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Summary

The paper addresses a problem of partial fracture of a lattice by a propagating fault modelling
a crack bridged by elastic fibres. It is assumed that the strength of bonds within the lattice al-
ternates periodically, so that during the dynamic crack propagation only weaker bonds break,
whereas the stronger bonds remain intact. The mathematical problem is reduced to the func-
tional equation of the Wiener–Hopf type, which is solved analytically. The load–crack speed
dependence is presented, which also has implications on the stability analysis for the bridged
crack propagating within the lattice. In particular, we address the evaluation of the dissipation
rate, which is found to be strongly dependent on the crack speed. In this lattice model, our re-
sults also cover the case of the supercritical crack speed.

1. Introduction

We consider a Mode-III dynamic problem for a straight crack steadily growing in an infinite, square,
mass-spring lattice (Fig.1). The distances between neighbouring point masses at the lattice nodes
are the same for the ‘vertical’ and ‘horizontal’ bond lines; this distance is taken as the natural unit
of length.

In general, in this lattice, there are two alternating types of the normal-to-the-crack (vertical)
bonds that may differ in their stiffness (μ1 andμ2 for the bonds of the first and the second type,
respectively). These bonds may also differ in their strength (critical strain). The horizontal bond
stiffness is denoted byμ0. The lattice nodes have point massesM1 andM2 (placed on the vertical
bonds of the stiffnessμ1 andμ2, respectively), which also may be different. An elementary cell of
periodicity containing two masses is shown in Fig.1. The cell location is defined by two integers,
m andn, and the normalized continuous coordinates arex = 2m, y = n. For the vertical bonds of
the first type,x = 0, ±2, . . ., whereas for the other vertical bonds,x = ±1, ±3, . . ..

The intact lattice is uniformly strained at infinity, so that the internal forces in theμ1, μ2 andμ0
bonds at infinity are equal toσ0, σ0μ2/μ1 and 0, respectively. The crack propagates with the speed
v in such a manner that it breaks theμ1 bonds between the linesn = 0 andn = −1 at η = 0,
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152 G. S. MISHURISet al.

Fig. 1 The lattice structure with a bridged crack. The elementary cell is shown as a shaded rectangle. The
horizontal and vertical coordinates of cells are denoted bym andn, respectively. The stronger bonds are shown
by thicker lines

whereas theμ2 bonds remain intact. So the time interval between the breakage of the neighbouring
μ1 bonds is equal to 2/v.

The propagating bridged crack causes additional displacements of the lattice nodes; they are
denoted byu1;m,n andu2;m,n for the M1 andM2 masses, respectively. In the steady-state problem,
considered here, the displacementsu1(2);m,n(t) can be represented asu1(2);n(η), whereη = 2m−vt .
The total force within a bond is represented by a sum of the unperturbed stress and an additional
stress corresponding to the displacements of the crack faces due to fracture. If the additional forces
in theμ1(2) bonds areσ1(2), then the total internal forces are

σ1 total = σ1 + σ0, σ2 total = σ2 + σ0μ1/μ2. (1)

Note that in the additional problem, the nodes in the layersn = 0 andn = −1 atη < 0, which were
connected by theμ1 bonds, are now loaded (to neutralize the initial stress) by the forces±p = ∓σ0,
respectively. The load,σ0 (or p), driving the crack to propagate with the given speed,v, may depend
on this speed. It is important thatσ0 is independent of time and the coordinatem.

The bridged crack static problems for homogeneous models were considered by several authors
(1 to 10). Most of the bridged crack models, existing in the literature, refer to an elastic homo-
geneous continuum, and even in the static situation no analytical solution for lattice structures is
known. Recently, a model of a crack in elastic continuum was considered for the case where the
crack faces are bridged by discrete fibres (11). Note that a similar type of fracture was described in
numerical simulation of the Mode-II crack dynamics in a regular triangular lattice where a ‘binary
crack’ fracture can occur (12).

The purpose of this work is to analyse the load versus the crack speed together with the energy
dissipation corresponding to a propagation of a bridged crack in a simple lattice model. We apply
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the Fourier transforms, continuous onη and discrete onn. In this way, the general problem is
reduced to a Wiener–Hopf-type equation, and the required results are obtained in an explicit form.
For the sake of simplicity, the final derivations are done for an isotropic and stiffness–mass uniform
lattice where the alternating vertical bonds differ only by critical strains. In such a lattice, the crack
propagation may be described as sequential breakage of the weaker bonds, while the stronger bonds
remain intact by bridging the crack faces.

While the task is to find the crack speed as a function of the load, it is convenient to determine
the inverse function consideringv as a given parameter. In this case, we have a linear problem in
hand unless a fracture criterion is introduced. Finally, we obtain the load as a single-valued function
of the crack speed, and using the stable branches of the inverse function deduce the desired result.

2. Dynamic problem

The equations of motion are as follows:

M1ü1;m,n = μ0(u2;m,n + u2;m−1,n) + μ1(u1;m,n+1 + u1;m,n−1) − 2(μ0 + μ1)u1;m,n

+ (2μ1u1;m,0 + p)H(−η)(δn,0 − δn,−1), (2)

M2ü2;m,n = μ0(u1;m+1,n + u1;m,n) + μ2(u2;m,n+1 + u2;m,n−1) − 2(μ0 + μ2)u2;m,n, (3)

whereu1(2);m,n = u1(2);n(η), H is the Heaviside unit step function andδn,ν = 1 if ν = n, otherwise
it is zero. TheH -term in (2) reflects the state on the crack faces. It neutralizes the action of the
μ1 bonds, which are broken in the crack area, and introduces the additional external forces to
compensate the initial ones. The symmetry,u1(2);m,−1−n = −u1(2);m,n is taken into account.

For the steady-state regime, these equations become

M1v
2(d2/dη2)u1;n(η) = μ0[u2;n(η) + u2;n(η − 1)] + μ1[u1;n+1(η) + u1;n−1(η)]

− 2(μ0 + μ1)u1;n(η) + (2μ1u1;0 + p)H(−η)(δn,0 − δn,−1),

M2v
2(d2/dη2)u2;n(η) = μ0[u1;n(η + 1) + u1;n(η)] + μ2[u2;n+1(η) + u2;n−1(η)]

− 2(μ0 + μ2)u2;n(η).

The continuous Fourier transform with respect toη and the discrete transform inn with parame-
tersk andq, respectively, lead to

(

α1 − 2μ1 cosq −
4μ2

0 cos2 k

α2 − 2μ2 cosq

)

uFF
1 = (2μ1u1;− + pF)(1 − e−iq), (4)

(α2 − 2μ2 cosq)uFF
2 = μ0(1 + e−2ik)uFF

1 , (5)

wherepF = p/(0 + ik) andu1;− is the left-side transform ofu1;0(η) in η. If u1;+ is the right-side
transform, thenu1;− + u1;+ = uF

1;0(k). The quantitiesα1 andα2 in (4) and (5) are

α1 = M1(0 + ikv)2 + 2(μ0 + μ1), α2 = M2(0 + ikv)2 + 2(μ0 + μ2),

where we use the rule:ikv is replaced by 0+ ikv ≡ limε→+0(ε+ ikv), following from the causality
principle for steady-state solutions which is considered as the limit,t → ∞, in the corresponding
transient problem (13, pp. 91–94).
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154 G. S. MISHURISet al.

The inverse Fourier transform with respect toq leads to the Wiener–Hopf-type equation for the
functionuF

1(k) and to an explicit relation between the functionsuF
2(k) anduF

1(k). As a result, these
functions can be explicitly determined. In the following, for simplicity, we consider an isotropic
and stiffness–mass uniform lattice (μ1 = μ2 = μ0, M1 = M2) where the alternating vertical bonds
differ only by the critical strains. In this simplified case, the nodal mass and the bond stiffness are
taken as natural units. It follows that

α1 = α2 = α = 4 + (0 + ikv)2

and we deduce

uF
1,0(k) = u+ + u− =

[

2u− +
p

0 + ik

]
1

π

∫ ∞

0

(1 − cosq)(α − 2 cosq)

(α − 2 cosq)2 − 4 cos2 k
dq.

We have arrived at the Wiener–Hopf-type equation

u+ + L(k)u− =
[1 − L(k)] p

2(0 + ik)

with

L(k) =

√
α2 − 16 cos4 k/2 +

√
α2 − 16 sin4 k/2

2
√

(α + 2)2 − 4 cos2 k
.

The functionL(k) satisfies the conditions required for the factorization

L(k) = L+(k)L−(k) with L±(k) = exp

[

±
1

2π i

∫ ∞

−∞

ln L(ξ)

ξ − k
dξ

]

.

It follows that
u+

L+
+ L−u− =

(
1

L+
− L−

)

pF = C+ + C−, (6)

where

C+ =

[
1

L+(k)
−

1

L+(0)

]
p

2(0 + ik)
, C− =

[
1

L+(0)
− L−(k)

]
p

2(0 + ik)
,

L+(0) =
√

L(0)R(v), L−(0) =
√

L(0)/R(v), L±(±i ∞) = 1, L(0) = 1/
√

8 and

R(v) = exp

[
1

π

∫ ∞

0

ArgL(k)

k
dk

]

.

The solution, written in terms of the one-sided Fourier transforms, is

u+(k) = C+(k)L+(k), u−(k) =
C−(k)

L−(k)
. (7)

It follows that

u1;0(0) = lim
k→i ∞

(−ik)u+(k) =

[
81/4

R(v)
− 1

]
p

2
,

u1;0(−∞) = lim
k→0

(ik)u−(k) = [
√

8 − 1]
p

2
.
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DYNAMICS OF A BRIDGED CRACK IN A DISCRETE LATTICE 155

Note that the solution is valid for the supercritical regimev > 1, as well as forv 6 1. Clearly,
u1;0(0) → 0 asv → ∞ and hence

R(v) → 81/4 asv → ∞. (8)

In addition, it can be found thatu2;0(−∞) = p/2 (this result follows directly from the equilibrium
relation valid atη = −∞).

The global energy release rate can be calculated as follows. The resulting normalized displace-
ment relative to the initial state isu1;0(−∞), and it is equal to one half of the additional bond strain.
For a single broken bond, the energy required to restore the initial state ispu1;0(−∞). In addition,
the initial energy,p2/2, must be taken into account, and the sum gives the total energy release per
elementary cell. In turn, the local energy release is defined as the strain energy of the bond at the
moment when it breaks. So the global energy release rate,G, the local energy release rate,G0, and
the dissipation,D(v), are

G =
p

2

[
u1;0(−∞) +

p

2

]
=

p2
√

2
, (9)

G0 =
1

4
[ p + 2u1;0(0)]2 =

p2
√

2

2R2(v)
, (10)

D(v) = G − G0, (11)

and the normalized global energy release rate,G/G0, and dissipation,D(v)/G0, are

G

G0
= R2(v),

D(v)

G0
= R2(v) − 1. (12)

The latter is plotted as a function of the crack speed in Fig.2. Note that, in accordance with (8),
D/G0 → 2

√
2 − 1 ≈ 1.8284.

Fig. 2 The normalized dissipation rate versus the normalized crack speed
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156 G. S. MISHURISet al.

Fig. 3 The ratiop/εc of load and the limiting strain versus the crack speedv

At first glance, in the above-obtained solution,G0 appears to be a crack speed-dependent func-
tion. However, if we require the bonds to obey the time-independent elasticity, the limiting strain,
εc, must be fixed to be crack speed independent. In this case,G0 = ε2

c/2 and we obtain a specific
dependence of the load,p, on the crack speed. From (10), we obtain

p = 21/4
√

G0R(v) = 2−1/4εcR(v), (13)

while the energy release and the dissipation ratios (12) are still valid. The ratiop/εc as a function
of v is shown in Fig.3.

3. Quasi-static problem

For the quasi-static case, we use the discrete Fourier transform inm and the corresponding periodic
version of the Cauchy-type integral. The following representations hold:

pF =
−1∑

−∞

pe2ikm =
pe−2i k

1 − e−2ik
for Im k < 0,

L± = exp

[

±
1

4π i

∫ π

−π
ln L(ξ) cot

ξ − k

2
dξ

]

for ±Im k > 0,

L±(±i ∞) = exp

[
1

2π

∫ π

0
ln L(k)dk

]

, L±(0) =
√

L(0), α = 4.

(14)

Within the period, the functionpF(k) has a single pole atk = i 0 andpF(k) ∼ p/(0 + ik) in the
vicinity of this point. So (6) is valid here, wherepF is defined by (14), and

C+ =

[
1

L+(k)
−

1

L+(0)

]
pe−2i k

2(1 − e−2ik)
, C− =

[
1

L+(0)
− L−(k)

]
pe−2i k

2(1 − e−2ik)
. (15)
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Further, from the relations (7), it follows that

u1;0(0) = u+(i ∞) =

{

81/4 exp

[
1

2π

∫ π

0
ln L(k)dk

]

− 1

}
p

2
,

u1;0(−∞) = lim
k→0

(2ik)u−(k) = [
√

8 − 1]
p

2
, u2;0(−∞) =

p

2
.

(16)

In this quasi-static case, the global energy release rate,G, is still the same as in the dynamic case
(9), whereas the local one obtained from (10) and (16) is

G0 =
[ p

2
+ u1;0(0)

]2
=

√
2

2

p2

R2 , R = exp

[

−
1

2π

∫ π

0
ln L(k)dk

]

≈ 1.42125. (17)

So the normalized global energy release rate,G/G0, and dissipation,D(0)/G0, are

G

G0
= R2 ≈ 2∙0200,

D(0)

G0
= R2 − 1 ≈ 1.0200. (18)

The latter value coincides with that predicted by the dynamic dependence as can be seen in Fig.2.

4. Related continuous models

In this section, we give the comparative analysis of a related continuum formulation. First, we
consider the steady-state Mode-III problem for an elastic plane where the crack faces are connected
by uniformly distributed linearly elastic ‘springs’. In other words, instead of the discrete bonds,
we introduce a continuous elastic foundation between the crack faces. So we deal with the wave
equation with respect to the displacementμ1u(x, y, t) = %∂2u(x, y, t)/∂t2, with the following
conditions at the upper half-plane boundary,y = +0:

u = 0 for η = x − vt > 0 and σ = μ
∂u

∂y
= 2~u − p for η < 0, (19)

where~ is the foundation stiffness and±p is the external distributed load applied to the crack faces
y = ±0. Taking the shear modulus,μ, and the density,%, as natural units, we have the relation at
y = +0

σF(k) = σ+ + σ− = −
√

(0 + ikv)2 + k2u−, (20)

which leads to the Wiener–Hopf equation

σ+ + L(k)u− =
p

0 + ik
, L(k) = 2~ +

√
(0 + ikv)2 + k2. (21)

In contrast with the lattice model, in the continuum problem, the supercritical crack speed is forbid-
den (the crack does not gain energy ifv > 1). So we assume here that the crack speed is subcritical,
06 v < 1.

The main objective of analysis of the solution to this problem is to find the energy release rate.
In the steady-state regime for a continuous medium, all the released energy disappears through the
moving crack tip, and the local energy release is the same as the global one. The displacement at
minus infinity and hence the energy release rate depend onp only since the static state is realized
far away on the left from the moving crack tip. We obtain

σ(−∞) = 2~u(−∞) = p, G = 2~u2(−∞) = p2/(2~). (22)

Thus, in this case, the energy release rate is crack speed independent if the critical one is such.
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The complete solution (written in terms of the Fourier transforms) can be obtained in a standard
way. We haveL(k) = L+(k)L−(k), where

L±(k) = (1 − v2)1/4
√

0 ∓ ik exp

[

±
1

2π i

∫ ∞

−∞

lnL(ξ)

ξ − k
dξ

]

for ±Im k > 0 (23)

with

L(k) = L(k){(1 − v2)(0 + ik)(0 − ik)}−1/2. (24)

It follows thatL±(±i ∞) ∼ (1−v2)1/4
√

0 ∓ ik andL±(0) =
√

2~. Equation (21) being rearranged
in the form

σ+(k)

L+(k)
+ L−(k)u−(k) =

[
p

L+(k)
−

p

L+(0)

]
1

0 + ik
+

1

(0 + ik)L+(0)
(25)

yields

σ+(k) =

[

1 −
L+(k)

L+(0)

]
p

0 + ik
, u−(k) =

p

(0 + ik)L+(0)L−(k)
. (26)

In addition, consider the formulation where the elastic foundation connects not only the crack
faces but also is introduced between the crack-continuation half-plane boundaries (in this case,
u+(k) > 0 andσ+ = ~1u+). This formulation looks more similar to the lattice case. The problem
under this ‘improved’ formulation can be solved in the same way as the above considered, and the
energy release rate relation (22) is still valid for this case. Moreover, the foundation stiffness ahead
of the crack does not influence the energy release. Indeed, the energy release, in the considered
bridge problems, is uniquely defined by the external load and the foundation stiffness on the crack.

5. Discussion and concluding remarks

We have obtained a new dynamic solution for a bridged crack in a lattice structure. Using an inde-
pendent analytical procedure, we have also derived a solution of the corresponding static problem,
and indeed the static limit of the dynamic solution fully agrees with the static result for the bridged
crack in the lattice.

The results of numerical computation, based on the formulas (12) and (13) for the dissipation
rate and the load–crack speed relation, are shown in Figs2 and3. These diagrams suggest that there
are two regions, stability or otherwise, for different values of the crack speedv. This conclusion
is consistent with earlier work by Marder and Gross (14) dealing with the modelling of free-face
cracks in lattices. When the crack speed is less than the critical valuev∗, steady propagation is
impossible and the crack is likely to accelerate from 0 tov > v∗, corresponding to the stable branch
where the dissipation rate increases with the increase ofv.

We have obtained that the non-dimensional critical crack speed (the long wave speed is taken as
the speed unit) corresponding to the minimum of the dissipation rate isv∗ ' 0.7. The corresponding
values of the internal force in the ‘vertical’ bonds areσ1(0) ≈ 0.35590p andσ2(−∞) = p. This
suggests that the strength of the non-breaking bonds must be about three times greater than the
strength of the breaking bonds.

To compare the lattice and the continuum model solutions, it is reasonable to take in the latter
~ = 1/2 as the averaged stiffness of the bonds connecting the lattice crack faces. In this case, under
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the same crack face load, the external forces in the lattice solution,p = plattice, must be twice
as much asp = phom in the continuous one. As a result, the global energy release in the lattice
Glattice = 2

√
2p2

hom (11), whereasGhom = p2
hom (~ = 1/2) (22). The main difference is that in the

continuous case, the local energy release rate is the same as the global one, whereas in the lattice
a part (which depends on the crack speed) of the global energy release rate is dissipated (see (12)
and Fig.2).

We emphasize that in the analysis of bridged crack problems, the discrete or a discrete/continuous
lattice model looks preferable to the continuous one in both physical and mathematical contexts. The
discrete model provides more information concerning the main features of the process; this includes
the energy release rate, dissipation, stresses and the load versus the crack speed. In particular, lattice
models can be used for analysis of the bridged crack fracture of multiple component fabrics and
cellular materials.

The Wiener–Hopf technique can be successfully used to solve such problems in more general case
than the ones considered above. Recall that different bond stiffnesses,μ1,2, and different masses,
M1,2, are acceptable. Furthermore, a symmetric lattice (with respect to the crack line,x) can be
y-non-uniform, as the one considered in (15) for a free-face crack. Also the cell of periodicity can
contain more than two masses and bonds if only one of the bonds in the cell breaks.
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