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Linear analysis of a multibeam cyclotron-resonance maser array

M. Korol and E. Jerby
Faculty of Engineering, Tel Aviv University, Ramat Aviv, 69978, Israel

~Received 30 October 1996!

The multibeam cyclotron-resonance maser~CRM! array is a new concept for compact, high-power CRM
devices operating at low voltages. The CRM array studied in this paper employs low-energy electron beams,
which are propagating in coupled channels in a two-dimensional periodic waveguide. A static magnetic field
spirals the electrons in synchronism with a spatial harmonic of the electromagnetic wave. A matrix gain-
dispersion equation of the CRM-array interaction is derived in the paper. Numerical examples are presented for
a comparison between CRM interactions of one, two, and three electron beams with various waveguide modes.
The analysis shows that the multibeam cyclotron interaction yields a considerable gain of microwaves in
selective modes.@S1063-651X~97!09204-0#

PACS number~s!: 41.60.2m, 84.40.Ik, 52.35.Qz, 52.35.Hr
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I. INTRODUCTION

Advanced sources of high-power microwaves~HPM! are
needed for scientific and technological purposes. HPM
vices are key elements in the development of novel part
accelerators, fusion reactors, radars, communication syst
and various industrial and medical processes. Cyclotr
resonance masers~CRMs! and free-electron masers~FEMs!
have been studied intensively as HPM amplifiers and os
lators @1,2#. Both CRM and FEM mechanisms are based
resonant interactions between the amplified electromagn
~em! wave and an electron beam.

The CRM resonance condition between an em wave a
copropagating electron beam is given by

v;vc1kzVz , ~1!

wherev andkz are the em-wave frequency and axial wa
number, respectively, andVz is the axial electron velocity
The relativistic angular cyclotron frequency
vc5eB0 /gm0, wheree, m0, andg are the electron charge
rest mass, and relativistic factor, respectively, andB0 is the
axial static magnetic field@3,4#. The CRM interaction with a
fast em wave (kz<v/c) requires a nonzero initial transvers
velocity in order to amplify the em wave. The fast-wa
CRM interaction stems from the azimuthal electron bunch
in the spiral electron trajectories caused by the transv
electric field component of the em wave@5#.

Recent CRM studies are devoted to nonlinear anal
@6,7#, multimode analysis@8#, high cyclotron-harmonic op-
eration@7,9–11#, short-pulse generation@12#, and to the de-
velopment of high-power generators@10,13–15#. Various
prebunching mechanisms and gyroklystrons@8–10,15# have
been investigated in order to increase efficiency.

Dielectric-loaded cyclotron masers@16–18# are developed
in order to extend the slow-wave (kz.v/c) tunability and to
reduce the required electron energy. The slow-wave C
interaction is characterized by an axial electron bunching
fect, known as the Weibel mechanism@5,17,19#. The anoma-
lous Doppler effect@20–22# can be realized in a slow-wav
cyclotron with a zero initial transverse electron velocity.
551063-651X/97/55~5!/5934~14!/$10.00
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The periodic-waveguide cyclotron~PWC! maser is a de-
vice in which the interaction occurs in a periodically load
waveguide@23,24#. It combines the properties of fast- an
slow-wave CRM interactions. The artificial dielectric pro
erties of the periodic waveguide allow operation of the PW
device in new parametric regimes. In particular, a qua
anomalous Doppler effect is feasible in periodic waveguid
with low harmonic impedance@25#. Experimental and theo
retical studies@23–29# show that the PWC has the potenti
to become a compact low-voltage source of microwaves.
instance, the PWC-oscillator experiment conducted by Je
et al. @27# employs an 8 keV, 200 mA electron beam, and
output power is.0.4 kW, which corresponds to a.25%
efficiency.

Most of the HPM generators employ a single high-ene
electron beam. For instance, a gyrotron producing 3 M
power at 140 GHz frequency with a 45% efficiency@30#
employs an electron beam of 95 keV and 84 A. A cyclotr
autoresonance maser~CARM! oscillator experiment reported
in Ref. @31# generates 13 MW output power at 38 GHz wi
an;25% efficiency employing a 500 keV, 100 A electro
beam. Using a single high-current electron beam limits
output radiation power by the beam energy and current.
interaction is impeded by space-charge effects, and, in a
tion, the device overhead required for a single high-pow
electron beam is fairly large~high-voltage power supplies
huge electron gun and collector, shielding system, etc.!. The
use of an array of low-current~high-perveance! electron
beams may alleviate some of these difficulties.

A two-beam cyclotron maser was proposed and studie
Ref. @32#. The beams propagate with different stream velo
ties in the cylindrical waveguide. The interaction betwe
the fast transverse plasma wave of one beam and the
transverse plasma wave of the other beam results in rf po
gain. The radiation frequency is inversely proportional to t
energy difference between the beams. Consequently,
high-frequency radiation can be achieved for low electr
energies and axial magnetic fields. Numerical simulatio
predict an 80 dB/m gain at 50 GHz for two nonrelativist
beams with a 23 A/cm2 current of each one, an 87.5 ke
mean electron energy, and a 25 keV difference between
beams.
5934 © 1997 The American Physical Society
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The cluster klystron@33# is proposed for linear colliders
The experimental model consists of three parallel elect
beams with equal 33 A current and 370 keV energy. T
device produces 78 MW output power with a 70% ef
ciency. The efficiency is larger by a factor of 2 compari
with a conventional klystron employing one 100 A electr
beam.

The concept of the CRM array was proposed@28# as a
multibeam extension of the PWC scheme in order to prod
high-power microwaves by many low-energy electron bea
propagating in parallel directions. The device consists o
multichannel lattice waveguide as shown in Fig. 1. The el
tron beams pass through the different channels and inte
with the spatial em-wave harmonics, due to the axial m
netic field. The various channels of the CRM array a
coupled to each other. Synergistic effects are expected in
device. The two-dimensional~2D! CRM array shown in Fig.
1 is being studied experimentally by Lei and Jerby@29#. It
employs a rectangular waveguide with a matrix of induct
metal posts inside. The parameters of this waveguide
studied in Ref.@34#. Electron beams with various axial ve
locities are injected simultaneously into the waveguide. E
electron beam flows between two adjacent rows of m
posts. Its current is relatively small and therefore the spa
charge effects are negligible.

The practical advantages of the proposed scheme ar~a!
the low-voltage, low-current operation of the separated e
tron beams, and consequently~b! the alleviation of space
charge effects, and~c! the feasibility of high-power micro-
wave generation by a compact device.

The concept of the CRM array can be extended to thr
dimensional arrays. It can be developed even further to n
concepts of a multibeam CRM interaction in aphotonic-
band-gap structure @35#, and of a phased-array radiato
@36,37#.

This paper presents theoretical analysis and nume
calculations of the 2D PWC array. This analysis is a mu
mode extension of a CRM model in periodic waveguid
@24#. The 2D periodic-waveguide analysis is based here
the microwave theory approach@38,39#. The gain-dispersion
equation of the convective PWC interaction is derived in
next section. This equation relates the output and input

FIG. 1. Schematic of the multibeam CRM array in a 2D perio
waveguide.
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plitudes of the amplified em-wave signal as a function of
interaction parameters. A multimode analysis of the perio
waveguide is presented in Sec. III. A numerical analysis
the PWC-array amplification with different number of ele
tron beams and in different em modes is presented in S
IV.

II. DERIVATION OF THE CRM-ARRAY
GAIN-DISPERSION RELATION

The em wave in the 2D periodic waveguide shown in F
1 is described as a superposition of linearly independ
TEn0 modes@38# ~in this analysis, we assume that the wa
profile is uniform in thex dimension!. Each mode is ex-
panded to an infinite set of spatial harmonics, and is cha
terized by its repetitive transverse profile and axial wa
number in each unit cell of the periodic waveguide. T
harmonic profiles and axial wave numbers are determined
a dispersion equation for each transverse mode@38#. Hence
the em wave in the periodic waveguide is expressed in
form

Hy~v,y,z!5 (
n51

`

An~z! (
k52`

`

hnkcnk~y!e2 jbnkz, ~2a!

Ex~v,y,z!5 (
n51

`

An~z! (
k52`

`

enkcnk~y!e2 jbnkz, ~2b!

where An(z) is the slowly varying amplitude of thenth
periodic-waveguide mode, the subscriptsn and k denote
mode and harmonic orders, respectively,enk and hnk are
electric and magnetic harmonic coefficients, respective
and cnk(y) and bnk are their transverse profile and axi
wave number, respectively. The normalized harmonic
pedance is defined as

Ẑnk5
enk
hnk

Z0
21 , ~3!

whereZ05Am0 /e0 is the free-space wave impedance. E
pressions for the mode coupling and amplitude variation
to the cyclotron interaction are derived in this section.

Following Ref.@24#, the wave equation for the transvers
magnetic component of thenth mode is given in the complex
Laplace space by

S ]2

]y2
1k0

21s2D H̃yn~v,s!2S s1
]

]zDHyn~v,z50!

52s (
n851

`

J̃xn8~v,s!, ~4!

where k05v/c is the free-space wave number ands is a
complex Laplace variable. Using the method of characte
tic lines, the electron currentJ̃xn8 induced by then8th wave-
guide mode is given@24# by
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J̃xn8~v,s!5
pe2

m0
E
P0'

E
P0z

P0'

g H Ẽxn8~v,s!2~P0z /gm0!m0H̃yn8~v,s!

jv2 jvc1~P0z /gm0!s

2
P0'
2

2g2m0
2

~ jv/c2!Ẽxn8~v,s!1sm0H̃yn8~v,s!

@ jv2 jvc1~P0z /gm0!s#
2 J f 0~P0z ,P0' ,x0 ,y0!dP0'dP0z . ~5!

The axial and azimuthal components of the initial electron momentum areP0z andP0' , respectively,x0 andy0 are the initial
coordinates of electron, andf 0 is the zero-order electron distribution function.

The distribution function of an array ofI electron beams, neglecting energy spread and emittance, is given by

f 0~P0z ,P0' ,x0 ,y0!5
1

2p P̄0'

d~P0'2 P̄0'!d~P0z2 P̄0z!(
i51

I

n̄0ig0i~x0 ,y0!, ~6!

wheren̄0i andg0i(x0 ,y0) are thei th electron-beam density and transverse profile, respectively, and the bars denote a
initial values. Assuming electron beams with a circular and transversely uniform cross section, the profile function is g

g0i~x0 ,y0!5H 1, ~x02x0i !
21~y02y0i !

2,r 0i
2

0, else,
~7!

where r 0i , x0i , and y0i are the initial radius and the center coordinates, respectively, of thei th electron beam. Equation
~2!–~6! result in a gain-dispersion equation of thenth-mode CRM-array interaction as follows:

(
k52`

`

@~bnk
2 1s2!Ãn~s1 jbnk!2~s2 jbnk!An0#hnkcnk~y!52

s

2c2S (i51

I

v̄p0i
2 g0i~x0 ,y0!D (

n851

`

(
k852`

` H cẐn8k82V̄0z

jv2 jvc1V̄0zs

2
V̄0'
2

2

jk0Ẑn8k81s

~ jv2 jvc1V̄0zs!2
J Ãn8~s1 jbn8k8!hn8k8cn8k8~y!, ~8!

where V̄0z5 P̄0z /gm0 and V̄0'5 P̄0' /gm0 are the axial and azimuthal electron velocities, respectively,
v̄p0i5(e2n̄0i /gm0e0)

1/2 is the relativistic plasma frequency associated with thei th electron beam. Using the orthogonality
modes and harmonics allows to reduce the transverse dependence of Eq.~8! by multiplying both sides by
(n(kenk* cnkd(s2 jbnk) and integrating over the waveguide cross section. This results in

(
k52`

`

~s22 jbnk!pnk@sÃn~s!2A0n#52
1

2c2 (
n851

`

(
k852`

`

~s2 jbn8k8!S (
i51

I

v̄p0i
2 F fn8k8 i D H cẐn8k82V̄0z

j ~v2vc2bn8k8V̄0z!1sV̄0z

2
1

2
V̄0'
2 jk0Ẑn8k81s2 jbn8k8

@ j ~v2vc2bn8k8V̄0z!1sV̄0z#
2 J pn8k8Ãn8. ~9!

The harmonic power flowpnk and the filling factor of thei th electron beam,F fnki
, are defined as

pnk5hnkenk* E
0

aE
0

b

cnk
2 ~y!dxdy, ~10a!

F fnki
5
hnkenk*

pnk
E
0

aE
0

b

g0i~x,y!cnk
2 ~y!dxdy, ~10b!

respectively, wherea andb are the transverse dimensions of the rectangular waveguide. The productspnkF fnki
are derived in

Appendix A for electron beams with a circular and transversely uniform cross section.
We assume that the CRM resonance condition~1! is satisfied with thekth spatial harmonic of thenth waveguide mode.

Consequently, thekth spatial harmonics of all the other modes are considered as close to the CRM resonance and a
into account in the right side of Eq.~9!. The other harmonics are assumed to be off-resonant and therefore neglected.
Eq. ~9! is further reduced to
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sÃn~s!2A0n52
1

2c2S (
k852`

`

~s22 jbnk8!pnk8D 21

(
n851

` S (
i51

I

v̄p0i
2 F fn8kiD ~s2 jbn8k!pn8kH cẐn8k2V̄0z

j ~v2vc2bn8kV̄0z!1sV̄0z

2
1

2
V̄0'
2 jk0Ẑn8k1s2 jbn8k

~ j ~v2vc2bn8kV̄0z!1sV̄0z!
2 J Ãn8~s!. ~11!

Dimensionless operating parameters are introduced to simplify the equations. The CRM tuning parameter is give

ûn8k5~v2vc2bn8kV̄0z!
L

V̄0z

, ~12!

and the space-charge parameter is defined asûpn8k5@( iv̄p0iAF fn8ki
#L/V̄0z whereL is the interaction length. The normalize

wave number parameters arek̂05k0L for free space,b̂nk5bnkL for the kth spatial harmonic, andŝ5 jsL for the Laplace
variable. Using these definitions, Eq.~11! is rewritten in the form

ŝÃn~ ŝ!2A0n5
1

2 S (
k852`

`

~ ŝ12b̂nk8!pnk8D 21

(
n851

`

ûpn8k
2

~ ŝ1b̂n8k!pn8kH b̄ez~ Ẑn8k2b̄ez!

ŝ2 ûn8k
1

b̄e'
2

2

k̂0Ẑn8k2 ŝ2b̂n8k

~ ŝ2 ûn8k!
2 J Ãn8~ ŝ!,

~13!

whereb̄ez5V̄0z /c and b̄e'5V̄0' /c are the normalized axial and azimuthal electron velocities, respectively.
Equation~13! holds for any waveguide-mode ordern. Hence a matrix equation is derived for the relation between

column vectorsÃ( ŝ)5uÃn( ŝ)u and A05uAn0u, as follows:

F ŝ@ ŝU2Q̂k#
22

1

2
Ck~ ŝ!Q̂pk

2 H b̄ez@ ŝU2Q̂k#@ Ẑk2b̄ezU#1
1

2
b̄e'
2 @ k̂0Ẑk2 ŝU2b̂k#J G Ã5@ ŝU2Q̂k#

2 A0. ~14!
:
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The matrix parameters of Eq.~14! are defined as follows

U is a unit matrix, andb̂k5ub̂nku andẐk5uẐnku are diagonal
matrices of harmonic wave numbers and impedances, res
tively. The diagonal tuning and space-charge matrices

Q̂k5uûnku and Q̂pk5uûpnku, respectively, and the nondiago
nal power-flow matrix is

Ck~ ŝ!5uCn8n
~k!

~ ŝ!u

5US (
k852`

`

~ ŝ12b̂n8k8!pn8k8D 21

3~ ŝ1b̂nk!pnkU . ~15!

Finally, the matrix gain-dispersion equation of the CRM
array interaction results in the Pierce-type fourth-order eq
tion as follows:

Ã~ ŝ!5F ŝ@ ŝU2Q̂k#
22

1

2
Ck~ ŝ!Q̂pk

2 Qk~ ŝ!G21

@ ŝ U2Q̂k#
2 A0,

~16!

where the diagonal coupling matrixQk( ŝ) is defined as

Qk~ ŝ!5b̄ez@ ŝU2Q̂k#@ Ẑk2b̄ezU#1
1

2
b̄e'
2 @ k̂0Ẑk2 ŝU2b̂k#.

~17!
ec-
re

a-

The resulting gain-dispersion equation~16! and the associ-

ated coupling matrixQk( ŝ), Eq. ~17!, are a multimode gen-
eralization of the single-mode analysis of the period
waveguide CRM interaction presented in Ref.@24#.
Equations~16! and~17! describe the spatial evolution of th
input em wave where its transverse modes are coupled by

cyclotron interaction. The polesŝ of Eq. ~16! determine the

shift of thekth harmonic wave numbersb̂nk in the complex
plane. The corresponding residues describe the variatio
em-wave amplitudesAn(z5L) due to the CRM interaction
The different terms in Eq.~16! represent various effects. Th

coupling matrixQk( ŝ) describes the CRM interaction wit
the resonant harmonic. Its different terms~17! correspond to
various operating regimes of the CRM interaction as

ported in Ref.@24#. The space-charge matrixQ̂pk represents

the effect of electron current density on the CRM coupli
~note that collective space-charge effects are not include

this model!. The power-flow matrixCk( ŝ) describes the dis-
tribution of the em-wave power among the different mod
and their spatial harmonics.

In the single-mode limit, Eq.~16! is reduced to the scala
gain-dispersion equation@24# as follows:

Ã~ ŝ!5
~ ŝ2 ûk!

2

ŝ~ ŝ2 ûk!
22

1

2
ûpk
2 Ck~ ŝ!kk~ ŝ!

A0 . ~18!
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The complex coupling coefficient, given by

kk~ ŝ!5b̄ez~ ŝ2 ûk!~ Ẑk2b̄ez!1
1

2
b̄e'
2 ~ k̂0Ẑk2 ŝ2b̂k!,

~19!

is a scalar analog of the coupling matrixQk( ŝ). The other
parameters in Eqs.~18! and ~19! are scalar analogs of th
matrices in Eqs.~16! and ~17!, as well. The matrix gain-
dispersion relation~16! and ~17! derived in this section pre
sents a general form of a CRM interaction in a multimo
periodic waveguide.

III. DISPERSION ANALYSIS OF THE 2D PERIODIC
WAVEGUIDE

The periodic waveguide shown in Fig. 1 is analyzed
this section in order to determine its modes and their spa
harmonic characteristics~in the absence of the electro
beams!. Following Refs.@38,39#, the analysis begins with a
single unit cell, and then is generalized by the Floquet th
rem to the entire periodic waveguide. The empty wavegu
parameters~i.e., the spatial-harmonic wave numberbnk ,

power flow pnk , and impedanceẐnk) are required for the
numerical solution of the matrix gain-dispersion equat
~16! in the next section.

The horizontal cross section of the periodic waveguide
shown in Fig. 2. The unit cell of the periodic waveguide
determined by the axial periodlp .

In this analysis, we assume that the radius of the m
posts,d, is small comparing to the waveguide widtha. Con-
sequently, the surface currents on the posts are dire
nearly along their axis~i.e., thex axis in Fig. 2!. Assuming
that the incident waves are vertically polarized~as the
TEm0 modes of the empty waveguide! the scattered wave
from the vertical posts are composed of the same se
TEm0 modes. Other modes of the empty waveguide, incl
ing the TEmm8 and TMmm8 modes withm8Þ0, are not sup-
ported then by the periodic waveguide, and therefore t

FIG. 2. The horizontal cross section of the 2D periodic wa
guide.
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are neglected in this analysis. This assumption is valid in
range pmd/2a!1. The resulting modes of the period
waveguide are vertically polarized TE modes, as shown la
in this section. In the other range, of higher modes or w
posts~i.e., wheremd;2a/p), the analytical model should
include the complete set of empty waveguide modes~i.e., all
the TEmm8 and TMmm8 modes!. In this case, which is no
studied in this paper, the periodic-waveguide modes may
be purely TM or TE modes.

The transverse row of posts acts as a partial mirror on
incident em wavesam

1 and am
2 , as shown schematically in

Fig. 3~a! ~the superscripts1 and 2 denote forward and
backward waves, respectively!. The total incident em wave is
divided into even and odd components as follows:

Ex
~ i !~y,z!5Ex

~ i ,o!~y,z!1Ex
~ i ,e!~y,z!, ~20!

where the superscriptso and e denote the odd and eve
components of the incident electric field, respectively. Th
components are given by

Ex
~ i ,o/e!~y,z!5 (

m51

`

am
~o/e!sinS pm

a
yD ~ejkmz7e2 jkmz!,

~21!

wherekm is the axial wave number of themth mode. The
amplitudesam

(o/e) of the odd and even mode are related to t
amplitudesam

1 andam
2 by

-

FIG. 3. A unit cell of the periodic waveguide:~a! Forward and
backward em-wave components and the reflection and transmis
coefficients.~b! An equivalent circuit of a unit cell.
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am
65am

~e!7am
~o! . ~22!

In this analysis, the modes may be either propagating
evanescent.

The currents induced on the surface of posts generate
scattered em wave in order to satisfy the boundary co
tions. This scattered wave is composed of various TEm80
empty waveguide modes, which are identified by the inte
m8. The multimode analysis of incident and scattered
waves is presented in Appendix B. It allows determination
the matrices of reflection and transmission coefficients
the odd and even modes. These matrices are shown in
3~a! asRm8m andTm8m , respectively.

The equivalent transmission line circuit of a unit cell
the periodic waveguide is shown in Fig. 3~b!. The matrices
jB and jX are the equivalent reactive susceptances and
actances, respectively. They are related to the matrice
odd and even reflection coefficients as follows:

R~o!5~ jX1U!21~ jX2U!, ~23a!

R~e!5@ jX12~ jB!211U#21@ jX12~ jB!212U#.

~23b!

An analysis of the periodic loaded transmission line
presented in Ref.@38#. The column vectors of equivalen
voltages and currents are defined there by
n

e

es

f

ic
e

or
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r
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e-
of

V5uVmu5uam
11am

2u, ~24a!

I5uI mu5uam
12am

2u, ~24b!

respectively. The transfer matrix through the obstacle
given by

FVI G
z502

5FU2XB jX~2U2BX!

jB U2BX GFVI G
z501

. ~25!

In the limit of the infinitely thin postsX→0, and conse-
quently, Eq.~25! is reduced to

FVI G
z502

5F U 0

jB UGFVI G
z501

, ~26!

in agreement with Ref.@38#.
The matricesX andB, representing the reactive propertie

of a single unit cell, are used now in the dispersion analy
of the entire periodic waveguide with the Floquet theore
In the general case of a nonzeroX matrix, the dispersion
equation of the periodic waveguide results in
H F cosS 12kmlpD jsinS 12kmlpD
jsinS 12kmlpD cosS 12kmlpD G FU2XB jX~2U2BX!

jB U2BX GF cosS 12kmlpD jsinS 12kmlpD
jsinS 12kmlpD cosS 12kmlpD G2ejb0lpUJ FVI G50,

~27!
spec-
he

de
where km is the diagonal matrix of the TEm0 mode wave
numberskm .

Equation~27! is a matrix eigenvalue system. The eige
vectors

FVI G ,
which are the solutions of Eq.~27!, describe the periodic
transverse profiles of the periodic-waveguide modes. Th
modes are composed of linear superposition of TEm0 modes
of the empty waveguide, which their relative amplitud
amn are specified by the dispersion equation~27!, as

Exn5 (
m51

`

~amn
1 cme

2 jkmz1amn
2 cme

jkmz!, ~28!

where cm(y)5sin@(pm/a)y# is the transverse profile o
TEm0 mode. The corresponding eigenvaluesbn0 of Eq. ~27!
are the fundamental wave numbers of the period
waveguide modes. The real and imaginary wave numb
-

se

-
rs

correspond to the propagating and evanescent modes, re
tively @38#. The Floquet theorem allows one to relate t
forward and backward amplitudesamn

6 by

amn
2

amn
1 5

e2 jkmlp2e2 jbn0lp

e2 jbn0lp2ejkmlp
, ~29!

and Eq.~28! is rewritten in the form

Exn5 (
m51

`

amn
1 cmS e2 jkmz1ejkmz

e2 jkmlp2e2 jbn0lp

e2 jbn0lp2ejkmlp D .
~30a!

The magnetic field component of periodic-waveguide mo
is obtained by Maxwell’s equations as follows:

Hyn5
1

vm0
(
m51

`

amn
1 cmkmS e2 jkmz2ejkmz

3
e2 jkmlp2e2 jbn0lp

e2 jbn0lp2ejkmlp D . ~30b!
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Each mode of the periodic waveguide forms its own in
nite set of spatial harmonics,

Exn5 (
k52`

`

enkcnke
2 jbnkz, ~31a!

Hyn5 (
k52`

`

hnkcnke
2 jbnkz, ~31b!

where thekth harmonic wave numberbnk is defined by

bnk5bn01
2pk

lp
. ~32!

The electric and magnetic harmonic coefficients are obtai
from

enkcnk5
1

lp
E
0

lp
Exne

jbnkzdz, ~33a!

hnkcnk5
1

lp
E
0

lp
Hyne

jbnkzdz. ~33b!

Substitution of expressions~30! into Eqs.~33! results in
the following relations for electric and magnetic harmon
coefficients:

enkcnk5
4 j

lp
(
m51

`

amn
1 cm

km
km
2 2bnk

2

cos~kmlp!2cos~bn0lp!

e2 jbn0lp2ejkmlp
,

~34a!

hnkcnk5
4 jbnk

vm0lp
(
m51

`

amn
1 cm

km
km
2 2bnk

2

3
cos~kmlp!2cos~bn0lp!

e2 jbn0lp2ejkmlp
. ~34b!

The kth harmonic impedance is thus given by

Znk5
enkcnk

hnkcnk
5Z0

k0
bnk

. ~35!

The harmonic impedance~35! resembles the general expre
sion for the TE mode impedance in a hollow waveguid
Z5Z0k0 /kz . This result stems from the fact that th
periodic-waveguide mode is composed of only TE modes
the rectangular waveguide.

The harmonic impedanceZnk is real for realbnk in the
nth-mode frequency passband, and is imaginary for ima
narybnk in the stopband frequency region. The power flo
of thekth spatial harmonic is derived using the orthogona
of TE modes, and results in
-

d

,

f

i-

pnk5
8ab

lp
2Znk

(
m51

`

uamn
1 u2U km

km
2 2bnk

2 U2

3Ucos~kmlp!2cos~bn0lp!

e2 jbn0lp2ejkmlp U2. ~36!

The parameters resulting from the periodic-wavegu
analysis above are used in the next section for numer
analysis of the CRM array.

IV. CRM-ARRAY AMPLIFICATION IN VARIOUS MODES

The CRM interaction with an array of electron beams in
2D periodic waveguide is demonstrated in this section
several numerical examples. The CRM parameters use
these calculations are listed in Table I. The same parame
are used in the CRM-array experiment of Lei and Jerby@29#.

The numerical results of the periodic-waveguide analy
are shown in Figs. 4 and 5. In these calculations, each m
of the periodic waveguide is expanded to the first 22 TEm0
modes of the rectangular waveguide~without the posts! to
provide a satisfactory precision. The Brillouin diagram of t
periodic waveguide is shown in Fig. 4. The calculations
conducted in the frequency range 6.5–12.5 GHz, which c
ers the first three modes of the periodic waveguide. The
off frequency of the first mode is found to be 6.9 GHz. T
results show that only one mode may propagate in the wa
guide for any given frequency in this range. Hence the p
odic waveguide acts as amode selectorand it provides a
single-mode operation even for the second- and third-or
modes. Three-dimensional profiles of periodic-wavegu
modes are plotted for the one unit cell in Figs. 5~a!, 5~b!, and
5~c! for the first, second, and third modes, respectively. T
figures show that in the middle of the unit cell, the period
waveguide modes resemble the corresponding TEm0 modes
of the empty waveguide, respectively. The higher modes

TABLE I. Parameters of the PWC-array model.

Waveguide parameters
Total width a 47 ~mm!

Height b 22 ~mm!

Total length L 0.5 ~m!

Post diameter d 1.5 ~mm!

Axial period lp 20 ~mm!

Transverse period p 9.5 ~mm!

Electron beams
Number of beams 1, 2, 3
e-gun voltage Ue 4 ~kV!

Total current I e 0.2 ~A!

Pitch ratio b̄e' /b̄ez 2

Axial magnetic field
Fundamental mode (A) 2.7 ~kG!

Second mode (B) 3.3 ~kG!

Third mode (C) 4.2 ~kG!
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rectangular waveguide become dominant in the vicinity
the metal posts.

The CRM interaction with the fundamental harmonics
the first three periodic-waveguide modes is computed
merically using Eqs.~18! and ~19! ~the weak coupling
among the periodic-waveguide modes in the frequency ra
6.9–12.5 GHz, enables a single-mode CRM interaction
this range!. Figure 4 shows the interaction points of each o
of these modes~pointsA, B, andC for the first, second, and
third mode, respectively! with a 4 keV electron beam in dif
ferent magnetic fields, as listed in Table I. For each period
waveguide mode, the interaction with one, two, and th
electron beams is calculated. For the sake of comparison
total electron current is taken the same for any numbe
beams in the array. The first 15 spatial harmonics are ta
into account in the calculation of the power-flow ratio~15! of
each mode. The computed power gains are presented in
6, 7, and 8 for interactions with one, two, and three elect
beams, respectively. The maximum gains are plotted in
9 for each number of electron beams and periodic-waveg
mode orders. The results show that the largest gain is
tained by an interaction of one electron beam with the th
mode of the periodic waveguide. This operating point
marked asC in the dispersion diagram in Fig. 4. Conside
able gains are obtained also by a two electron-beam inte
tion with the second mode, and by a three electron-be
interaction with the third mode.

V. DISCUSSION

In this section we discuss the analysis of the multibe
CRM array presented above, and its implication for the
velopment of new schemes of 2D and 3D CRM arrays.

Some of the principles of the CRM-array interaction a
illustrated by Eq.~18! in the single-mode limit. The gain
obtained by the CRM interaction depends on two factors:

FIG. 4. The Brillouin diagram for the first three waveguid
modes. The corresponding electron-beam lines@Eq. ~1!# are shown
in dashed lines.
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coupling coefficientk, and the filling factorsF fn0i
. The fill-

ing factors for given waveguide geometry depend on the
position of electron beams inside the waveguide with respec
to the spatial distribution of the radiation power. The cou-
pling parameter~19! represents four mechanisms invloved in
the CRM interaction as discussed in Refs.@5,24#. In the case
where the initial electron velocity in the azimuthal direction
is much smaller than the axial velocity, the CRM interaction
has a nonbunching character@22#. In this case, the coupling

parameter depends on the termẐ02b̄ez. According to Eq.

FIG. 5. Profiles of the first~a!, second~b!, and third~c! modes
of the periodic waveguide in a unit cell.
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~35!, this term is always positive for an interaction with fas
TE waves (bn0,k0), and consequently, the CRM interactio
in this case results in a radiation absorption@22,24#. The
multibeam CRM interaction in a 2D periodic waveguide ma
provide slow-wave conditions (bnk.k0, k>1) in high-order
spatial harmonics. The anomalous Doppler effect in this ca
@20–22# may result in a positive gain without an initial rota
tion of the electron beams. This effect is a subject for furth
research.

The CRM bunching mechanisms become dominant wh
the electron beams are initially rotated at the entrance to

interaction region. The termk̂0Ẑn0 in expression~19! corre-

sponds to the azimuthal bunching, whereas the termb̂n0 rep-

FIG. 6. Gain curves of a single electron-beam CRM interactio
with the first (A), second (B), and third (C) modes. The corre-
sponding axial magnetic fields are 2.7, 3.3, and 4.2 kG, resp
tively. The electron energy is 4 keV, the total electron current is 0
A, and the electron pitch ratio isb̄e' /b̄ez52.

FIG. 7. Gain curves of a two electron-beam CRM interaction
with the first (A), second (B), and third (C) modes. The magnetic
fields and parameters of electron beams are the same as for Fi
se

r

n
e

resents the axial bunching mechanism. These terms opp
one another, i.e., the azimuthal and the axial bunching effe
tend to cancel one another. The azimuthal bunching dom
nates over the axial bunching effect in the fast-wave intera
tion, as with the fundamental harmonics presented abo
~wherebn0,k0). Substituting Eq.~35! to the bunching cou-

pling terms results in (k̂0
22b̂n0

2 )/b̂n0. Consequently, for a

given fundamental wave numberb̂n0, the azimuthal electron
bunching becomes stronger as the frequency increa
~whereas the axial bunching remains constant!. The 2D pe-
riodic waveguide has an advantage in this respect tha
single-mode operation is possible also with high modes~the
fundamental passband of the third mode in the previous e
ample exists in the stopbands of all other modes!. This fea-
ture of the CRM array in a 2D periodic waveguide enables

n

c-
2

s

. 6.

FIG. 8. Gain curves of a three electron-beam CRM interactio
with the first (A), second (B), and third (C) modes. The magnetic
fields and parameters of electron beams are the same as for Fig

FIG. 9. Maximal gains of CRM-array interactions with various
modes and different number of electron beams.
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single-mode and near-cutoff operation, and consequent
stronger CRM interaction, in higher frequencies. The mo
stability in the periodic waveguide and the wide cross sec
of the CRM-array interaction are consequent advantages

Technical advantages of the CRM-array concept, res
ing from the low-voltage operation, are related to the sh
collector section required for the low-energy electron bea
as compared to gyrotrons. The array structure also allevi
the difficulties associated with the radiation output windo
which is a severe technical problem in gyrotron design. T
emitted powers from different CRM-array channels can
summed up coherently in space as in phased-array ante
@37#.

The multimode analysis of the multibeam CRM array in
2D periodic waveguide will be used as a basis for the an
sis of the experiment conducted by Lei and Jerby@29#. Fur-
ther development of the theory of CRM arrays is planned
various directions, including multifrequency CRM emissio
multiple CRM interactions and synergistic effects, 3D CR
arrays, and photonic-band-gap effects. We plan to disc
microwave radiators based on 3D CRM arrays with inher
features of phased-array antennas in a future paper@37#.
a
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rt
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,
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ss
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The concept of the multibeam CRM array in multidime
sional periodic structures@28# provides a basis for the deve
opment of low-voltage, high-power sources of microwa
radiation.
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APPENDIX A: THE ELECTRON-BEAM FILLING
FACTOR

The analytical expression for the productF fnki
pnk defined

by Eqs.~10! is derived in this appendix. This term describ
the coupling between thei th electron beam and thekth spa-
tial harmonic of thenth periodic-waveguide mode. The bea
is assumed to be cylindrical and transversely uniform.
transverse-profile function is defined by Eq.~7!.

Substituting Eqs.~34a! and~34b! into Eq.~10b! results in
F fnki
pnk5

16

lp
2Znk

(
m51

`

uamn
1 u2U km

km
2 2bnk

2 U2U cos~kmlp!2cos~bn0lp!

exp~2 jbn0lp!2exp~ jkmlp!
U2E

Si

sin2S pm

a
yDdxdy, ~A1!

whereSi is the i th electron beam cross section. The integral in the right side of Eq.~A1! is rewritten in the form

E
Si

sin2S pm

a
yDdxdy51

2
pr 0i

2 2
1

2
cosS 2pm

a
y0i D E

0

2p

dwE
0

r0i
rdrcosS 2pmr

a
sinw D

1
1

2
sinS 2pm

a
y0i D E

0

2p

dwE
0

r0i
rdrsinS 2pmr

a
sinw D , ~A2!

wherer andw are the polar coordinates associated with thei th electron beam cross section. The last term in Eq.~A2! vanishes,
since its integrand is an odd function ofw with a period of 2p. After some algebraic steps, Eq.~A2! results in

E
Si

sin2S pm

a
yDdxdy5r 0i

2 S p

2
22cosS 2pm

a
y0i D E

0

p/2

dwH a

2pmr0isinw
sinS 2pmr0i

a
sinw D

1S a

2pmr0isinw
D 2FcosS 2pmr0i

a
sinw D21G J D . ~A3!

An expansion of the sine and cosine functions to the Taylor series gives

E
Si

sin2S pm

a
yD dxdy5r 0i

2 H p

2
2cosS 2pm

a
y0i D (

l50

`
~21! l

~2l !!~ l11! S 2pmr0i
a D 2lE

0

p/2

~sinw!2ldwJ . ~A4!

The solution of the integral in the left side of Eq.~A4! is known as

E
0

p/2

~sinw!2ldw5
p

2

~2l21!!!

~2l !!!
, ~A5!

where the the double factorial is defined by

N!!5H 133353•••3N, N51,3,5, . . .

234363•••3N, N52,4,6, . . . .
~A6!

Finally, Eq. ~A2! results in
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E
Si

sin2S pm

a
yD dxdy51

2
pr 0i

2 H 12cosS 2pm

a
y0i D (

l50

` S pmr0i
a D 2l ~21! l

l !~ l11!! J , ~A7!

which gives the following expression for the productF fnki
pnk ,

F fnki
pnk5

8pr 0i
2

lp
2Znk

(
m51

`

uamn
1 u2U km

km
2 2bnk

2 U2U cos~kmlp!2cos~bn0lz!

exp~2 jbn0lp!2exp~ jkmlp!
U2H 12cosS 2pm

a
y0i D (

l50

` S pmr0i
a D 2l ~21! l

l !~ l11!! J .
~A8!
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This expression is used in this work as the electron-be
filling factor in the analysis of the multibeam CRM array.

APPENDIX B: THE REFLECTION-COEFFICIENT
MATRIX OF A SINGLE ROW OF POSTS

The analysis of the periodic waveguide is based on
features of its unit cell. In this appendix, the reflection co
ficient matrix of a single row of posts is derived.

Figure 2 shows the horizontal cross section of the wa
guide. The unit cell is considered as a transverse row of p
placed atz50, as shown in Fig. 3~a!. All posts have the
equal diameterd and they are assumed to be perfectly co
ducting. The posts are numbered from2K to K. The zero
number corresponds to the central post that may or may
be present. They coordinate of thenth post center and the
polar angle arern andf, respectively, as shown in Fig. 2
The surface of thenth post is expressed in polar coordinat
rn andf by

y05rn2
1

2
dcosf, ~B1a!

z05
1

2
dsinf. ~B1b!

The electric field incident to the posts is defined by E
~20!–~22!. On the surface of thenth post this field is given
by
m

e
-

-
ts

-

ot

.

Exn
~ i ,o/e!5 (

m51

`

am
~o/e! (

k52`

`

JkS 12 k0dDejkfFsinS pm

a
rn2kfmD

7~21!ksinS pm

a
rn1kfmD G , ~B2!

which is a superposition of angular harmonics numerated
the integerk, whereJk(Z) is the Bessel function of the firs
kind of orderk, and the parameterfm is defined for each
mth mode by

ejfm5
1

k0
S km1 j

pm

a D . ~B3!

The parameterfm is real for the propagating mode and com
plex for the evanescent one.

The surface currents induced on the posts have no va
tion in x. Then, making use of the common imaging tec
nique, we assume that~1! the posts are infinitely long in the
x direction, ~2! the post array is infinite in they direction,
and consequently,~3! the post locations and current distribu
tions in each transverse unit cell of widtha are the consecu
tive mirror images of each other. These assumptions rep
the waveguide walls, since the same boundary conditions
automatically fulfilled.

The scattered field generated in the point (y,z) by the
linear currentI x(y0 ,z0) is given by
ver the

t

Ex
~s!~y,z!52

jvm0

4p
I x~y0 ,z0!E

2`

` e2 jk0@x0
2
1~y2y0!21~z2z0!2#1/2

@x0
21~y2y0!

21~z2z0!
2#1/2

dx052
vm0

4
I x~y0 ,z0!H0

~2!
†k0@~y2y0!

21~z2z0!
2#1/2‡,

~B4!

whereH0
(2) is the Hankel function of the second kind of order 0. The total scattered field is obtained by integrating o

post surface and summing over all posts. Making use of the polar coordinates introduced in Fig. 2 results in

Ex
~s!~y,z!52

vm0

4 (
m51

`

(
m52K

K E
0

2p

I mm~c! (
l52`

`

~21!mlH0
~2!H k0F S y1 la2rm1

1

2
dcosc D 21S z2

1

2
dsinc D 2G1/2J dc,

~B5!

whereI mm is the current element generated on themth post by themth incident mode andc is the polar angle of the poin
y0 ,z0 on the surface of this post. The scattered field on the surface of thenth post is
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Exn
~s!~f!52

pvm0

2 (
m51

`

(
k52`

`

JkS 12 k0dD ejkfH (
m52K

K

(
i52`

` FJnS 12 k0dD I mmnf m,n2k~rm2rn!G1Hk
~2!S 12 k0dD I mnkJ ,

~B6!

where

I mmn5
1

2pE0
2p

I mm~c!e2 jncdc, ~B7a!

are the angular harmonic coefficients of the discrete Fourier series

I mm~c!5 (
n52`

`

I mmne
jnc, ~B7b!

and the functionf is defined by

f m,a~Z!5 (
l52`
Z1 laÞ0

`

~21!mlHa
~2!~k0uZ1 lau!sgna~Z1 la !. ~B8!

The total electric field is a sum of incident and scattered fields, and it must vanish on the post surface. Hence for the
of the nth post we have

(
m51

`

am
~o/e! (

k52`

`

JkS 12 k0dD ejkfFsinS pm

a
rn2kfmD 7~21!ksinS pm

a
rn1kfmD G

5
pvm0

2 (
m51

`

(
k52`

`

JkS 12 k0dD ejkfH (
m52K

K

(
n52`

` FJnS 12 k0dD I mmn
~o/e! f m,n2k~rm2rn!G1Hk

~2!S 12 k0dD I mnk
~o/e!J . ~B9!

Equation~B9! can be further simplified by use of general properties: the linear independence of modes, and the uniqu
the Fourier series. Consequently,(m(kJk(

1
2k0d)e

jkf may be removed from both sides of Eq.~B9!, which results in

(
m52K

K

(
n52`

` FJnS 12 k0dD H I mmn
~o/e!

am
~o/e! J f m,n2k~rm2rn!G1Hk

~2!S 12 k0dD H I mnk
~o/e!

am
~o/e! J

5
2

pvm0
FsinS pm

a
rn2kfmD7~21!ksinS pm

a
rn1kfmD G . ~B10!

Equation~B10! is satisfied for each even or odd modem, post numbern, and angular harmonick. Consequently, forM
interacting modes there are 2M systems of linear equations. The order of each system is the number of posts times the n
of angular harmonics. All the coefficients$I mmk

(o/e)/am
(o/e)% can be calculated from these systems of equations. In addition, s

the current generated by themth mode at any point on the post surface is proportional to the incident field in this point,
the use of Eq.~21! results in the symmetry relations

H I mm2k
~o/e!

am
~o/e! J 57H I mmk

~o/e!

am
~o/e! J , ~B11a!

H I m2mk
~o/e!

am
~o/e! J 56~21!k1mH I mmk

~o/e!

am
~o/e! J . ~B11b!

In particular, for the zero harmonic and the central postn50, these result in

H I mm0
~o!

am
~o! J 50, ~B11c!
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H I m0k~o/e!

am
~o/e! J

k1m5odd/even number

50. ~B11d!

The current coefficients defined by Eqs.~B10! and~B11! are used further in this section in order to determine the reflec
coefficients of the unit cell of periodic waveguide. At a large distance from the posts, namely, ifuzu. 1

2d, the scattered field
given by Eq.~B5! may be expanded to an infinite series of empty waveguide modes as follows:

Ex
~s!~y,z!52

2pvm0

a (
m52K

K

(
n52`

`

~21!nJnS 12 k0dD F (
m,m851,3, . . .

`

I mmn

1

km8
e2 jkm8zcosS pm8

a
~y2rm!2nfm8D

1 (
m,m852,4, . . .

`

I mmn

1

km8
e2 jkm8zcosS pm8

a
~y2rm!2nfm8D G . ~B12!

The scattered field is divided into the symmetric and antisymmetric parts~odd and even numbersm, m8, respectively!. It is a
consequence of the waveguide transverse symmetry. The total electric field is a sum of incident and scattered waves
given by

Ex
~o/e!~y,z!5 (

m51

`

am
~o/e!sinS pm

a
yD ~ejkmz7e2 jkmz!2

2pvm0

a (
m52K

K

(
n52`

`

~21!nJnS 12 k0dD
3F (

m,m851,3, . . .

`

sinS pm8

a
yD I mmn

~o/e!
1

k8
e2 jkm8zsinS pm8

a
rm1nfm8D

1 (
m,m852,4, . . .

`

sinS pm8

a
yD I mmn

~o/e!
1

k8
e2 jkm8zsinS pm8

a
rm1nfm8D G . ~B13!

The symmetry properties~B11! are used in the derivation of Eq.~B13!.
The matrix of reflection coefficientsR is introduced in Ref.@38# for the multimode interaction. The elementRm8,m of this

matrix is defined as a reflection coefficient ofm8th mode due to themth incident mode. Thus the reflection coefficients for o
and even mode atz50 are defined from Eq.~B13! by

Rm8m
~o/e!sinS pm

a
yD 57sinS pm

a
yD dm8m2

2pvm0

akm8
sinS pm8

a
yD (

m52K

K

(
n52`

`

~21!nJnS 12 k0dD H I mmn
~o/e!

am
~o/e! J sinS pm8

a
rm1nfm8D ,

~B14!
a-
and the matrix elementsRm8m for different m,m8 are ob-
tained as follows:

Rm8m
~o/e!

50, m1m853,5, . . . , ~B15a!

Rmm
~o/e!5712

2pvm0

akm
(

m52K

K

(
n52`

`

~21!nJnS 12 k0dD
3H I mmn

~o/e!

am
~o/e! J sinS pm

a
rm1nfmD , ~B15b!

and

Rm8m
~o/e!

5uRm8m
~o/e!uexp~ jFm8m

~o/e!
!, mÞm8 ~B15c!

where the moduleuRm8m
(o/e)u and phase angleFm8m

(o/e) are given
by
uRm8m
~o/e!u5

2pvm0

a
uDm8mu ~B16a!

and

Fm8m
~o/e!

5tan21S Im~Dm8m!

Re~Dm8m! D , ~B16b!

respectively, and the parameterDm8m is defined by

Dm8m5
1

km8
(

m52K

K

(
n52`

`

~21!nJnS 12 k0dD
3H I mmn

~o/e!

am
~o/e! J sinS pm

a
rm1nfmD . ~B17!

These reflection-coefficient matrices are used in Eqs.~23a!
and~23b! for calculating the equivalent transmission-line p
rameters.
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