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a b s t r a c t

We consider an infinite square-cell lattice of elastic beams with a semi-infinite crack.

Symmetric and antisymmetric bending modes of fracture under remote loads are

examined. The related long-wave asymptotes corresponding to a continuous aniso-

tropic bending plate are also considered. In the latter model, the symmetric mode is

characterized by the square-root type singularity, whereas the antisymmetric mode

results in a hyper-singular field. A solution for the continuous plate with a finite crack is

also presented. These closed-form continuous solutions describe the fields in the whole

plane. The main goal is to establish analytical connections between the ‘macrolevel’

state, defined by the continuous asymptote of the lattice solution, and the maximal

bending moment in the crack-front beam, that is, to determine the resistance of the

lattice with an initial crack to the crack advance. The solutions are obtained in the same

way as for mass–spring lattices. Considering the static problems we use the discrete

Fourier transform and the Wiener–Hopf technique. Monotonically distributed bending

moments ahead of the crack are determined for the symmetric mode, and a self-

equilibrated transverse force distribution is found for the antisymmetric mode. It is

shown that in the latter case only the crack-front beam resists to the fracture

development, whereas the forces in the other beams facilitate the fracture. In this way,

the macrolevel fracture energy is determined in terms of the material strength. The

macrolevel energy release is found to be much greater than the critical strain energy of

the beam, especially in the hyper-singular mode. In both problems, it is found that

among the beams surrounding the crack the crack-front beam is maximally stressed,

and hence its strength defines the strength of the structure.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Increasing interest in cellular materials has resulted, in particular, in the development of fracture mechanics of
materials with a microstructure. In the present paper, two bending modes of fracture of a 2D periodic lattice composed of
rigidly connected Euler–Bernoulli beams are considered analytically. Plane problems of such lattices were studied in a
number of works.

A comprehensive review of the subject is given in the monograph by Gibson and Ashby (1997). The lattice fracture
toughness was determined in terms of the material strength by different methods. Some authors have employed the
approach suggested by Ashby (1983), where the stress state of the crack-front beam was determined based on the
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near-the-crack-tip singular stress distribution in the related homogeneous model (Maiti et al., 1984; Fleck and Qiu, 2007).
The stress field in a finite lattice with a crack has also been evaluated using the finite element method (Schmidt and Fleck,
2001; Fleck and Qiu, 2007; Huang and Gibson, 1991; Choi and Sankar, 2005; Quintana Alonso and Fleck, 2007). An infinite
bending beam lattice with a finite crack was considered using a combined analytical–numerical method based on the
discrete Fourier transform (Lipperman et al., 2007, 2008, 2009). In all of the aforementioned works, the plane problems for
the bending beam lattices has been investigated. Bending deformation of such a lattice resting on elastic supports with
several elements missing was considered by Fuchs et al. (2004). Nuller and Ryvkin (1980) employed the discrete Fourier
transform in the bending of a lattice subjected to a transverse force.

Dynamic and quasi-static crack growth in simpler mass–spring square and triangular lattices were analytically
considered in many works beginning from Slepyan (1981). The technique and main results are presented in Slepyan
(2002). A nonzero-bond-density lattice fracture was studied in Slepyan (2005) and a lattice with a low-density waveguide
was considered in Mishuris et al. (2009). These lattices are characterized by a single force–displacement relation, and this
allows the Wiener–Hopf technique to be straightforwardly used. In the general case of a beam lattice, where the bonds
resist extension, shear, bending and torsion, the crack problem is much more complicated, and no analytical solution has
yet been obtained.

In the present paper, a partial case of the general fracture problem for a beam lattice is analytically considered, where
the Wiener–Hopf technique can be used. Namely, we consider a two-dimensional square lattice under bending. The main
goal is the crack resistance determination in terms of the ‘macrolevel’ energy release and the lattice beam strength. Based
on the linear theory, it is assumed that each node has three degrees of freedom: the transverse displacement and rotations
about two axes. There are no in-plane forces, and the classical Euler–Bernoulli beams resist to the transverse forces and
bending moments; torsion moments are neglected. The beams form a regular square lattice; they are rigidly connected at
the lattice nodes. A straight semi-infinite crack is assumed to exist. The strain of the lattice is caused by the action of a
remote loading. We assume that the beams break under the critical bending moment.

Due to the symmetry a lattice half-plane can be considered with the boundary at the crack line. For the analytical
technique used below the conditions at this boundary are important. In our case, two energy pairs exist at the half-plane
boundary: the transverse force acting on the half-plane with the corresponding displacement, and the bending moment–
rotation about the crack line. The latter pair corresponds to the symmetric fracture mode (the displacements are
symmetric with respect to the crack line) with no transverse force on the crack line, whereas for the antisymmetric mode
there is no bending moment on the crack line. In both cases, the discrete Fourier transform allows us to reduce the problem
to a single Wiener–Hopf type equation which is then solved analytically.

In addition to the mode-dependent boundary conditions on the crack line, the general solution is subjected to the
vanishing stress condition at infinity. This means that the bending moment and the transverse force must tend to zero as
the distance from the crack front tends to infinity. The derivation of Green’s function for the lattice half-plane is based on
the causality principle, namely, it is assumed that the relation between the displacement (rotation) and the transverse
force (bending moment) applied on the crack line corresponds to the local loading, and no remote forces influence this
relation. This allows a proper factorization of the Green function F-transform to be performed. The causality principle,
however, does not concern the Wiener–Hopf equation’s right-hand side introduced to reflect the remote loads action (in
this connection, see Slepyan, 2002, Section 11.5.1). We call a finite strain-energy-density solution, satisfying these
conditions, the physically acceptable solution.

The paper plan is as follows. First, we consider general solutions for the lattice half-plane and crack-related functionally
invariant solutions for the corresponding continuous domain. The lattice solution is expressed in terms of the discrete
Fourier transform on m (m=0,71,yis the crack line discrete coordinate), whereas the explicit continuous solution is
presented in terms of the original continuous coordinates. Then the symmetric-mode solutions are derived. The
distribution of bending moments in the beams ahead of the crack is found as a function of the far-field energy release rate
or the corresponding moment intensity factor, and the continuous approximation of the lattice deformation in the whole
plane is finally determined. Further, the related solutions for the antisymmetric mode are derived. Finally, a brief
discussion is presented.

2. Formulation and general solution

2.1. The lattice and equilibrium equations

Consider an infinite uniform square-cell lattice (a grillage) consisting of Euler–Bernoulli beams rigidly connected at the
nodes. The beams, of length a and of bending stiffness EI (E is the elastic modulus and I is the moment of inertia), are
located along the lines x=am and y¼ an ðm,n¼ 0,71,72, . . .Þ of the Cartesian coordinate system (x,y,z), Fig. 1. The torsion
stiffness of the beam is neglected.

The state of the lattice for the case of bending deformations considered herein is completely defined by three
generalized displacements of the nodes: the transverse displacement, wm,n (displacement in z-direction), and the rotations,
yx

m,n and yy
m,n, Fig. 2. The bending moment and transverse force in the beam between the nodes (m,n) and (m+1,n) are
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denoted as Mx
m,nðx

0Þ,Vx
m,nðx

0Þ, respectively(x¼ amþx0,0ox0oa,y¼ an), and those in the beam between the nodes (m,n) and
(m,n+1) are denoted as My

m,nðy
0Þ,Vy

m,nðy
0Þ, respectively (x¼ am,y¼ anþy0,0oy0oa).

The positive directions are shown in Fig. 2. These quantities can be expressed in terms of the displacements and
rotations of the beam nodes as follows:

Vx
mnðx

0Þ ¼
6EI

a3
½2ðwmþ1,n�wm,nÞ�aðyx

mþ1,nþy
x
m,nÞ�,

Mx
m,nðx

0Þ ¼
2EI

a3
½3ð2x0�aÞðwmþ1,n�wm,nÞþða�3x0Þayx

mþ1,nþð2a�3x0Þayx
m,n�,

Vy
mnðy

0Þ ¼
6EI

a3
½2ðwm,nþ1�wm,nþ1Þ�aðyy

m,nþ1þy
y
m,nÞ�,

My
m,nðy

0Þ ¼
2EI

a3
½3ð2y0�aÞðwm,nþ1�wm,nÞþða�3y0Þayy

m,nþ1þð2a�3y0Þayy
m,n�: ð1Þ

Thus, the equilibrium equations

Vx
m,nð0ÞþVy

m,nð0Þ�Vx
m�1,nðaÞ�Vy

m,n�1ðaÞ ¼ 0,
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Fig. 1. The lattice with a semi-infinite crack. The beams of bending stiffness EI are rigidly connected at the nodes.
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Fig. 2. Positive directions of the forces, moments, rotations and displacements.
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Mx
m,nð0Þ�Mx

m�1,nðaÞ ¼ 0,

My
m,nð0Þ�My

m,n�1ðaÞ ¼ 0 ð2Þ

being expressed in terms of the node displacements have the form

2ðwm�1,nþwmþ1,nþwm,n�1þwm,nþ1�4wm,nÞþaðyx
m�1,n�y

x
mþ1,nþy

y
m,n�1�y

y
m,nþ1Þ ¼ 0, ð3Þ

3ðwm�1,n�wmþ1,nÞþaðyx
m�1,nþy

x
mþ1,nþ4yx

m,nÞ ¼ 0, ð4Þ

3ðwm,n�1�wm,nþ1Þþaðyy
m,n�1þy

y
m,nþ1þ4yy

m,nÞ ¼ 0: ð5Þ

2.2. General solutions

The discrete Fourier transform on m

f F ¼
X1

m ¼ �1

fmexpðikmÞ ð6Þ

converts the 2D problem (3)–(5) into a 1D problem in the F-transform space

ð4cosk�8ÞwF
nþ2wF

n�1þ2wF
nþ1það2isinkyxF

n þy
yF
n�1�y

yF
nþ1Þ ¼ 0, ð7Þ

þ3isinkwF
nþaðcoskþ2ÞyxF

n ¼ 0, ð8Þ

3ðwF
n�1�wF

nþ1ÞþaðyyF
n�1þy

yF
nþ1þ4yyF

n Þ ¼ 0: ð9Þ

Referring to (8), system (7)–(9) becomes

4cosk�8þ
6sin2k

coskþ2

 !
wF

nþ2wF
n�1þ2wF

nþ1þaðyF
n�1�y

F
nþ1Þ ¼ 0, ð10Þ

3ðwF
n�1�wF

nþ1ÞþaðyF
n�1þy

F
nþ1þ4yF

nÞ ¼ 0: ð11Þ

Hereafter the superscript y is omitted; we use notations y,M,V instead of yy,My,Vy, respectively. Further we consider the
half-plane of the lattice, y4a=2 (the half-plane boundary, y=a/2, will be referred to as the crack line since, in the fracture
problem, the crack is assumed to be placed at xo0,y¼ a=2).

The eigensolution bounded in the half-plane is sought in the form

wF
nþ1 ¼ lnwF

1, yF
nþ1 ¼ lnyF

1, n¼ 1,2, . . . , jljr1: ð12Þ

It follows from the homogeneous system (10), (11) that

lþ
1

l

� �2

þb1 lþ
1

l

� �
þb2 ¼ 0,

b1 ¼�
6þ8cosk�2cos2k

coskþ2
, b2 ¼

16�12coskþ8cos2k

coskþ2
: ð13Þ

Two solutions for l,jljr1, satisfy the above equation

l¼ l1 and l¼ l2; l1,2 ¼ b7 ic,

b¼
1

2

b1

2
�rcos

b
2

� �
, c¼

1

2
b3�rsin

b
2

� �
,

r¼ ðb2
4þb2

1b2
3Þ

1=4, b¼ Argðb4þ ib1b3Þ, 0rbo2p,

b3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90þ56cosk�2cos2k
p

coskþ2
sin2 k

2
, b4 ¼

4ðcos2k�20cosk�29Þ

ðcoskþ2Þ2
sin4 k

2
: ð14Þ

Substituting this into (10), (12) we obtain the general homogeneous solution for the upper half-plane

wF
n ¼ C1l

n�1
1 þC2l

n�1
2 , n¼ 1,2, . . . ,

yF
n ¼�l

n�1
1 rðl1ÞC1�l

n�1
2 rðl2ÞC2, rðlÞ ¼

3ð1�l2
Þ

l2
þ4lþ1

, ð15Þ

where C1,2 are arbitrary constants.
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In addition to this general solution, in the homogeneous fracture problem, we have conditions in the crack region as

MðxÞ ¼ VðxÞ ¼ 0 ðx¼�a,�2a, . . . ; y¼ a=2Þ: ð16Þ

Hereafter the quantities Mm,0(a/2) and Vm,0(a/2) are denoted as M(x) and V(x) ðx¼ am¼ 0,7a, . . .Þ. Recall that the points at
y=a/2 correspond to the crack line, that is, they are midpoints of the beams between the nodes at n=0 and 1, but not the
nodes themselves. The displacements, wm,0(a/2+0)=w(x), and angles, ym,0ða=2þ0Þ ¼ yðxÞ, are defined by the quantities at
n=1 as follows:

wðxÞ ¼wm,1�
a

2
ym,1�

a2

48EI
½6Mm,0ðaÞþaVm,0ðaÞ�, ð17Þ

yðxÞ ¼ ym,1þ
a

8EI
½4Mm,0ðaÞþaVm,0ðaÞ� ðx¼ 0,7a, . . .Þ: ð18Þ

Note that we use here notations for the displacements and angles in the beams between the nodes similar to the notations
for the forces and moments in (1).

3. The continuous approximation

It can be found from Eqs. (10) and (11), that in the long-wave approximation the lattice corresponds to a continuous
anisotropic elastic plate, which transverse displacement, w(x,y), obeys the equation

@4wðx,yÞ

@x4
þ
@4wðx,yÞ

@y4
¼ 0: ð19Þ

In the polar coordinate system, r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
,a¼ arctanðy=xÞ, the bending stiffness of the plate

D¼
EI

aðjcosajþjsinajÞ ð20Þ

is pictured in Fig. 3 as a square with the vertices on the x,y-axes.
Eq. (19) possesses functionally invariant solutions as arbitrary functions of x7

ffiffiffiffiffiffiffiffi
7 i
p

y. We choose the solutions that
would be far-field asymptotic solutions for the lattice. With this in mind we introduce two square-root type functions

F1ðx,yÞ ¼
X3

n ¼ 0

½�xþyexpðipð�3=4þn=2ÞÞ�1=2 ¼
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�zÞ2þz2

q
�xþz

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþzÞ2þz2

q
�x�z

r" #
sign y,

F2ðx,yÞ ¼
X3

n ¼ 0

½�xþyexpðipð�3=4þn=2ÞÞ�3=2 ¼�
ffiffiffi
2
p
½ðx�zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�zÞ2þz2

q
�xþz

r

þðxþzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþzÞ2þz2

q
�x�z

r
� sign y�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�zÞ2þz2

q
þx�z

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþzÞ2þz2

q
þxþz

r" #
: ð21Þ

The functions are defined in the x,y-plane with a branch cut at y¼ 0,�1oxo0; F140,F240ðxo0,y¼ þ0Þ,z¼ y=
ffiffiffi
2
p

.
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These representations are valid for ya0. The generalized limits at y= +0 are

F1ðxÞ ¼ 4x1=2
� ,

@F1

@y
¼

ffiffiffi
2
p

x�1=2
þ ,

@2F1

@y2
¼ 0,

F2ðxÞ ¼ 4x3=2
� ,

@F2

@y
¼�3

ffiffiffi
2
p

x1=2
þ ,

@2F2

@y2
¼ 0,

@3F2

@y3
¼

3
ffiffiffi
2
p

4
x�3=2
þ , ð22Þ

where the generalized functions can be defined in a more straightforward manner as

xn7 ¼
1

2
lim

y-þ0
½ð7xþ iyÞnþð7x�iyÞn�,

½xn7 ¼ ð7xÞnð7x40Þ, xn7 ¼ 0ð7xo0Þ, na�1,�2, . . .�: ð23Þ

Note that for simplicity the coordinate system for the continuous fields is shifted in such a way that the crack line appears
at y=0 instead of y=a/2 as assumed for the lattice.

The generalized function x+
�3/2 is uniquely defined in the Schwartz distribution theory. However, in the considered

lattice problem, where we are going to compare the continuous description with the exact one, not only the generalized
limit but also the prelimiting function, Fð3Þðx,yÞ � @3F2ðx,yÞ=@y3,ya0, is of interest. For ya0 this function can be
represented by

Fð3Þ2 ðx,yÞ ¼ jyj�3=2Fðx=jyjÞ, Fðx=jyjÞ ¼ jyj3=2Fð3Þ2 ðx=jyj,1Þ, q¼ x=jyj ðya0Þ: ð24Þ

Function FðqÞ is plotted in Fig. 4 (it is the same as Fð3Þ2 ðx=jyj,1Þ).
It can be seen that there is a region where the function takes negative values. This region contracts to the point at the

origin, x=0, as y-0, and it does not support any localized distribution; however, it cannot be neglected. Indeed, although
the prelimiting function tends to x�3=240 for any x40, the integral of the former over the x-axis is equal to zero
independently of ya0. It is worthy to be mentioned, that the transverse force distribution, considered in Section 5 for the
antisymmetric mode of the lattice fracture, relates to this prelimiting function.

In connection with the discussed continuous model, we note that the equilibrium equation for the classical bending
plate model, D2w¼ 0, also possesses functionally invariant solutions. The solutions can be expressed in terms of arbitrary
functions of x7 iy and yðx7 iyÞ.

Next we consider the lattice with a crack at mo0, y=a/2.

4. Symmetric mode

For the symmetric mode where

wm,nþ1 ¼wm,�n, ym,nþ1 ¼�ym,�n, ð25Þ

in addition to (16), we have

yðxÞ ¼ 0, VðxÞ ¼ 0 ðx¼ 0,a, . . .Þ: ð26Þ

Thus V(x)=0 over the whole crack line, and this yields a relation between the constants C1,2. Indeed, in this case, in view of
(18) we have

VðxÞ ¼ Vm,0ðaÞ ¼ 0, MðxÞ ¼Mm,0ðaÞ,
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yðxÞ ¼ ym,1þ
a

2EI
MðxÞ: ð27Þ

On the other hand, referring to (2) and (1), we find that

Vm,0ðaÞ ¼
12EI

a3
3wm,1�wm�1,1�wmþ1,1�wm,2þ

a

2
ðym,1�y

x
m�1,1þy

x
mþ1,1þym,2Þ

h i
, ð28Þ

Mm,0ðaÞ ¼
2EI

a
ym,2þ2ym,1�

3

a
ðwm,2�wm,1Þ

� �
: ð29Þ

Now, using the Fourier transform and representation (12) we obtain the sought relation between the constants as

C1pðl1ÞþC2pðl2Þ ¼ 0

with

pðlÞ ¼ 2
cosk�3�cos2k

coskþ2
þ2lþð1þlÞrðlÞ: ð30Þ

Thus there remains only one arbitrary constant, say, C=C1.
Referring to (16) and (26), we denote

MF ¼Mþ ðkÞ ¼
X1

m ¼ 0

MðamÞexpðikmÞ,

yF
¼ y�ðkÞ ¼

X�1

m ¼ �1

yðamÞexpðikmÞ: ð31Þ

Further, using the relations for M(x) (28) and yðxÞ (29), in terms of the Fourier transform, and referring to the mixed
boundary conditions (16), (26) we find the connection between M+(k) and y�ðkÞ

Mþ ðkÞ�
2EI

a
LðkÞy�ðkÞ ¼ 0 ðIk¼ 0Þ ð32Þ

with

LðkÞ ¼ 1�
I½qðl1Þð1þl1Þpðl2Þ�

I½qðl2Þð1�l2Þpðl1Þ�

� ��1

ðIk¼ 0Þ, ð33Þ

where p is defined in (30), and

qðlÞ ¼
3ð1�lÞ

l2
þ4lþ1

, rðlÞ ¼
3ð1�l2

Þ

l2
þ4lþ1

: ð34Þ

Function L(k) as the kernel of the Wiener–Hopf type equation (32) is presented here in terms of real k. This 2p- periodic
function is positive except at zero points k¼ 0,72p, . . . . An asymptote for k-0 can be found as

LðkÞ ¼
jkj

2
ffiffiffi
2
p þOðk2Þ: ð35Þ

In accordance with the causality principle, we represent this periodic function in the form as

LðkÞ ¼ sþ ðkÞs�ðkÞL0ðkÞ, s7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�exp½�ð08 ikÞ�

p
, ð36Þ

where the normalized 2p-periodic function, L0(k), is positive everywhere on the real k-axis, and the multipliers, s7 , are
regular in the half-planes 7Ik40, respectively (the branch points, k¼ 80, belong to the lower and upper half-plane k,
respectively). The related factorization of L0(k) is achieved using the Cauchy type integral. In this way, we can represent

LðkÞ ¼ Lþ ðkÞL�ðkÞ, L7 ðkÞ ¼ L07 ðkÞs7 ðkÞ ð37Þ

with

L07 ðkÞ ¼ exp

Z p

�p
lnL0ðxÞdD7 ðk�xÞdx

� �
, ð38Þ

dDþ ðkÞ ¼
1

2p
X1

m ¼ 0

exp½�ð0�ikÞm� ¼
1

2p
1

1�exp½�ð0�ikÞ�
,

dD�ðkÞ ¼
1

2p
X�1

m ¼ �1

exp½ð0þ ikÞm� ¼
1

2p
exp½�ð0þ ikÞ�

1�exp½�ð0þ ikÞ�
: ð39Þ
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Now, the Wiener–Hopf equation (32) can be represented as follows:

Mþ ðkÞa

2EILþ ðkÞ
�L�ðkÞy�ðkÞ ¼ 0: ð40Þ

The homogeneous equilibrium equation (32) (or (40)) does not have any nontrivial physically acceptable solution
unless the action of the remote load is taken into account. Mathematically, an analytically represented delta-function can
reflect that load. This can be done by a vanishing-amplitude distributed load which influence, however, does not vanish, as
shown in Slepyan (2002, pp. 401–402). The delta-function can also be introduced directly (see, e.g., Slepyan, 1982, 2005;
Mishuris et al., 2009). In doing so we modify (40) as follows:

Mþ ðkÞa

2EILþ ðkÞ
�L�ðkÞy�ðkÞ ¼ A½dDþ ðkÞþdD�ðkÞ�, ð41Þ

where the right-hand side is the analytical representation of the periodically continued generalized function AdðkÞ,
A=const. This addition is valid since it does not influence the original equilibrium equation (32). Indeed, L+(k) has a zero at
k=0, Lþ ðkÞ � const

ffiffiffiffiffiffiffiffiffiffiffi
0�ik
p

, and returning to (32), that is, multiplying the modified equation (41) by L+ , we find that the
delta function is canceled, and the equilibrium equation (32) remains homogeneous (note that this is true for a specific
representation of the delta function as in (41)). At the same time, Eq. (41) gives us a unique, up to an arbitrary multiplier,
physically acceptable solution as

Mþ ðkÞ ¼
2AEI

a
Lþ ðkÞdDþ ðkÞ, y�ðkÞ ¼

A

L�ðkÞ
dD�ðkÞ: ð42Þ

The bending moment in the crack front beam, M(0), can be found as follows (see Slepyan, 2002, formulas (2.103), (2.104)):

Mð0Þ ¼ lim
k-i1

Mþ ðkÞ ¼
AEIR1

pa
, R1 ¼ exp

1

p

Z p

0
lnL0ðkÞdk

� �
� 0:3216: ð43Þ

The distribution of the bending moment and the angle of rotation ahead of and behind the crack front, m= 71, 72,y, can
be obtained by the inverse discrete Fourier transform

MðamÞ ¼
1

2p

Z p

�p
Mþ ðkÞexpð�ikmÞdk: ð44Þ

The same formula can be used for yðamÞ.
Note that using the identity

Re
1

1�exp½�iðx�kÞ�

� �
�

1

2
ð45Þ

the function L0 +(k) can be expressed in a form more convenient for calculations, namely

L0þ ðkÞ ¼ L0ðkÞexpðRþ iYÞ, ð46Þ

R¼
1

2p

Z p

0
ln

L0ðxÞ
L0ðkÞ

dx, Y ¼
1

4p

Z p

�p
cot

k�x
2

ln
L0ðxÞ
L0ðkÞ

dx: ð47Þ

The results of calculations are presented in Fig. 5 and Table 1.
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Fig. 5. The bending moments in the beams ahead of the crack, mZ0, and the rotation angles of the broken beams at y¼ a=2þ0,mo0 (x=am). Solid lines

correspond to the long wave asymptotes for the crack line (49).
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In the derived solution, the bending moments are determined for the crack-line beams; however, it cannot be excluded
in advance that not the crack-front beam but a different one breaks first. It was shown by numerical analysis of plane
problems that crack kinking occurs in a triangular mass–spring lattice under a sufficiently high crack speed (Marder and
Gross, 1995) and in hexagonal and square bending beam lattices under the quasi-static crack growth (Ryvkin et al., 2004;
Lipperman et al., 2007, 2008). In this connection, the linearly distributed bending moments, Mx

�1,1ðx
0Þ ¼Mx

�1,0ðx
0Þ, in the

parallel-to-the-crack-line beams adjacent to the crack-front beam (the beams at n=0 and 1 between m=�1 and 0) are
calculated. It was found that Mx

�1,1(0)/M(0)=0.2438 and Mx
�1,1(1)/M(0)=0.6417, where M(0) is the bending moment in the

crack-front beam. Thus, in the considered problem, no kinking is expected, and the crack resistance analysis can be based
on the state of the crack-front beam.

4.1. Long-wave approximation

As the distance from the crack front increases, the lattice solution approaches its long-wave asymptote. The latter
follows from (42) as an asymptote for k-0

Mþ ðkÞ �
AEI

a

L0þ ð0Þ

pð0�ikÞ1=2
, y�ðkÞ � �

A

2pL0�ð0Þð0þ ikÞ3=2
: ð48Þ

Consequently, the moment per unit length and the angle are

MðxÞ � AEI
L0þ ð0Þ

p3=2a
ffiffiffiffiffi
ax
p ðx-1Þ, yðxÞ ��

A
ffiffiffiffiffiffiffiffiffiffiffiffi
�x=a

p
p3=2L0�ð0Þ

ðx-�1Þ, ð49Þ

where in accordance with (38)

L07 ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
L0ð0Þ

p
R71=2

1 R1 ¼ exp
1

p

Z p

0
lnL0ðkÞdk

� �
� 0:3216,L0ð0Þ ¼

1

2
ffiffiffi
2
p

� �
: ð50Þ

The above-mentioned functionally invariant solutions to Eq. (19) can be used to describe the asymptotic fields in the
whole (x,y)-plane ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
=a-1Þ. Based on (21) and (49) we can present the solution as

yðx,yÞ ��
A

4p3=2
ffiffiffi
a
p

L0�ð0Þ
F1ðx,yÞ: ð51Þ

In these terms,

Mðx,yÞ ¼�EI
@yðx,yÞ

@y
, Vðx,yÞ ¼

@Mðx,yÞ

@y
: ð52Þ

In the limit, y-þ0, the latter being considered as a generalized function is equal to zero, while the angle and moment
asymptotically coincide with those derived for the lattice. At the same time this solution satisfies the equilibrium equation
(19) as the long-wave asymptote of the lattice equilibrium equation. Thus, solution (51), (52) does represent the long-wave
asymptote of the lattice solution. Comparative plots are presented in Fig. 5.

Relations (43), (44) and (49) define the connection between the lattice state and its continuous asymptote in the case of
a semi-infinite crack in an unbounded lattice. At the same time, a difference between these two descriptions is essential
only in a close vicinity of the crack front. It follows that the connection is still valid for finite lattice sizes, crack lengths and
load parameters if the sizes are considerably greater than the lattice cell size. In this case, the above-mentioned relations
can be used for the determination of the state of the crack-front beam based on the crack-front asymptote of the
continuous description. In particular, for a finite crack, �loxo l, in the lattice subjected to a uniformly distributed bending
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Table 1
Moments in the beams in front of the crack and rotation angles of the broken beams at y=a/2+0: the lattice solution and the asymptotic values (49).

m M(x)/M(0) (49) m yðxÞ=yð�10aÞ (49)

0 1 1 0 0 0

1 0.5487 0.5992 �1 0.2968 0.3194

2 0.3892 0.4237 �2 0.4306 0.4518

3 0.3265 0.3459 �3 0.5355 0.5533

4 0.2771 0.2996 �4 0.6233 0.6389

5 0.2543 0.2680 �5 0.7001 0.7143

6 0.2254 0.2446 �6 0.7695 0.7825

7 0.2149 0.2265 �7 0.8331 0.8452

8 0.1941 0.2118 �8 0.8922 0.9035

9 0.1892 0.1997 �9 0.9476 0.9583

10 0.1726 0.1895 �10 1 1.010
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moment, M1, at infinity, y¼ 71, the continuous solution can be found as

yðx,yÞ ¼�
M1ffiffiffi

2
p

EI
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðxþ

ffiffi
i
p

yÞ2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðx�

ffiffi
i
p

yÞ2
q� �

,

Mðx,yÞ ¼ �EI
@y
@y
¼

M1ffiffiffi
2
p R

�
ffiffi
i
p
ðxþ

ffiffi
i
p

yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðxþ

ffiffi
i
pq

yÞ2
þ

ffiffi
i
p
ðx�

ffiffi
i
p

yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðx�

ffiffi
i
pq

yÞ2

2
64

3
75: ð53Þ

For the crack line, y= 70, the finite-crack-associated values are

yðx,70Þ ¼8

ffiffiffi
2
p

M1
EI

ffiffiffiffiffiffiffiffiffiffiffiffi
l2�x2

p
Hðl2�x2Þ, Mðx,70Þ ¼M1

jxjHðx2�l2Þffiffiffiffiffiffiffiffiffiffiffiffi
x2�l2
p , ð54Þ

where H is the Heaviside step function, while Vðx,70Þ ¼ 0. Note that we here break the vanishing stress condition;
however, if y is changed to

y¼�
M1ffiffiffi

2
p

EI
R½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðxþ

ffiffi
i
p

yÞ2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�ðx�

ffiffi
i
p

yÞ2
q

�ðxþ
ffiffi
i
p

yÞþðx�
ffiffi
i
p

yÞ�, ð55Þ

then there is the uniformly distributed moment on the crack faces but not at infinity—as usual in fracture mechanics.
The continuous asymptote for the displacement follows from (51) and (21)

wðx,yÞ ��
A

6p3=2
ffiffiffi
a
p

L0�ð0Þ
Fð�1Þ

1 ,

Fð�1Þ
1 ¼

X3

n ¼ 0

½�xþyexpðipð�3=4þn=2ÞÞ�3=2expð�ipð�3=4þn=2ÞÞ: ð56Þ

The lattice under the symmetric bending is pictured in Fig. 6.

4.2. Crack resistance

The critical strain energy of the bond deformed by a uniformly distributed bending moment is

Uc ¼
M2ð0Þa

2EI
¼

A2EIR2
1

2p2a
: ð57Þ

Hence the ‘local’ energy release rate is

G0 ¼
Uc

a
¼

A2EIR2
1

2p2a2
: ð58Þ

The energy release rate on the macrolevel is defined by formula (1.42) in Slepyan (2002) in terms of the long-wave
asymptotes (48) (also see (50)), namely, in terms of the asymptotes of M+(k)/a and �y�ðkÞ for k-0. The latter quantities
constitute the energy pair similar to the stress and displacement vectors in elasticity. Thus, the ‘global’ energy release
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Fig. 6. The lattice under symmetric bending: w(x,y)/(2A) (56).
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rate, G, is

G¼� lim
s-1

s2Mþ ðisÞy�ð�isÞ=a¼
A2EIR1

2p2a2
, ð59Þ

and the energy release ratio is

G0

G
¼R1 � 0:3216: ð60Þ

This result evidences that approximately 1
3 of the global energy release is spent on the bond breakage, i.e., on the

fracture itself, while 2
3 of the energy is lost. The latter, in fact, is the energy of oscillations which cannot be seen in the

framework of the static formulation. Note that in the case of mode III mass–spring square lattice, the related energy release
ratio is G0=G¼

ffiffiffi
2
p
�1� 0:4142 (Slepyan, 2002, p. 505).

The energy release ratio is thus independent of the beam bending stiffness and of the lattice cell size. However, the
energy release itself does depend on these quantities. Let M=Mc be the critical bending moment of the beam. It follows
from (57) and (59) that A¼ paMc=ðEIR1Þ and

G¼
M2

c

2EIR1
: ð61Þ

Lastly, in the case of a geometrically similar structures made of the same material, Mc ¼ const� a3sc , I¼ const� a4, and

G¼ const�
a2s2

c

E
, ð62Þ

where sc is the limiting strength and E is the elastic modulus. Note that in a three-dimensional case, G is proportional to a

and not to a2. This, of course, follows directly from the dimensional analysis.
The bending moment intensity factor can be introduced in this model as

K ¼
ffiffiffiffiffiffi
GE
p

: ð63Þ

Thus the critical value, K=Kc, is

Kc ¼
Mcffiffiffiffiffiffiffiffiffiffiffi
2R1I

p ¼ const� asc : ð64Þ

5. Antisymmetric mode

In the case where the transverse displacements are antisymmetric respective to the crack line

wm,nþ1 ¼�wm,�n, ym,nþ1 ¼ ym,�n, ð65Þ

conditions (16) on the crack line at mo0 remain valid, while ahead of the crack we have

wðxÞ ¼ 0, MðxÞ ¼ 0 ðx¼ 0,a, . . .Þ: ð66Þ

Thus, in this case, M(x)=0 on the whole crack line, and in accordance with (17), (18), the forces and displacements are

VðxÞ ¼ Vm,0ðaÞ ¼ �
2

a
Mm,0ðaÞ,

wðxÞ ¼wm,1�
a

2
ym,1þ

a3

24EI
Vm,0ðaÞ, ð67Þ

yðxÞ ¼ ym,1�
a2

8EI
Vm,0ðaÞ ðx¼ 0,7a, . . .Þ: ð68Þ

The solution procedure is similar to the one used in the symmetric case; however, some points are different. The
expressions in (15) are still valid, but the coefficients in the relation (30) are now defined by a different relation, namely

pðlÞ ¼
l3
�9l2

�9l�7

l2
þ4lþ1

þ
10þ2cosk

2þcosk
: ð69Þ

Consequently, referring to the conditions (16), (66) we come to the following equation with respect to ‘‘+’’ and ‘‘� ’’
functions defined similarly to (31)

Vþ ðkÞ�
24EI

a3
LðkÞw�ðkÞ ¼ 0 ðIk¼ 0Þ ð70Þ

with

LðkÞ ¼ 1�4
I½pðl1Þq1ðl2Þ�

I½pðl2Þq2ðl1Þ

� ��1

: ð71Þ
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Here

q1ðlÞ ¼�
l2
�8l�5

2ðl2
þ4lþ1Þ

,

q2ðlÞ ¼
2ðcos2k�coskþ3Þ

2þcosk
þ
l3
�5l2

�5l�3

l2
þ4lþ1

: ð72Þ

As in the symmetric case, the kernel L(k) of the Wiener–Hopf equation (70) is 2p-periodic and positive except for the
zero points k¼ 0,72p, . . . . However, the order of zeros is different since for k-0

LðkÞ ¼
jkj3

24
ffiffiffi
2
p þOðk4Þ: ð73Þ

Similar to the symmetric case, in accordance with the causality principle, we represent

LðkÞ ¼ sþ ðkÞs�ðkÞL0ðkÞ, s7 ¼ ð1�exp½�ð08 ikÞ�Þ3=2, ð74Þ

where the normalized 2p-periodic function, L0(k), is positive everywhere on the real k-axis, and the multipliers, s7 , are
regular in the half-planes 7Ik40, respectively (the branch points, k¼ 80, belong to the lower and upper half-plane k,
respectively). The related factorization of L0(k) is achieved using the Cauchy type integral. Thus

LðkÞ ¼ Lþ ðkÞL�ðkÞ, L7 ðkÞ ¼ L07 ðkÞs7 ðkÞ ð75Þ

with

L07 ðkÞ ¼ exp

Z p

�p
lnL0ðxÞdD7 ðk�xÞdx

� �
: ð76Þ

Eq. (70) can now be rewritten in the form similar to that in (40)

a2

24EILþ ðkÞ
Vþ ðkÞ�

L�ðkÞ

a
w�ðkÞ ¼ 0: ð77Þ

In contrast to the symmetric case, the higher order zero of s+(k) allows not only for the delta function but
also for its derivative to be introduced in the right-hand side of the equation. The above equation can thus be
modified as

a2

24EILþ ðkÞ
Vþ ðkÞ�

L�ðkÞ

a
w�ðkÞ ¼ A½dDþ ðkÞþdD�ðkÞ�þB

ddDþ ðkÞ

dk
þ
dD�ðkÞ

dk

� �
: ð78Þ

However, the solution corresponding to the B-term does not satisfy the vanishing stress condition. The only physically
acceptable solution follows as

Vþ ðkÞ ¼
24EIA

a2
dDþ ðkÞL0þ ðkÞsþ ðkÞ, w�ðkÞ ¼�

aAdD�ðkÞ

L0�ðkÞs�ðkÞ
,

L07 ðkÞ ¼ exp

Z p

�p
lnL0ðxÞdD7 ðk�xÞdx

� �
: ð79Þ

The transverse force in the crack front beam, V(0), is equal to the limit as

Vð0Þ ¼ lim
k-i1

Vþ ðkÞ ¼
12EIAR2

pa2
, R2 ¼ exp

1

p

Z p

0
lnL0ðkÞdk

� �
� 0:0303: ð80Þ

We now find the transverse force distribution on the crack line ahead of the crack, m=1,2,y . Recall that the inverse
transform of a function regular in the upper half-plane k, M+(k) or V+(k), can be performed in two ways. One is the use of
the integral formula (44). The other is shown in Slepyan (2002, Section 2.4.2). In fact, the latter way is the representation of
the Fourier discrete transform as a series expansion by S¼ expðikÞ

Vþ ðkÞ ¼
X

m ¼ 0

VðamÞexpðikmÞ: ð81Þ

Clearly, the series converges in the half-plane Ik40, and the coefficients represent the transverse force distribution. The
expression for V+(k) given in (79) expanded as a power series by S is

Vþ ð�ilnSÞ ¼
12EI

pa2

X1
m ¼ 0

cmSmexp
Xm

j ¼ 0

rjS
j

2
4

3
5, ð82Þ

c0 ¼ 1, c1 ¼�
1

2
, . . . ,cm ¼

ð2m�3Þ !!

2m !!
, rj ¼

1

p

Z p

0
cosjklnL0ðkÞdk: ð83Þ
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The coefficients V(am) in (81) were obtained by the use of symbolic computation. The normalized forces V(ma)/V(0) in the
beams ahead of the crack, m=0,y,10, are presented in Fig. 7, where the solid line corresponds to the asymptotic
solution (86).

Referring to (74) and (79) we note that the transverse force on the crack line is self-equilibrated

X1
m ¼ 0

VðamÞ ¼ Vþ ð0Þ ¼ 0: ð84Þ

That is in accordance with the above force distribution.
As in the symmetric case, we have calculated the linearly distributed moments in the parallel-to-the-crack-line beams

at the crack front. The result is as follows: Mx
�1,1(0)/M0=0.5247, Mx

�1,1(a)/M0=0.8843, where M0=V(0)a/2 is the maximal
moment in the crack-front beam. Thus no kinking is expected in the antisymmetric case as well, and the crack resistance
can be calculated based on the latter bending moment, M0.

It is of interest that, in this mode of fracture, only the crack-front beam resists to the crack advance, whereas the other
beams on the crack line ahead of the crack facilitate the fracture. Such type of moment distribution is a result of the scissors-
type deformation, Fig. 8, where the opposite displacements of the crack ‘faces’ lead to a rotation around the crack-front
beam. Further, it follows from (74) and (79) that V(k)=0 at k=0, and hence the transverse forces acting on the lattice half-
plane are self-equilibrated. In turn, it follows that if the lattice with the crack is deformed by a couple of remote transverse
forces applied to the crack face nodes, the value of the force is zero. The corresponding pre-limiting state can be envisioned
as that where the forces are applied at a finite distance from the crack front. Under the condition of a fixed transverse force
in the crack-front beam, the external forces decrease and vanish as the distance increases and tends to infinity. It can be
seen below that the transverse force distribution is still self-equilibrated in the continuous approximation as well.
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Fig. 7. The transverse forces in the beams ahead of the crack, mZ0, and the displacements of the broken beams at y¼ a=2þ0,mo0 (x=am). Solid lines

correspond to the long wave asymptotes for the crack line (86).
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Fig. 8. The lattice under the antisymmetric bending: w(x,y)/(2A) (87).
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5.1. Long-wave asymptote

The approximation follows from (79) as the asymptote for k-0

Vþ ðkÞ �
12AEI

ffiffiffiffiffiffiffi
R2
p

pa2

ffiffiffiffiffiffiffiffiffiffiffi
L0ð0Þ

p ffiffiffiffiffiffiffiffiffiffiffi
0�ik
p

ðk-0Þ,

w�ðkÞ ��
aA

ffiffiffiffiffiffiffi
R2
p

2p
ffiffiffiffiffiffiffiffiffiffiffi
L0ð0Þ

p ð0þ ikÞ�5=2
ðk-0Þ,

R2 ¼ exp
1

p

Z p

0
lnL0ðkÞdk

� �
� 0:0303, L0ð0Þ ¼

1

24
ffiffiffi
2
p : ð85Þ

The inverse transform results in the following expressions for the transverse force per unit length and the displacement on
the crack line (y=a/2+0)

VðxÞ ��
6AEI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2L0ð0Þ

p
p3=2a2

x

a

� ��3=2

ðx-1Þ,

wðxÞ ��
2aA

ffiffiffiffiffiffiffi
R2
p

3p3=2
ffiffiffiffiffiffiffiffiffiffiffi
L0ð0Þ

p �
x

a

� �3=2

ðx-�1Þ: ð86Þ

As in the symmetric case, the functionally invariant solution (21) can be used for the asymptotic description of the
lattice fields in the (x,y)-plane. In accordance with the asymptotes of the solution obtained for the lattice (85), we represent

wðx,yÞ ��
A

ffiffiffiffiffiffiffiffiffiffi
2R2

p
6p3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aL0ð0Þ

p F2ðx,yÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
=a-1Þ, ð87Þ

where F2 is defined in (21), (22). Asymptotes for the other quantities follow from this as

yðx,yÞ ¼
@wðx,yÞ

@y
, Mðx,yÞ ¼�EI

@yðx,yÞ

@y
, Vðx,yÞ ¼

@Mðx,yÞ

@y
, ð88Þ

where the derivatives at y= +0 are presented in (22). Recall that the regular function F2ðx,yÞðya0Þ takes negative values
(see Fig. 4), and it can be seen that the asymptotic solution (87) is self-equilibrated as well as the exact solution, namelyZ 1

-1
VðxÞdx¼ 0: ð89Þ

We now consider the anisotropic continuous plate with a finite crack, �loxo l, subjected to transverse forces,
V0, uniformly distributed over the crack faces. Similar to the symmetric case, the finite-crack continuous solution is found
to be

wðx,yÞ ¼�

ffiffiffi
2
p

V0

12EI
R½ðl2�ðxþ

ffiffi
i
p

yÞ2Þ3=2
þðl2�ðx�

ffiffi
i
p

yÞ2Þ3=2
�ðxþ

ffiffi
i
p

yÞ3þðx�
ffiffi
i
p

yÞ3�,

Mðx,yÞ ¼ �EI
@2wðx,yÞ

@y2
, Vðx,yÞ ¼

@Mðx,yÞ

@y
: ð90Þ

On the crack line it is

wðx,70Þ ¼ 8

ffiffiffi
2
p

V0

6EI
ðl2�x2Þ

3=2Hðl2�x2Þ, Mðx,70Þ ¼ 0,

Vðx,70Þ ¼ V0½1þ
1

2
jxj3ðx2�l2Þ�3=2

þ �
3

2
jxjðx2�l2Þ�1=2

þ �: ð91Þ

Discrete and continuous distributions are shown in Fig. 7 and Table 2. The lattice under the antisymmetric bending is
pictured in Fig. 8.

5.2. Crack resistance

The critical strain energy of the crack-front beam deformed by a linearly distributed bending moment

M0,0ðyÞ ¼ Vð0Þ y�
a

2

� �
, 0oyoa, M0,0ðaÞ ¼Mc , ð92Þ

and the critical value of the transverse force are

Uc ¼
V2ð0Þa3

24EI
¼

6EIA2R2
2

p2a
, Vð0Þ ¼ Vc ¼

2Mc

a
¼

12EIAR2

pa2
: ð93Þ
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It follows that the local energy release per unit length is

G0 ¼
M2

c

6EI
¼

6EIA2R2
2

p2a2
: ð94Þ

The ‘global’ energy release rate, G, is defined by the same relation as in the symmetric case (60) but with respect to the
transverse force–displacement energy pair. Referring to (85) we obtain

G¼� lim
s-1

s2Vþ ðisÞw�ð�isÞ=a¼
6EIA2R2

p2a2
: ð95Þ

Thus, the energy release ratio is

G0

G
¼R2 � 0:0303: ð96Þ

In the case of a geometrically similar structure made of the same material, Mc ¼ const� a3sc , I¼ const� a4, and relations
(62) and (64) are still valid. It is remarkable that in a quasi-static crack advance under antisymmetric bending only about
3% of the far-field energy release goes to the fracture itself, while the rest disappears.

6. Concluding remarks

In this paper, the crack resistance of the square bending beam lattice is expressed in terms of the limiting bending
moment. The relation is based on the solutions derived for the lattice with a semi-infinite initial crack and for the related
continuous anisotropic bending plate. The latter solution is defined as a far-field asymptote of the former—in the lattice
spacing scale. At the same time, under certain conditions it can be considered as a crack-tip asymptote—in the problem for
the plate with a finite crack, whose solution is also presented. The energy release ratio is obtained by comparing the energy
release in the continuous model with the critical strain energy of the beam in front of the crack. It appears that the critical
strain energy of the beam is only part of the total energy release. For the symmetric bending mode the former is
approximately equal to 1

3 of the latter, whereas the corresponding ratio is about 3
100 in the antisymmetric case. The rest of

the energy goes to oscillations caused by the sudden beam breakage; however, the quasi-static formulation cannot trace
this dynamic phenomenon but only the total energy lost.

We should stress that in this paper the crack growth is not considered but only the strength of the lattice with an initial
crack. The energy release concerns a single step: from the initial state to the state with the crack-front beam broken. The
fact that the crack-front beam is most stressed is valid only for the initial static state. After the first beam failure the crack
will grow dynamically, and the dynamic amplification factor will play a crucial role. In addition, in the antisymmetric
problem, the crack-front beam is stressed maximally at its ends, and the crack will not grow along the line of symmetry. In
statics, however, it does not matter where the crack-line beam breaks since it does not influence the lattice state outside
this beam. Thus the mathematical formulation of the considered problems is insensitive to positions of the break points,
which form the initial crack; they can be out of the crack line but between the lines n=0 and 1.

In the lattice, in contrast to the continuous material, short and long cracks can be distinguished. In other words, the
crack resistance expressed in terms of the energy release rate, or the critical bending-moment intensity factor, in the
related continuous plate, depends on the crack length. In this connection, it is remarkable that the continuous asymptotes
for a semi-infinite crack practically coincide with the discrete lattice distributions beginning from several lattice spacing, a,
from the crack front (see Figs. 5 and 7). This suggests that a crack length of several lattice spacing can be considered as
large enough, such that the corresponding crack resistance is close enough to that for the semi-infinite crack. Note that in
the case of in-plane strain of the lattice, where both bending and tensile deformations of the beams arise, this statement
does not hold if the beams are too flexible (Quintana Alonso and Fleck, 2007; Lipperman et al., 2008).
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Table 2
Transverse forces in the beams in front of the crack and displacements of the broken beams at y=a/2+0. The lattice solution and the asymptotic values

calculated in accordance with (86).

m V(x)/V(0) (86) m w(x)/w(�10a) (86)

0 1 71 0 0 0

1 �0.5025 �0.2782 �1 0.0401 0.0306

2 �0.1362 �0.0984 �2 0.1004 0.0864

3 �0.0547 �0.0535 �3 0.1762 0.1587

4 �0.0378 �0.0348 �4 0.2649 0.2444

5 �0.0267 �0.0249 �5 0.3647 0.3415

6 �0.0200 �0.0189 �6 0.4746 0.4490

7 �0.0158 �0.0150 �7 0.5936 0.5658

8 �0.0128 �0.0123 �8 0.7212 0.6913

9 �0.0107 �0.0103 �9 0.8568 0.8249

10 �0.0091 �0.0088 �10 1. 0.9661
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It is of interest that the transverse forces, acting on the lattice half-plane in the antisymmetric case, are self-
equilibrated. Hence the remote forces are also self-equilibrated, and if the lattice is deformed by a couple of remote
transverse forces, for example applied to the crack faces, then these forces are at zero. It means that, under a fixed state of
the crack front beam, the moments applied to the crack faces vanish as the application point moves from the crack front to
infinity. This is in contrast to the symmetric case, where the remote moment must compensate for the nonintegrable
moment distribution ahead of the crack front.

The transverse force distribution on the crack line in the antisymmetric problem is really striking. The lattice with a
crack carries the load by the crack-front beam only. Moreover, the other intact beams on the crack line are stressed by
opposite direction forces, and they act as external forces, thus increasing the front beam stress. Note that qualitatively this
is in agreement with the hypersingular continuous asymptote in its prelimiting expression, which necessarily must take
negative values since the total force is equal to zero. The corresponding region contracts to the crack tip as the coordinate,
normal to the crack, tends to zero; however, its influence remains non-negligible (in this connection, see Figs. 4 and 7).

In this paper, the infinite lattice with a semi-infinite crack is considered, and the rotation angles may grow unboundedly
with the distance from the crack front. The continuous asymptotic solutions show this more transparently. This fact looks
to be in disagreement with the linear theory; however, it does not affect the stress–strain and energy release relations.
Only the displacements should be recalculated based on the geometrically nonlinear relations—if the considered lattice is
so large that the rotation angles are not small enough.

Recall that in the formulation, the torsional stiffness of the beams was neglected. This simplifies the problem, but limits
the admissible set of beam structures. A formulation, in which the torsional stiffness is taken into account, leads to more
complicated relations. In particular, the general solution is expressed in terms of three exponents, l, instead of two (see
(14)), and the torsion moments, in addition to the bending moments and the transverse forces, are among the boundary
conditions. However, in the symmetric case, the torsion moments on the crack line ahead of the crack are zero due to the
symmetry. This allows a single Wiener–Hopf type equation to be derived, which is similar to that considered in this paper
but with a different kernel. This more general equation can be resolved in the same way as above.

In addition to this generalization, some other related applications of the technique used in this paper can be envisioned.
In particular, fracture of lattices of some different topologies and dynamic fracture of such lattices admit this analytical
approach. As to the plane problem for bending beam lattices considered numerically in many works, the use of the
Wiener–Hopf technique meets difficulties since the mixed problem leads to a matrix equation. Although the above-
considered bending modes differ considerably from the plane ones, the fast conversion of the continuous asymptotic
description with the discrete lattice solution, found in the former problems, can be expected to exist in some plane
problems as well. This suggests a promising combined analytical–numerical method for the latter ones. In this connection,
note the paper by Ashby (1983) with estimations of forces and moments in the crack-front beam based on the analysis of
the related continuous model.
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