrix through the obstacle is
tions. This scattered wave is composed of various, §E given by
empty waveguide modes, which are identified by the integer
m’. The multimode analysis of incident and scattered em
waves is presented in Appendix B. It allows determination of —
the matrices of reflection and transmission coefficients for I
the odd and even modes. These matrices are shown in Fig. --z=0"
3(@) asRyym and Ty, respectively.

The equivalent transmission line circuit of a unit cell of In the limit of the infinitely thin postsX—0, and conse-
the periodic waveguide is shown in Fig(b3. The matrices quently, Eq.(25) is reduced to -
jB and X are the equivalent reactive susceptances and re-

vV U-XB jX(2U—-BX)||V

-4z=0"

(25

jB U-BX

actances, respectively. They are related to the matrices of \V; Uu O0flv
odd and even reflection coefficients as follows: T = =B lj I_ , (26)
)
R(O):(JX+ U)*l(Jx_U), (23@ --4z=0 = = —-dz=0"

. Do 1 D in agreement with Ref.38].
E(G)Z[Ji+ Z(JE) l+g] 1[Ji+ Z(JE) l_i]' T%e matrices< and Ef re]presenting the reactive properties
(23D of a single unit'cell, are used now in the dispersion analysis
An analysis of the periodic loaded transmission line isof the entire periodic waveguide with the Floguet theorem.
presented in Ref[38]. The column vectors of equivalent In the general case of a nonzeXomatrix, the dispersion
voltages and currents are defined there by equation of the periodic waveguide results in

1 (1
co Ek_m)\p jsin Ek_m)\p
_ _ — @iBor
(1 1 iB U-BX 1 1 © pg
jsin Eﬁ}\p co Eﬁ)\p = = — jsin Eﬁ)\p co Eﬁ)\p -

1 (1
COE(EQ)“’) JS'”(E&*P) U—-XB jX(2U—-BX)

(27)

where k., is the diagonal matrix of the T mode wave correspond to the propagating and evanescent modes, respec-

numbersk,, . tively [38]. The Floquet theorem allows one to relate the
Equation(27) is a matrix eigenvalue system. The eigen-forward and backward amplitudes,, by

vectors

amn € Jkmp— g iBnorp

X a_r;n: eflﬁnokp_ekaAp ! (29)

I L

- and Eq.(28) is rewritten in the form
which are the solutions of Eq27), describe the periodic " N VN
transverse profiles of the periodic-waveguide modes. These E.=3 a e*jkmz+ejkmze Wmhp— g71Fnotp
modes are composed of linear superposition of,JBodes X" e mn¥m e 1Bnorp— gikmhp |*
of the empty waveguide, which their relative amplitudes (309

ann are specified by the dispersion equati@d), as
The magnetic field component of periodic-waveguide mode

- N g .- is obtained by Maxwell's equations as follows:
En= 2 (amnfime -+ apimel ), (28)

1 < . .
H = + k —jkmZ_ aikmz
where ¢,(y)=sinM(wmm/a)y] is the transverse profile of yn a),uomE=1 Bmntfm m(e €

TE,c mode. The corresponding eigenvalygg of Eq. (27) ik iBon
are the fundamental wave numbers of the periodic- (& mhTe nove
waveguide modes. The real and imaginary wave numbers g 1Pnohp— glkmhp |-

(30b
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Each mode of the periodic waveguide forms its own infi- TABLE I. Parameters of the PWC-array model.
nite set of spatial harmonics,

Waveguide parameters

- Total width a 47 (mm)
E. = e e iBn, 31 Height b 22 (mm)
xn k;oc ki (313 Total length L 0.5 (m)
o Post diameter d 1.5 (mm)
Hyn= E hnk‘//nkeijﬁnkzv (31b) Axial period Np 20 (mm)
k=—c0 Transverse period p 9.5 (mm)
where thekth harmonic wave numbeg,,, is defined by Electron beams
Number of beams 1,2, 3
2k e-gun voltage Ue 4 (kV)
P Prot 3 2 rchvato A S
el ez
The electric and magnetic harmonic coefficients are obtaineéxial magnetic field
from Fundamental mode A) 2.7 (kG)
Second mode B) 3.3 (kG)
1 Third mode C) 4.2 (kG)
Enkink= N f E ejﬁnkzdz (333
2
1 Ap : pnk_ 2 2 | mn| V2 _ p2
hnk’r//nk:)\_p fo HyelPrdz. (33b an K Bnk
Cos(km)\p)_coiﬁno)\p)
L . . . efJ.BnO}\p_elkm)‘p (36)
Substitution of expression80) into Egs.(33) results in
the following relations for electric and magnetic harmonic
coefficients: The parameters resulting from the periodic-waveguide
analysis above are used in the next section for numerical

. —_JE a Km  COSKnh p) —COS Brohp) analysis of the CRM array.
nk%nk 7\pm=1 mn mkﬁq_ﬂﬁk e*JIBno)\p—elkm)\p '
(349 IV. CRM-ARRAY AMPLIFICATION IN VARIOUS MODES

The CRM interaction with an array of electron beams in a

],Bnk m 2D periodic waveguide is demonstrated in this section by
Naknk= oo D Z mnl//m—kz — B2 several numerical examples. The CRM parameters used in
P m Pk these calculations are listed in Table |I. The same parameters
Cog K\ p) — COY Broh p) are used in the CRM-array experiment of Lei and Jg&8}.
e 1B p— glkmhp - (34b) The numerical results of the periodic-waveguide analysis

are shown in Figs. 4 and 5. In these calculations, each mode
of the periodic waveguide is expanded to the first 22,JE

The kth harmonic impedance is thus given by modes of the rectangular waveguideithout the poststo
provide a satisfactory precision. The Brillouin diagram of the
enk,/,nk Ko periodic waveguide is shown in Fig. 4. The calculations are
Zok= =Zo—. (35 conducted in the frequency range 6.5-12.5 GHz, which cov-
P~ B ers the first three modes of the periodic waveguide. The cut-

off frequency of the first mode is found to be 6.9 GHz. The
The harmonic impedand®5) resembles the general expres- results show that only one mode may propagate in the wave-
sion for the TE mode impedance in a hollow waveguide,guide for any given frequency in this range. Hence the peri-
Z=7Zuko/k,. This result stems from the fact that the odic waveguide acts as mode selectoand it provides a
periodic-waveguide mode is composed of only TE modes ofingle-mode operation even for the second- and third-order
the rectangular waveguide. modes. Three-dimensional profiles of periodic-waveguide
The harmonic impedancg,, is real for realB,, in the  modes are plotted for the one unit cell in Fig&a)55(b), and
nth-mode frequency passband, and is imaginary for imagi5(c) for the first, second, and third modes, respectively. The
nary B, in the stopband frequency region. The power flowfigures show that in the middle of the unit cell, the periodic-
of the kth spatial harmonic is derived using the orthogonalitywaveguide modes resemble the correspondingTiiodes
of TE modes, and results in of the empty waveguide, respectively. The higher modes of
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FIG. 4. The Brillouin diagram for the first three waveguide
modes. The corresponding electron-beam liries (1)] are shown
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rectangular waveguide become dominant in the vicinity of 0 20

the metal posts.

The CRM interaction with the fundamental harmonics of
the first three periodic-waveguide modes is computed nu- y [mm] o0 z [mm]
merically using Eqgs.(18) and (19) (the weak coupling (b)
among the periodic-waveguide modes in the frequency range
6.9-12.5 GHz, enables a single-mode CRM interaction in 4
this rangé. Figure 4 shows the interaction points of each one
of these mode§pointsA, B, andC for the first, second, and
third mode, respectivelywith a 4 keV electron beam in dif-
ferent magnetic fields, as listed in Table I. For each periodic-
waveguide mode, the interaction with one, two, and three
electron beams is calculated. For the sake of comparison, th
total electron current is taken the same for any number of
beams in the array. The first 15 spatial harmonics are taken -
into account in the calculation of the power-flow ratic) of 40
each mode. The computed power gains are presented in Figs. 30
6, 7, and 8 for interactions with one, two, and three electron
beams, respectively. The maximum gains are plotted in Fig. - 0 o
9 for each number of electron beams and periodic-waveguide
mode orders. The results show that the largest gain is ob- ©
tained by an interaction of one electron beam with the third
mode of the periodic waveguide. This operating point is G, 5. Profiles of the firsta), secondb), and third(c) modes
marked asC in the dispersion diagram in Fig. 4. Consider- of the periodic waveguide in a unit cell.
able gains are obtained also by a two electron-beam interac-

tion with the second mode, and by a three electron-beargoypling coefficient, and the filling factors . The fill-

interaction with the third mode. ing factors for given waveguide geometry depend on the
position of electron beams inside the waveguide with respect
V. DISCUSSION to the spatial distribution of the radiation power. The cou-
In this section we discuss the analysis of the multibeanPling parametet19) represents four mechanisms invioved in
CRM array presented above, and its implication for the deth® CRM interaction as discussed in R¢f524]. In the case

velopment of new schemes of 2D and 3D CRM arrays. where the initial electron velocity in the azimuthal direction
Some of the principles of the CRM-array interaction arelS much smaller than the axial velocity, the CRM interaction

iilustrated by Eq.(18) in the single-mode limit. The gain Nas & nonbunching charac{@?]. In this case, the coupling
obtained by the CRM interaction depends on two factors: thgparameter depends on the tedp— B.,. According to Eg.
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FIG. 6. Gain curves of a single electron-beam CRM interaction FIG. 8. Gain curves of a three electron-beam CRM interaction
with the first (A), second B), and third C) modes. The corre- With the first (A), second B), and third ) modes. The magnetic
sponding axial magnetic fields are 2.7, 3.3, and 4.2 kG, respedields and parameters of electron beams are the same as for Fig. 6.
tively. The electron energy is 4 keV, the total electron current is 0.2
A, and the electron pitch ratio i8¢, /Be,~2. resents the axial bunching mechanism. These terms oppose

one another, i.e., the azimuthal and the axial bunching effects
(35), this term is always positive for an interaction with fast tend to cancel one another. The azimuthal bunching domi-
TE waves 3,0<Kk,), and consequently, the CRM interaction Nates over the axial bunching effect in the fast-wave interac-
in this case results in a radiation absorpti@®,24. The tion, as with the fundamental harmonics presented above
multibeam CRM interaction in a 2D periodic waveguide may(WhereBno<ko). Substituting Eq(35) to the bunching cou-
provide slow-wave conditionsd,>kq, k=1) in high-order  pling terms results in K3— 82,)/Bno. Consequently, for a
spatial harmonics. The anomalous Doppler effect in this CaSiven fundamental wave numbg,, the azimuthal electron

[20—-22 may result in a positive gain without an initial rota- | nching becomes stronger as the frequency increases
tion of the electron beams. This effect is a subject for further(whereas the axial bunching remains constafbe 2D pe-

research. _ _ , riodic waveguide has an advantage in this respect that a
The CRM bunching mechanisms become dominant whegjngle-mode operation is possible also with high modis

the electron beams are initially rotated at the entrance to thg,nqamental passhand of the third mode in the previous ex-

interaction region. The terkyZ,o in expression(19) corre-  ample exists in the stopbands of all other modasis fea-

sponds to the azimuthal bunching, whereas the Véﬁmep- ture of the CRM array in a 2D periodic waveguide enables a

2 e beams
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FIG. 7. Gain curves of a two electron-beam CRM interactions
with the first (A), second B), and third C) modes. The magnetic FIG. 9. Maximal gains of CRM-array interactions with various
fields and parameters of electron beams are the same as for Fig.odes and different number of electron beams.
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single-mode and near-cutoff operation, and consequently a The concept of the multibeam CRM array in multidimen-
stronger CRM interaction, in higher frequencies. The modesional periodic structurg®8] provides a basis for the devel-
stability in the periodic waveguide and the wide cross sectiompment of low-voltage, high-power sources of microwave
of the CRM-array interaction are consequent advantages. radiation.

Technical advantages of the CRM-array concept, result-
ing from the low-voltage operation, are related to the short ACKNOWLEDGMENTS
collector section required for the low-energy electron beam,
as compared to gyrotrons. The array structure also alleviates The authors thank Dr. V. Dichtiar for discussions on the
the difficulties associated with the radiation output window, periodic-waveguide analysis, and acknowledge support for
which is a severe technical problem in gyrotron design. Théhis research by the Israel Science Foundation under Grant
emitted powers from different CRM-array channels can be\No. 724/94.
summed up coherently in space as in phased-array antennas

[37]. APPENDIX A: THE ELECTRON-BEAM FILLING
The multimode analysis of the multibeam CRM array in a FACTOR
2D periodic waveguide will be used as a basis for the analy- . . ]
sis of the experiment conducted by Lei and Jel®g]. Fur- The analytical expression for the prodiict, pny defined

ther development of the theory of CRM arrays is planned irby Eqs.(10) is derived in this appendix. This term describes
various directions, including multifrequency CRM emission, the coupling between thigh electron beam and tHeh spa-
multiple CRM interactions and synergistic effects, 3D CRM tial harmonic of thenth periodic-waveguide mode. The beam
arrays, and photonic-band-gap effects. We plan to discuds assumed to be cylindrical and transversely uniform. Its
microwave radiators based on 3D CRM arrays with inherentransverse-profile function is defined by E@).

features of phased-array antennas in a future pig¥r Substituting Eqs(343 and(34b) into Eq.(10b) results in

2 COS km)\ p) - COS(:BnO)\ p)
k2 Bnk exq_jlgno)\p)_exqjkm)\p)

whereS is theith electron beam cross section. The integral in the right side of&b. is rewritten in the form

j 7 m q d_l , 1 2mm jZWd frmd 2mmr
SiS| 5 Y | dxdy=5 75— 5C08 —— Vi . 10 . rdrco 5 Sine
1 (2mm 2m roi [ 2mmr
+=Sinl ——VYy; J d(pJ rdrsin sing |, (A2)
2 a 0 0 a

wherer andg are the polar coordinates associated withitheslectron beam cross section. The last term in(Bg) vanishes,
since its integrand is an odd function @fwith a period of 2r. After some algebraic steps, E@\2) results in

20  _[mm
Pk 375 2 |amnl? f smz(—y)dxdy, (A1)
znk S a

f i m dxdve r2 T ) 2mm Jw/Zd a B 27-rmr0,h_
SiS| 7 Y|dx y=roi| 3 —2co 7 Yo . @ 27rmr0isin<p°m a sing
. a )2 27mrg; L A3
2mrg;Sing o a sine | = (A3)
An expansion of the sine and cosine functions to the Taylor series gives
o | 21
o[ ™M 2T 2mTm ‘ (=1 27mry; fﬂ/Z .
Lsmz( - y)dxdy—r0i 5> —C0§ — Vo Eo(ZI)!(Hl) - . (sing)?de | . (A4)
The solution of the integral in the left side of E@4) is known as
w2 T (21-1)!
2l
fo (sing)“de== i (AS)
where the the double factorial is defined by
" 1X3X5X-.-XN, N=135, ... A
T |2x4x6X--- XN, N=2,46 ... . (A6)

Finally, Eq.(A2) results in
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~_[mm 1 27m “ [ amrg |2 (—1)
Lsmz(?y)dxdyzzwréi{1—Coﬂ( a VOi)I_EO( a0> H(I+1)!

which gives the following expression for the prodlliqtnkipnk,

: (AT)

83, k 2l cogkmhp) —COS Broh,) |2 27m “ [ amrg |\ 2 (1)
PPz 2 1amdl®| 2= Ao —exa k| | 170 Yoi | 2, SRS
p&nkm=1 m— Bk exp(— ] Bno p) exp(] m p) a I=0 a i )!
(A8)
|
This expression is used in this work as the electron-beam * *

1 :
) E Jk(zkod)ejk(b
k=—o

. Tm
filling factor in the analysis of the multibeam CRM array. E{(.%®= > a(®® sin(?py—kd)m)
m=1

APPENDIX B: THE REFLECTION-COEFFICIENT -
MATRIX OF A SINGLE ROW OF POSTS T(— l)kSin(?p,ﬁ- K

}, (B2)

The analysis of the periodic waveguide is based on the
features of its unit cell. In this appendix, the reflection coef-which is a superposition of angular harmonics numerated by
ficient matrix of a single row of posts is derived. the integerk, whereJ,(Z) is the Bessel function of the first
Figure 2 shows the horizontal cross section of the wavekind of orderk, and the parametep,, is defined for each
guide. The unit cell is considered as a transverse row of postgth mode by
placed atz=0, as shown in Fig. @. All posts have the
equal diameted and they are assumed to be perfectly con- 1
ducting. The posts are numbered frorK to K. The zero gidm= —
number corresponds to the central post that may or may not Ko
be present. Thg coordinate of thevth post center and the
polar angle are, and ¢, respectively, as shown in Fig. 2. The parametes,, is real for the propagating mode and com-
The surface of theith post is expressed in polar coordinatesplex for the evanescent one.
p, and ¢ by The surface currents induced on the posts have no varia-
1 tion in x. Then, making use of the common imaging tech-
_ nique, we assume thét) the posts are infinitely long in the
Yo=p,~ 5 dcosp, Bla direction, (2) the post array is infinite in thg direction,
and consequently3) the post locations and current distribu-
1 tions in each transverse unit cell of widéhare the consecu-
ZO:EdS'n¢- (B1b)  tive mirror images of each other. These assumptions replace
the waveguide walls, since the same boundary conditions are
The electric field incident to the posts is defined by Eqs.automatically fulfilled.
(20)—(22). On the surface of theth post this field is given The scattered field generated in the poigtz) by the
by linear currentl(yg,2p) is given by

mm

Kt ? . (B3)

v g ikoXg+ (Y= v+ (z-20)11M2

jw/"LO dx.= —
e [} (Y—Yo) 2+ (2—29) 220

EX(Y.2)=— 5~ 1x(Yo.20)

% I x(yo,zo)ng)[ko[(y_yo)z"‘ (z—120)%]"],
(B4)

whereng) is the Hankel function of the second kind of order 0. The total scattered field is obtained by integrating over the
post surface and summing over all posts. Making use of the polar coordinates introduced in Fig. 2 results in

0 K

2 *
=52 3 | ImM)I_Ew(—l)m'HgZ)fko

=1 n=-

2
+

1 271/2
z— Edsinl,/;) } Jd«/z,
(BS)

1
y+la—p,+ Edcos/x

wherel,, is the current element generated on thty post by themth incident mode and is the polar angle of the point
Yo,Zo 0on the surface of this post. The scattered field on the surface aftthpost is
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o [ K o0
TOWWg 1 . 1 1
E;Su)(d’):_—E E Ji| 5 kod elk¢ z E Jn| 5kod |m,unfm,n—k(P;L_Pv) +H(k2) SKod | Tk [ 5
2 m=1 k=—o 2 u=—Ki=—w 2 2
(B6)
where
1 (2= ing
Imunzﬁfo Imp,(‘p)e NYdy, (B79)
are the angular harmonic coefficients of the discrete Fourier series
Imﬂ(w)=n;_ mun€"?, (B7b)
and the functiorf is defined by
fna(Z)= 2 (—1)™HP(ko|Z+]a|)sgrf(Z+la). (B8)

|=—w

Z+la#0

The total electric field is a sum of incident and scattered fields, and it must vanish on the post surface. Hence for the surface
of the vth post we have

[ mm K _ 1 s mm K
sin = P dm | F(—1)"sin ?p,,-i- dm

- - 1 .
2 ap® > Jk(zkod)elkd’
m=1 k=—o

2
+HP

o o K o0
TW Mg 1 . 1 1
2D NP S S B A PR YU 0 7 B

u=—K n=—ow

Equation(B9) can be further simplified by use of general properties: the linear independence of modes, and the uniqueness of
the Fourier series. Consequently,,> ,Ji(3kod)el*? may be removed from both sides of H&9), which results in

L[
i
2 an

Tm
- Pt Kébm

+HZ
u=—K n=—w

K e 1 I(o/e)
mun

E 2 [Jn<§kod){a(7l;e)]fm,nk(p,u_l)v)
m

2

TW Mo

sin

mm

?py—k(ﬁm) T (—1)*sin } (B10)
Equation(B10) is satisfied for each even or odd moufe post numbemw, and angular harmonik. Consequently, foM

interacting modes there ardyRsystems of linear equations. The order of each system is the number of posts times the number

of angular harmonics. All the coefficients(s,/aly’®} can be calculated from these systems of equations. In addition, since

the current generated by tineh mode at any point on the post surface is proportional to the incident field in this point, then

the use of Eq(21) results in the symmetry relations

|(o/e)k |(o/i)
mu— _ mu
/ =+ S0 [ (B11a
L L
“HRL k o
{ 2009 }—i(—l) +m{ a(o/e)]' (B11b
m m

In particular, for the zero harmonic and the central postO, these result in

o

1w

[WJ=O, (BllC)
m
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o
m

k+m=odd/even number

The current coefficients defined by EGB10) and(B11) are used further in this section in order to determine the reflection
coefficients of the unit cell of periodic waveguide. At a large distance from the posts, namely; #d, the scattered field
given by Eq.(B5) may be expanded to an infinite series of empty waveguide modes as follows:

K o [}
2Topg 1 1 m’
EL(y.2)=~ 2 (—1>“Jn<§kod){ 2w € ka'Zcos(—w AL

mm’'=13, ...
= 1 ., m’
+ > lmunf—e Ikm'Zeq — V=P "N | |- (B12)
mm’'=2,4, ... m’

The scattered field is divided into the symmetric and antisymmetric f@dtsand even numbers, m’, respectively. It is a
consequence of the waveguide transverse symmetry. The total electric field is a sum of incident and scattered waves, and it is
given by

o0 K %
m . . 27w 1
Eg(o/e)(y,z): aﬁ,?’e)sin(?y>(ejkmzie”‘mz) /J“ 2 E (—1)”Jn(§k0d)
m=1 u=—K n=-o=
% i sin 7Tm'y I(o/e ie karzsm 7T_m, +n¢ ,
mm’'=13, ... a K a P ;
” [ mm’ 1 am’
- ,224 sm(—a y) gﬂ’;‘?k—e W Sln(Tp,ﬁn(ﬁm')]- (B13)
mm’'=24,...

The symmetry propertiedB11) are used in the derivation of E¢B13).

The matrix of reflection coefficient® is introduced in Ref{38] for the multimode interaction. The elemeRy, , of this
matrix is defined as a reflection coefficientrofth mode due to thenth incident mode. Thus the reflection coefficients for odd
and even mode a=0 are defined from EqB13) by

’ K o (ole) ’
(ole) mm | [7m 2mwpg . [ ™M 1 mgn | . [ 7M
R sm( a y) —+sm(?y)5 —Twsm —Yy M:E_K n:z_x (—1)"J, Ekod W sin| Tp”+ Ndy |,
(B14)
|
and the matrix elementR,,, for different m,m’ are ob- (ofe) 2mwp
tained as follows: IRmml=——=—IDmrml (B16a
R%¥=0, m+m'=35,..., (B159 and
Im(D
e 1(—( ”‘m)), (B16b)
(ole) _ — 277(”!“‘0 Re(Dm'm)
Rigm = F1— — Z 2 (—1)"J, kod
m p=-Kn=-e respectively, and the paramefy,,, is defined by
{Im] ( m & ) (B15b) 1 Kz 1
X sinl—p,+n ,
ne a Prr o Dvm=r— 2 2 (—1>“Jn(—kod)
kmlM:—K n=-—ow 2
and | (o/e) m
mun .
X[W’fe)}sm(?p#+n¢m). (B17)

R(o/e _lR 0/e)|eX[ﬁ(J q)(o/e)) m=m’ (Bl5C)

' These reflection-coefficient matrices are used in K233
where the moduI¢R(0 e)| and phase angI@(0 ® are given  and(23b) for calculating the equivalent transmission-line pa-
by rameters.
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