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A LINEAR THREE-DIMENSIONAL MODEL FOR FREE ELECTRON LASER AMPLIFIERS

E. JERBY and A. GOVER

Faculty of Engineering, Tel-Aviv Unwersity, Ramat-Aviv, 69978, Israel

This paper introduces a generalized, linear, three-dimensional model of the FEL amplifier. This 3-D model that 1s represented by
a matrnix gain—dispersion equation 1s valid in the various FEL gain regimes; the low and high gain regimes and the space-charge
dominated regimes. It includes electron-beam longitudinal velocity spread effects that are caused by energy spread, transverse
emittance and betatron motion. The model provides solutions for the EM-wave amplitude and phase profiles for any initial
transverse profiles of the electron beam and of the EM wave, given at the entrance to the interaction region The matrix
gain—dispersion equation consists of angular spectrum components and therefore 1t 1s applicable for free-space FEL schemes and for
rectangular waveguide schemes as well, Different linear three-dimensional effects, such as optical guiding, gain focusing, reduction of
space-charge effects, bending of the radiation beam, off axis-gain, etc., are all inherently included 1n the presented model. Figurative
results, derived according to the parameter sets of two representative high-gain FELs, are demonstrated.

1. Introduction

The FEL interaction is basically a longitudinal effect
in which the electron beam bunching and the optical
field growth evolve along a main axis, the longitudinal
axis. In the standard FEL configuration this axis is
common to the three elements that comprise the FEL
interaction: the electron beam, the electromagnetic field
and the wiggler field. The amplification process evolves
along the longitudinal axis as a consequence of the
interaction between the electron beam and a longitudi-
nal ponderomotive force that is induced by the com-
bined nonlinear response of the electrons to the wiggler
force and the EM wave. The ponderomotive force causes
the electron beam to become longitudinally bunched
and to transfer a small portion of its energy to the EM
wave, which is consequently amplified.

The basic features of the longitudinal FEL interac-
tion process are well described in the linear regime by a
1-D gain—dispersion equation [1] that was analyzed in a
previous publication [2]. However, an accurate analysis
of the FEL interaction must bring into account trans-
verse effects, that are consequences of the finite trans-
verse dimensions of the e-beam and of the radiation
beam. These include optical effects and space-charge
effects.

The optical transverse effects result 1n a transverse
modification of the EM wavefront which evolves along
the interaction axis. This is caused by the partial filling
of the radiation beam cross-section by the active
medium, i.e. the bunched electron beam. In the high-gain
strong coupling regime this may lead to guiding of the
radiation beam inside the electron beam. The guiding
effect that would otherwise take place in free-space
propagation of a radiation beam, and facilitates high
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gain operation of long wiggler FELs. The transverse
modification of the EM wave-front can be described by
expansion of the resultant radiation field in terms of the
free-space transverse modes. This approach that was
proposed by Tang and Sprangle [3,4] was adopted in the
present work. The optical guiding effect 1s related to the
transverse variation of the complex index of refraction
of the interaction medium. This mechanism has recently
been a subject for an intensive study [5-11].

Tang and Sprangle [3,4] formalized a 3-D nonlinear
theory for the FEL interaction. This model was solved
numerically by a simulation code, demonstrating the
FEL self-focusing effect. An analytical treatment for
the guiding effect in a uniformly distributed electron
beam was presented by Moore [7], who defined an
analytical condition for the guiding effect at the high-
gain regime. The analogy between an optical fiber and
the high-gain FEL has been used by Scharlemann,
Sessler and Wourtele [6] to demonstrate the guiding
phenomena, and to distinguish between gain focusing
and refractwwe guiding effects. A WKB solution for the
transverse mode equation of an FEL that employs an
arbitrary shaped electron beam, was introduced by
Lucini and Solimeno [9]. Simplified 3-D FEL models
were proposed by Amir and Greenzweig [10] and by Xie
and Deacon [11]. Both assume a Gaussian variable form
for the optical beam, leading to an easily solved set of
equations. An observation on optical guiding effects has
been published recently [23].

The great interest in the optical guiding effect clearly
stems from the desire to realize long FEL systems that
will operate at short wavelength 1n the high-gain regime
[20].

Another kind of transverse phenomenon in FELs is
the reduction of the space-charge effects due to the
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finite transverse dimensions of the e-beam [14). This
leads to transverse components of the electrostatic fields
that are produced by the 3-D space-charge waves.
Therefore, the space-charge effects that usually impede
the FEL interaction, become weaker for a narrow e-
beam. This effect is important in the space-charge
dominated regimes in cases where the EM wavelength is
of the same order, or greater than the e-beam radius.
The reduction of space-charge effects may substantially
modify the synchronism condition of the FEL interac-
tion in the Raman regime and may increase the FEL
gain. Three dimensional aspects of the Raman FEL
were investigated by various workers. Freund et al. [15]
studied the collective FEL interaction between a cylin-
drical waveguide mode and a realizable wiggler that
consists of a helical field and a uniform axial guide
field. Bekefi and Yin [16] studied the collective interac-
tion in a linear waveguide, and recently Steinberg et al.
[17] introduced a 3-D collective theory for an arbitrary
waveguide shape. They developed a gain-dispersion
equation for the interaction between a single waveguide
mode and an infinite number of beam modes, and
studied the dispersion of plasma waves in a bounded
Raman FEL.

The linear 3-D model that is presented here, com-
bines the optical and the space-charge FEL phenomena
in a single generalized gain-dispersion equation. The
concept of an angular spectrum of plane waves is used,
and the transverse dependences of the EM wave and the
e-beam profiles are represented by a free-space modal
expansion that is easily computed by a discrete Fourier
series. Each component represents a plane wave that
propagates in a certain angle with respect to the FEL
axis and interacts with the wiggling electron beam. In
addition, it is coupled to other plane waves and ex-
changes energy with them. The relation between the two
packets of plane waves, the exit and the entrance of the
interaction region, is obtained by a gain-dispersion
matrix equation.

2. Three-dimensional gain—dispersion equation

The basic linear regime features of the FEL are
described by the known 1-D gain-dispersion equation
[1,2):

E® = {(l + rx‘z“))(s —ikg,) —ikFx{*D } !

X(1+rx*P)E, (1)

where E® =E (s) is the Laplace transform of the
X-polarized electric-field component E, (z), and E,; is
its initial value at z=0. The function x{*? 1s the

longitudinal susceptibility of the electron beam inside
the wiggler and is given by
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where k. and ky, are the wavenumbers of the single
mode EM wave and of the wiggler field, respectively.
f(p,) is the e-beam distribution function and p, = ymi,
is the longitudinal momentum of the electrons. The
coupling parameter « is defined as

2
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where V. is the amplitude of the wiggling motion

velocity. The factors r and F are the (single-mode)

space-charge reduction factor [17] and the FEL filling

factor, respectively.

Using a multimode expansion in the transverse di-
mension, the three-dimensional version of the gain—dis-
persion equation (1) is written in a matrix form in the
{s, k, , w} four-dimensional space, as follows [18]:

EQ = {[1+Rx{V]KO — ikGx (Y
X[+ Rx{HD] Ey. (4)

The EM field vectors, E{ and Ey,, consists of vector
components; each of them represents a transverse spa-
tial Fourier component of the radiation wave at the exit
of and at the entrance to the interaction region respec-
tively. Assuming a finite transverse extent of the fields,
the k, spectrum is discrete. Using either periodic or
vanishing field boundary conditions in the transverse
dimensions, the free-space transverse modes and the
corresponding components of the vectors E{’ and E %0
are characterized by mode indices (n, m), and axial
wave-numbers k, =(k>—k% /2. The unit matrix
is denoted by I, and R is the space-charge reduction
matrix. K© is a diagonal matrix that represents the EM
wave propagation constants for the various vacuum
modes. It is a pure diagonal matrix and the diagonal
terms are (s> + k2 )/2s. The matrix G is the e-beam
coupling matrix. It consists of the transverse spatial
Fourier components of the e-beam profile function
g(x, y) in an order that is determined from the con-
volution operation between the spatial Fourier spectra
of the e-beam and the radiation beam profiles. The
space-charge reduction matrix R was found to be [18]

w?

R= - GK+ D (5)
2{v262) (s + iky)

where K(*'D 15 equal to K9, shifted by the transforma-
tion s = s+ ik in the complex s-plane.
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The matrix gain—dispersion equation (4) is formally
similar to the scalar gain-dispersion equation (1). The
coupling parameter k and the susceptibility x{*" are
the same, and an analogy can be drawn between the
adequate terms of both equations. Moreover, the matrix
equation (4) is reduced, as expected, to the scalar
gain—dispersion equation (1) in the single mode case.
The matrix [+ Rx{* V], being the 3-D equivalent of
the 1-D term (1 + rx!{*V), represents the dielectric
tensor of the electron beam in the wiggler and holds in
it the space-charge effects. The gain matrix, kGx *",
measures the strength of the FEL interaction. Its diago-
nal terms describe the coupling of each vacuum mode
with 1tself. The off-diagonal terms measure the coupling
between the different mode and provide the FEL mode
couplhing mechanism.

The order of the 3-D matrix equation, i.e. the num-
ber of angular spectrum components that are needed to
properly describe the FEL interaction, can be de-
termined by various practical considerations; The
highest reasonable order can be simply taken as the
number of transverse Fourier components that are
needed to properly sample either the e-beam profile or
the EM wave profile. Neglect of longitudinally evanes-
cent radiation modes when appropriate and of modes
which are out of resonance with the FEL interaction
helps to limit the number of EM modes necessary to
sample the radiation field, though 1t does not affect the
order of the reduction matrix R that represents the
space-charge waves. In a quasi-free-space scheme, i.e. in
a system that is bounded by the wiggler gap or in an
over-moded waveguide, one may neglect modes that are
out of resonance [13]. The longitudinal wavenumber
components k, of these modes correspond to detun-

ing parameters 8, = (k, + kw —w/0,)L that are out
of the FEL detuning-gain curve G(8), the width of
which 15 8%, the acceptance detuning parameter [2)].
This consideration leads to a simple estimation for the
system order N, in terms of the system’s transverse
dimension a and length L

a2 é"c

In a typical FEL system a < A, and the system order
can be evaluated by

Aac

N<4 2.
=4

Thus, taking for example a case where 6% =27 (corre-
sponding to the low gain regime [2]), v, = 30 and Ny, =
100, only less than ten angular spectral components are
needed to properly describe each transverse dimension.
The matrix equation in this case is of an order that is
smaller than 100 and it can be easily solved by standard
library subroutines for complex matrices inversion.

The general kinetic definition of the susceptibility

function x{*V (eq. (2)) permits to take into considera-
tion all the quality degradation factors of the e-beam.
The normalized distribution function that incorporated
the effects of the emittance, the transverse magnetic
field gradient and the energy spread on the axial veloc-
ity spread, was found to be [19]:

f(u)=Uexp[U(U+ u)] erfe(U+ u), 9

where the normalized variable 1s defined as u = (v, —
¥p.)/(8,8,) and the factor U is given by
Ag 8
L
U 26, (10)

The axial velocity spread due to the energy spread
contribution is 8, = 4y/(v4,vo), the emittance is €, =
7r,A¢, and the period of the betatron motion is Ag.
Therefore, the factor U can be regarded as a ratio
between the contributions of the energy spread and the
angular spread to the axial velocity spread. Substituting
the distribution function (9) into the longitudinal sus-
ceptibility integral (2) results in
b,

(65)°
where the FEL constitutive parameters are the space-
charge parameter 8, =, /T, (w, is the longitudinal
relativestic plasma frequency on axis) and the detuning
spread parameter (due to energy spread) 6 =
(@/8y,)8,. The complex error function is Z'(z) and its

argument 1n eq. (11) includes a complex variable, given
by

+1) .
Xi ) =

2UfgO ez (¢ Y +y)dy,  (11)
v=0

iw/ By, — 5 — iky

§<+1)=
(s+iky)d,

The susceptibility integral (11) is asymptotically re-
duced to the standard plasma susceptibility function for
U > 1 [2], otherwise it can be solved numerically. Fol-
lowing these numerical steps, an inverse Laplace trans-
form is applied to solve the matrix gain—dispersion
equation (4) in a similar manner to the 1-D case [2].
This results 1n a vector that consists of spatial Fourier
components of the field at a given distance z. “The
components can now be summed up as an inverse
discrete fourier transform to yield the EM field complex
profile E (x, y, z=L). Two examples of results that
were obtained by the 3-D gain—dispersion equation (4)
are presented in the next section.

3. Transverse profile modification effects

The FEL guiding effect is demonstrated here by
solving the 3-D gain-dispersion equation (4) for the
parameters sets of two representative FEL experiments,
both of which are in the high gain regimes.
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Fig. 1. The Stanford proposed FEL experiments [8,20]: Ly, =27 m, Ay, = 0.114 m, A = 0.43 pm, 8 = —6.0. (a) Transverse profile of

the initial e-beam current density. (b) Transverse profile of the initial EM wave amplitude, z = 0. (c) Transverse profile of the initial

EM wave phase, z = 0. (d) Transverse profile of the imtial EM wave amplitude, z =27 m. () Transverse profile of the initial EM
wave phase, z =27 m.

I1I(a). GENERAL THEORY
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The first FEL parameter set corresponds to the FEL
experiment that has been recently proposed by the
Stanford FEL group [8,20]. It employs a storage ring 1
GeV, 270 A e-beam. The wiggler length is 27 m and its
period is 11.4 cm. The FEL parameters for this scheme
are 6, =12, 85 =24, U=24and ay =vVy,/c=54.
The radiation wavelength is A =0.43 pm and the gain
parameter is of the order of 103, which clearly corre-
sponds to operating at the strong-coupling high-gain
regime. Figs. 1a—1c show the initial transverse profiles
of the e-beam (fig. 1a), the EM wave amplitude (fig. 1b)
and the phase (fig. 1c), at the entrance to the wiggler.
The initial EM wave amplitude and phase profiles fit to
a free-space Gaussian beam of a 0.6 mm waist size at a

373

24

2.6 m Rayleigh length. The amplitude and the phase
profiles of the EM wave after a 27 m interaction length,
which is equivalent to about ten Rayleigh lengths, are
shown in figs. 1d and le, respectively. The amplitude
profile after the interaction is very well confined to the
electron beam and it is apparent that both the ampli-
tude profile and the e-beam profile have a similar
shape. The phase profile in fig. 1e shows a tendency of a
positive diffraction, i.e. the beam is optically defocused,
thus the guiding effect is associated in this case to the
gain guiding mechanism [6]). The gain that was calcu-
lated by the semi-analytical model, based on eq. (4), is
G =576 and it fits well to the value that was obtained
by the FRED simulation [8,20).

PHASE2

-0 30 4

-0 0
3

Fig. 2. The LLL ELF experiment [22]: Ly =3 m, Ay = 9.8 cm, A = 8.67 mm, § = —9.0, ﬁp = 23. (a) Transverse profile of the imtial
e-beam current denstty. (b) Transverse profile of the initial EM wave amplitude, z =0 (c¢) transverse profile of the imtial EM wave
amplitude, z =1 m. (d) Transverse profile of the initial EM wave phase, z=1m
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The other FEL experiment for which we demon-
strate the guiding effect by solving eq. (4), is the ELF
based experiment, conducted at the Lawerence Liver-
more Laboratories [22]. The FEL interaction occurs
inside a rectangular waveguide of a 6 cm X 3 cm cross-
section. It uses a 3 MeV, 850 A electron beam and a
wiggler of 9.8 cm period. The radiation wavelength is
8.6 mm and the space-charge parameter is about ﬁp = 23.
A wiggler parameter value of ay, = 2.4 was taken in this
example.

The e-beam and the EM amplitude profiles are shown
in figs. 2a and 2b, respectively. The e-beam has a 6
mm X 3 mm cross-section and the EM wave is a TE,;
mode of a rectangular waveguide. After 1 m interaction
length, the EM wave profile is no longer the original
TE,, mode but a packet of transverse modes that
compose the profile shown in fig. 2c. It is clear that the
growth rate of the EM wave is much stronger in the
vicinity of the electron beam than in the rest of the
waveguide cross-section. This effect of spatial con-
centration of the FEL amplification around the e-beam
results from the gain guiding effect as in the previous
example. The profile of the EM wave amplitude that is
shown in fig. 2c can be regarded as a superposition of
the original TE;; mode and additional, electron beam
guided generated radiation. The phase profile after a 1
m interaction length is shown in fig. 2d. The same effect
of positive diffraction, i.e. defocusing of the EM wave,
occurs here as in the previous example.

The model presented in this article has been applied
to other FEL schemes and other effects has been ex-
amined as well. A detailed description of the mathe-
matical development of the model and a further discus-
sion on its various aspects, including additional results
derived for other FEL schemes, will be presented in a
successive publication.
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