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a b s t r a c t

A nonuniform crack growth problem is considered for a homogeneous isotropic elastic

medium subjected to the action of remote oscillatory and static loads. In the case of a

plane problem, the former results in Rayleigh waves propagating toward the crack tip.

For the antiplane problem the shear waves play a similar role. Under the considered

conditions the crack cannot move uniformly, and if the static prestress is not sufficiently

high, the crack moves interruptedly. For fracture modes I and II the established, crack

speed periodic regimes are examined. For mode III a complete transient solution is

derived with the periodic regime as an asymptote. Examples of the crack motion are

presented. The crack speed time-period and the time-averaged crack speeds are found.

The ratio of the fracture energy to the energy carried by the Rayleigh wave is derived. An

issue concerning two equivalent forms of the general solution is discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic crack growth under the action of a harmonic wave was first examined in the problem of a uniform lattice with
a uniformly propagating crack (Slepyan, 1981). In such a steady-state regime, the crack speed coincides with the phase
speed, v¼o=k (o is the frequency and k is the wavenumber), and the latter speed must be below the group velocity,
vovg ¼ do=dk; otherwise, the wave cannot deliver the energy to the crack to grow. Note that for any periodic lattice there
exists a range of frequencies where the inequality, vovg , is satisfied. Recently a lattice with a low density interface layer
embedded into the uniform structure was examined in Mishuris et al. (2009). In such a waveguide, there exists a localized
harmonic wave, which can be excited by a remote local load. The existence of the steady-state regime studied analytically
was confirmed by numerical simulations. The latter also allowed an established crack-speed oscillation regime to be
revealed. In Slepyan et al. (2009), in addition to these regimes for the lattice, a dynamic crack in a flexural plate was
considered. This continuous model is also characterized by an anomalous dispersion of waves localized at the crack faces
(in this model, vg=2v), and the crack under the action of a sinusoidal wave can grow uniformly.

In the present paper, the harmonic—wave-propagating crack problem is considered for a homogeneous elastic medium.
In the latter, there is no wave dispersion, that is, the equality, v=vg, is valid for Rayleigh waves localized at a half-plane
boundary as well as for longitudinal and shear waves, and hence the uniform crack propagation is impossible.
Nonuniformity makes the task much more difficult, and though some aspects of the interaction of Rayleigh waves with a
crack were discussed long ago (Freund, 1981; Rossmanith and Fourney, 1981), it seems that this problem has not yet been
sufficiently investigated.

The first general solution to the transient, nonuniform crack speed problem, where the crack face traction was not
specified, was found by Kostrov (1966) for mode III. The plane problem solution for the subcritical crack speed,
ll rights reserved.
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vðtÞ ¼ dlðtÞ=dtocR, was obtained by Freund (1972, 1973) (here and below l(t) is the crack tip coordinate, cR is the Rayleigh
wave speed). Then the general plane problem solution was obtained by Kostrov (1974, 1975) for the sub-Rayleigh crack
speeds, vðtÞocR and for the range cRovðtÞoc2 (Kostrov, 1976) (c2 is the shear wave speed). Slepyan (1974) using a
different technique had obtained a more general solution to such a mixed problem (also see Saraikin and Slepyan, 1979;
Slepyan, 2002). In the context of the present paper, it is important that in the latter solution both the traction at xo lðtÞ and
the displacement at x4 lðtÞ could be arbitrarily assigned. The same technique has then been used by Slepyan and Fishkov
(1980) for a more complicated regime in which the speed of the nonuniformly moving separation point may cross the
critical values, cR, c2 and c1. This topic was also considered in the papers by Willis (1990) and Walton and Herrmann (1992).
The nonuniformly moving mode III interface crack was examined by Leise (2005). Various aspects of crack dynamics are
considered, in particular, in the books by Freund (1990), Broberg (1999), Slepyan (2002) and Ravi-Chandar (2004).

In the plane problem, the general expressions for the stresses ahead of the crack and for the crack face displacements
are complicated; these quantities are expressed in terms of a fourfold integral, not counting an integral representation of a
crack-speed-independent function. Although the energy release rate relations generally contain only a twofold integral, as
the loading function, which reflects the crack growth history, the expression is still not easy in use.

Due to the symmetry the fracture-mode-related displacement on the crack continuation is equal to zero, and the usual
crack-dynamics formulations, obtained in the above-mentioned works in more or less extent of generality and
completeness, are mainly based on the crack-face traction as the input action. There is, however, another form of the
general solution based on the displacement caused by this load. It is shown below in Section 4.2 that these two forms are
equivalent; however, the latter is more suitable in the case of a remote load. It turns out that for the action of a sinusoidal
wave the displacement-based loading function can be asymptotically calculated. Briefly stated, the twofold integral is
shown to be asymptotically equal to the double, Laplace and Fourier, integral transform of a crack-speed-independent
function. Fortunately this LF-transform has a simple expression. As a result, an implicit first-order nonlinear differential
equation is found, which is expressed in terms of the current crack tip position and speed. This equation governs an
established, periodic, dynamic crack growth. The energy fracture criterion is used and analytical and numerical results
following from this equation are presented.

In the problem formulation, it is assumed that the crack faces are traction free. This cannot be immediately applied to
mode I, where the pure wave action leads to crack closure. To avoid this phenomenon, the combined action of the
harmonic wave and a sufficiently high static prestress which would rule out crack-closure is assumed.

Along with the plane problem, mode III fracture is also considered. In the latter case, the transient problem has an
explicit solution, and it can be seen how fast the latter and its periodic-crack-speed asymptote approach each other.

At first, some background material concerning plane and Rayleigh waves is presented. Then the problem is formulated
and a superposition scheme to be used in the analysis is discussed. General relations for the nonuniform dynamic crack
growth are further shown. Recall that in general, the crack growth is governed by a first-order differential equation which
contains a function of the crack tip coordinate expressed by a twofold convolution integral reflecting the crack growth
history. For the considered sinusoidal loading a crucial simplification is obtained as an explicitly expressed function
instead of the integral. Analytical dependencies and calculation results are presented. In particular, examples of the crack
motion, time-averaged crack speed relations, and the ratio of the fracture energy to the energy carried by the Rayleigh
wave are shown.

According to the solution, as the load intensity increases, the current and the averaged crack speeds tend to the incident
wave speed, as it should. It is well known, however, that the crack motion becomes unstable approximately at a half of the
Rayleigh wave speed, and this imposes a real restriction on the averaged crack speed (see Ravi-Chandar and Knauss, 1984;
Fineberg et al., 1991, 1992; Marder and Liu, 1993; Marder and Gross, 1995; Willis and Movchan, 1997; Fineberg and
Marder, 1999; Ravi-Chandar, 2004). At the same time, in the case of the crack propagating along a weak interface, the crack
speed can approach the Rayleigh wave speed (Ravi-Chandar and Knauss, 1984; Lee and Knauss, 1989). In the present paper,
the crack propagation instability is not considered; however, the known instability bound can be introduced into the crack
speed governing relations in the same way as the non-negative crack speed condition.

2. Plane and Rayleigh waves in outline

The homogeneous isotropic elastic medium is characterized by a couple of elastic parameters l and m or m and n, where
m and n are the shear modulus and Poisson’s ratio, respectively. In terms of the latter couple, l¼ 2mn=ð1�2nÞ. The material
density is denoted by R.

Dynamics of the medium is governed by two wave equations with respect to the scalar and vector potentials, f and w

Df�
1

c2
1

€f ¼ 0, Dw�
1

c2
2

€w ¼ 0, ð1Þ

where c1 and c2 are longitudinal and shear wave speeds, respectively

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ2m
R

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�nÞm
ð1�2nÞR

s
, c2 ¼

ffiffiffiffi
m
R

r
: ð2Þ
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The displacement vector and stress tensor can be expressed in terms of the above potentials as follows:

u¼=fþ=4w,

ux ¼
@f
@x
þ
@cz

@y
�
@cy

@z
,

sxx ¼ lDfþ2m @2f
@x2
þ
@2cz

@x@y
�
@2cy

@z@x

 !
,

sxy ¼ syx ¼ m 2
@2f
@x@y

þ
@2cz

@y2
�
@2cz

@x2
þ
@2cx

@z@x
�
@2cy

@y@z

 !
: ð3Þ

Expressions for the remaining components of the displacements and stresses follow from this by cyclic permutation:
x-y-z-x.

The longitudinal and shear plane sinusoidal waves propagating in x-direction have the following complex
representation:

ux ¼
@f
@x
¼ AE, E¼ exp½iðot�kxÞ�, o¼ c1k ð4Þ

and

uy ¼
@cx

@z
�
@cz

@x
, uz ¼

@cy

@x
�
@cx

@y

� �
¼ Aðy,zÞE, o¼ c2k, ð5Þ

respectively. This medium is with no wave dispersion, and hence it admits not only the sinusoidal wave, but also waves in
which displacements are defined by an arbitrary function of the variable x�c1(2)t.

In an elastic half-plane (y40 or yo0) with a traction free boundary, there exist Rayleigh wave exponentially localized
at the vicinity of the half-plane boundary. For the upper half-plane the two elastic potentials are given in this case by

f¼
A

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q exp½�ka1yþ iðot�kxÞ�,

cz ¼�
ið1þa2

2ÞA

2ka2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q exp½�ka2yþ iðot�kxÞ�, cx ¼cy ¼ 0, ð6Þ

where A is the wave amplitude at y=0, and the parameters a and b are

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðcR=c1Þ

2
q

, a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðcR=c2Þ

2
q

, o¼ cRk: ð7Þ

The Rayleigh wave speed, cR, satisfies the equation

ð1þa2
2Þ

2
�4a1a2 ¼ 0, 0ocRoc2: ð8Þ

The below expression for cR/c2 as a function of Poisson’s ratio

cR

c2
� 0:8740þ0:2004n�0:07567n2 ð9Þ

is a very accurate approximation. The dependence is shown in Fig. 1 (the difference between exact and approximate
dependencies is indistinguishable).

The displacement vector, uðux,uyÞ, is defined by its components as

ux ¼
iA

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q ½�2expð�ka1yÞþð1þa2
2Þexpð�ka2yÞ�E,

uy ¼
A

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q ½�2a1a2expð�ka1yÞþð1þa2
2Þexpð�ka2yÞ�E: ð10Þ

Using identity (8) the amplitudes of these components at y=0 can be found as

A¼ Ax ¼ juxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

a1þa2

r
A, A¼ Ay ¼ juyj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1

a1þa2

r
A: ð11Þ
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Fig. 1. The normalized Rayleigh wave speed, cR/c2, as a function of Poisson’s ratio.
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The stresses are

sxx ¼
mkAffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q ½�ð1�a2
2þ2a2

1Þexpð�ka1yÞþð1þa2
2Þexpð�ka2yÞ�E,

syy ¼
mkAð1þa2

2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q ½expð�ka1yÞ�expð�ka2yÞ�E,

sxy ¼
2imkAa1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1�a2
2

q ½expð�ka1yÞ�expð�ka2yÞ�E: ð12Þ

There is no wave dispersion in this case too, and the energy flux velocity in the wave, which is equal to the group
velocity, coincides with the Rayleigh wave speed, cR. An expression for the energy flux in the Rayleigh wave is presented in
Section 7.

The surface wave of an arbitrary shape can be expressed as

ux,yðx,y,tÞ ¼ fx,yðx�cRtÞgx,yðyÞ, gxð0Þ ¼ gyð0Þ ¼ 1: ð13Þ

It follows from (6) that if one of the displacement component at y=0, fx or fy, is given, then the other functions in (10)
and (12) are uniquely defined.

3. Formulation

In an infinite, uniform, isotropic elastic medium, there exists a semi-infinite crack, xo0, y=0. At t=0 a wave propagating
from the left reaches the crack tip, and beginning from this moment it forces the crack to grow along the x-axis. The task is
to find how the current and averaged crack speeds depend on wave amplitude and what part of the energy flux in the wave
is spent on fracture.

3.1. A remote load and the wave

We consider the case where the harmonic wave is excited by a crack-face load applied far enough from the crack tip. It
is reasonable, in this case, to take the wave displacements on the crack faces as the input action and to omit the remote
load description. This provides a greater generality and, at the same time, simplifying the problem. With this in mind we
based on the general solution given by Slepyan (1974) (also see Saraikin and Slepyan, 1979; Slepyan, 2002), where a
possible nonzero displacement on the crack continuation is taken into account. In the considered problem, the
displacement is assumed to be of the same value but opposite to the wave displacement. Thus the original zero-
displacement condition is satisfied. Clearly, the solution obtained in this way must coincide with that obtained in the
‘usual’ way where the load is considered as the input action, and this is true regardless of the type of load. This issue is
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discussed in more detail in Section 4.2, where it is shown that the load-based and the displacement-based formulations are
equivalent, and the latter is only suitable for the remote load expression of the former. (The general solution accepted here
becomes more important in a more general mixed problem, where the nonuniformly moving point really separates the
boundary conditions expressed in terms of the load and nonzero displacements.)
3.2. The wave configuration

In the considered fracture problem, it is assumed that the Rayleigh wave propagating to the right on the upper half-
plane, i.e. the wave localized at the upper crack face, is defined as the imaginary part of the complex wave (10)

um ¼Iuðx,y,a1,a2Þ ðy40Þ: ð14Þ

The same wave is valid for the lower half-plane if signs of a1 and a2 are changed

uk ¼Iuðx,y,�a1,�a2Þ ðyo0Þ: ð15Þ

This wave configuration corresponds to mode I, since the normal component, uy, is antisymmetric with respect to y,
whereas ux (�y)=ux(y), and this latter component does not influence the crack growth. In the opposite case

uk ¼�Iuðx,y,�a1,�a2Þ ðyo0Þ, ð16Þ

ux(�y)=�ux(y), uy (�y)=uy(y), and hence the latter wave configuration (14), (16) corresponds to mode II. In the following,
the arrows are omitted.

In application to mode III, it is assumed that the non-localized incident shear waves are

uIII ¼ Asinðot�kxÞ ðy40Þ, uIII ¼�Asinðot�kxÞ ðyo0Þ: ð17Þ

3.3. Superposition

Due to the symmetry only the upper half-plane, y40, can be considered. It is convenient to represent the fracture
mode-related displacement by the superposition of three fields. At y=0 the first one corresponds to the incident wave
freely propagating in the half-plane

uð1Þðx,0,tÞ ¼ Asin½oðt�x=cÞ�Hðt�x=cÞ, rð1Þðx,0,tÞ ¼ 0, ð18Þ

where for modes I and II c is the Rayleigh wave speed, c=cR, and for mode III c is the shear wave speed, c=c2; u(1) is the y, x

or z component of the displacement vector for modes I, II and III, respectively, r is the traction and H is the Heaviside unit
step function.

For Rayleigh wave such sharp front is, of course, an idealization; it can be valid for the plane wave in mode III only.
However, the H-multiplier in (18) is preserved for all fracture modes. For mode III this corresponds to an exact formulation
of the transient problem, and this allows to see the transition to the established regime in every detail. For the plane
problem the only latter regime is studied and hence the real shape of the Rayleigh wave at arrival does not matter. Note
that the first part of the total displacement is regular, and it gives no contribution to the energy release.

The second part corresponds to zero initial conditions and to the following conditions at y=0:

uð2Þ ¼ �Asin½oðt�x=cÞ�Hðt�x=cÞ ½xZ lðtÞ�,

rð2Þ ¼ 0 ½xo lðtÞ,lð0Þ ¼ 0�: ð19Þ

The third part corresponds to a remote static load whose action results in a nontrivial solution of the homogeneous
problem with the conditions

uð3Þ ¼ 0 ½xZ lðtÞ�, sð3Þ ¼ 0 ½xo lðtÞ� ð20Þ

and with a static stress intensity factor K0. The superposition gives us the required conditions

X3

i ¼ 1

rðiÞ ¼ 0 ½xo lðtÞ�,
X3

i ¼ 1

uðiÞ ¼ 0 ½xZ lðtÞ�, ð21Þ

which, together with the incident wave and the static prestress, define the problem formulation for the elastic half-plane.
The incident wave displacement and the static prestress are assumed to be given; hence the determination of the

second part constitutes the main problem. Recall, however, that for mode I the static prestress is assumed to be sufficiently
large to allow the crack closure to be ignored. The total displacement, u(1)+u(2)+u(3), must be considered in this regard.
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4. The main relations

The solution to the considered problem is derived based on a general solution to the related mixed problem presented
in the papers mentioned in the Introduction and in Chapter 9 of the book (Slepyan, 2002). In order to facilitate a detailed
examination of the subject, the key relations from this book used below will be indicated by using double brackets ½ð� � �Þ�.

4.1. General solution

A general mixed problem is considered, where the displacement at x4 lðtÞ, u+(x,t), and the traction at xo lðtÞ, s�ðx,tÞ are
assumed to be given. These components in the opposite supports, u�(x,t) and sþ ðx,tÞ, are the unknown functions. In terms
of the Laplace and Fourier transforms

uLF ðk,sÞ ¼

Z 1
-1

Z 1
0

uðx,tÞexpð�stþ ikxÞdt dx, ð22Þ

the respective components of the displacement and traction at y=0 are connected by the corresponding dynamic Green’s
function

uLF ðk,sÞ ¼ SLF ðk,sÞsLF ðk,sÞ: ð23Þ

In turn we have

uLF ðk,sÞ ¼ uþ ðk,sÞþu�ðk,sÞ, sLF ðk,sÞ ¼ sþ ðk,sÞþs�ðk,sÞ,

uþð�Þðk,sÞ ¼ ½uþð�Þðx,tÞ�LF , sþð�Þðk,sÞ ¼ ½sþð�Þðx,tÞ�LF : ð24Þ

To resolve the mixed problem the Wiener–Hopf technique is used. Green’s function is factorized as

SLF ðk,sÞ ¼ Sþ ðk,sÞS�ðk,sÞ or Sðx,tÞ ¼ Sþ ðx,tÞ � �S�ðx,tÞ, ð25Þ

where the asterisks denote the double convolution with respect to x and t. The supports of S+ (�)(x,t) must locate outside
the considered range of the speeds; in particular, for the subcritical speeds (�cRovðtÞocR) the factorization type is such
that the supports are

supp Sþ : cRtrxrc1t, supp S� : �c1trxr�cRt ðt40Þ: ð26Þ

The inverse functions are introduced as

½Pþð�Þðx,tÞ�LF ¼ Pþð�Þðk,sÞ ¼ 1=Sþð�Þðk,sÞ: ð27Þ

The functions P+(�)(x,t) have the same supports as S+(�)(x,t), respectively, and

Sþð�Þðx,tÞ � �Pþð�Þðx,tÞ ¼ dðtÞdðxÞ, ð28Þ

where dð��Þ is the Dirac delta function. Note that the LF-transform of Green’s function, SLF(k,s), has explicit expressions for
all the fracture modes.

The solution to the above-described transient dynamic problem is presented in the form [(9.107)]

u� ¼ S� � �½ðSþ � �s��P� � �uþ rÞHðlðtÞ�xÞþC�,

sþ ¼�Pþ � �½ðSþ � �s��P� � �uþ ÞHðx�lðtÞÞ�C�: ð29Þ

It is valid if the separation point x= l(t) moves with a speed, v(t)=dl(t)/dt, which does not cross any critical speed, cR, c2, c1,
for example, �cRovðtÞocR or cRovðtÞoc2 (a more complicated general solution valid without this restriction is presented
in Slepyan, 2002, Section 9.5.5). For the subcritical regime, �cRovðtÞocR, which is considered here, C � 0.

4.2. Crack-face load versus crack-continuation displacements

In this section, we show that the approaches based on the crack-face load and on the crack-continuation displacements
are equivalent. First consider a wave propagating along the free boundary of the elastic half-plane. Denote the surface
fracture-mode-related component of the displacement by u0(x,t). Let x= l(t) be the point moving as the crack tip in the
fracture problem. Then draw the remote load to a finite distance at the left of this point. So we call the load s�ðx,tÞ. With
refer to Eqs. (23)–(25) we represent the double, Laplace and Fourier, transform of the displacements as

u0
þ ðk,sÞþu0

�ðk,sÞ ¼ Sþ ðk,sÞS�ðk,sÞs�ðk,sÞ, ð30Þ

where S(x,t)=S+(x,t) ** S�(x,t) is Green’s function for the half-plane. For the opposite displacement, u=�u0, as the input
action in the considered problem, it follows that

P�uþ ¼�Sþs��P�u� ðP7 ¼ 1=S7 Þ: ð31Þ
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We now find that the second term in the expression (29) is equal to the first one:

�ðP� � �uþ ÞHðx�lðtÞÞ ¼ ðSþ � �s�þP� � �u�ÞHðx�lðtÞÞ ¼ ðSþ � �s�ÞHðx�lðtÞÞ ½ðP� � �u�ÞHðx�lðtÞÞ � 0�, ð32Þ

that is, it leads to the same result as the first one as it should be.
Thus, the approaches based on the load and on the displacement produced by this load are equivalent differing only

formally. The latter formulation, however, looks preferable for the case of a remote load since it does not require the load to
be introduced and specified. Indeed, if the load support moves away to infinity, in the limit the load ‘disappears’ but its
action as the wave remains. The displacement-based version of the general solution is just suitable for this situation.

Finally, for the classical fracture conditions, where a crack-face traction component and a zero corresponding
displacement on the crack continuation are given, there exist two equivalent general solutions

u� ¼ S� � �½ðSþ � �s�ÞHðlðtÞ�xÞþC�,

sþ ¼�Pþ � �½ðSþ � �s�ÞHðx�lðtÞÞ�C� ð33Þ

and

u� ¼ ðu0Þ
�
þS� � �½ðP� � �ðu0Þ

þ
ÞHðlðtÞ�xÞþC�,

sþ ¼�Pþ � �½ðP� � �ðu0Þ
þ
ÞHðx�lðtÞÞ�C�, ð34Þ

where u0=(u0)+ +(u0)� is the displacement caused by the load s� acting on the initially free half-plane boundary. However,
for a remote load, which does not show itself explicitly, only the latter solution remains. The complete representation (29)
is more general, it is valid in the case of a more general mixed problem, where both the load at xo lðtÞ and the nonzero total
displacement at x4 lðtÞ are given. Also it can be used if a combined load is considered, and different representations are
convenient to be used for different types of the load.

4.3. The factors and the energy release rate

The factors for modes I and II are [(9.73), (9.70)]

Sþ ðk,sÞ ¼
Dþ ðk,sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=c1,2�ik

p
s=cR�ik

,

S�ðk,sÞ ¼�
ð1�nÞD�ðk,sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=c1,2þ ik

p
mðs=cRþ ikÞ

ð35Þ

with

D7 ðlÞ ¼ exp
1

p

Z 1

c2=c1

f ðaÞda
a8c2=l

" #
,

f ðaÞ ¼ arctan
4a2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2�c2
2=c2

1

q
ð2a2�1Þ2

, l¼
s

ik
: ð36Þ

Here and below c1,2=c1 (mode I), c1,2=c2 (mode II). For mode III [(9.62), (9.65)]

Sþ ¼

ffiffiffiffiffi
c2
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�ikc2

p , S� ¼�

ffiffiffiffiffi
c2
p

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ ikc2

p ,

Sþ ¼

ffiffiffiffiffi
c2
p ffiffiffiffi
p
p t�1=2

þ dðc2t�xÞ, S� ¼�

ffiffiffiffiffi
c2
p

m
ffiffiffiffi
p
p t�1=2

� dðc2tþxÞ,

Pþ ¼�
1

2
ffiffiffiffiffiffiffiffipc2
p t�3=2

þ dðc2t�xÞ, P�ðx,tÞ ¼
m

2
ffiffiffiffiffiffiffiffipc2
p t�3=2

� dðc2tþxÞ, ð37Þ

where t�1=2
7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7Hð7tÞ=t

p
, t�3=2

7 ¼ dt�1=2
7 =dt.

In these terms, the energy release rate for modes I–III is [(9.163)]

GI,II ¼
1�n
m G0

IðIIÞðvÞQ
2½lðtÞ,t�,

G0
IðIIÞðvÞ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þv=c1,2

1�v=c1,2

s
v2ð1�v=cRÞ

2

ð1�nÞc2
2RðvÞD2

þ ðvÞ
,



ARTICLE IN PRESS

L.I. Slepyan / J. Mech. Phys. Solids 58 (2010) 636–655 643
GIII ¼
1

mG0
IIIðvÞQ

2½lðtÞ,t�, G0
IIIðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v=c2

1þv=c2

s
, ð38Þ

where v=v(t) is the crack speed, R(v) is the Rayleigh function

RðvÞ ¼ ð2�v2=c2
2Þ

2
�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

2

q
: ð39Þ

and the loading function Q is defined below. Note that if the crack resistance depends only on l and v=dl/dt, the first line in
(38) presents an implicit first-order ordinary differential equation; the main task is the determination of the loading
function, Q[l (t),t].

5. The loading function

In fracture mechanics, the loading function is usually defined as Q ¼ Sþ � �s�, since the formulation prescribes a zero
related component of the displacement ahead of the crack tip (see (29)). For the problem considered here, uþ ¼ uð2Þc0
(19), and both s� and u+ are to be taken into account in (29). Thus, the function Q in (38) is

Q ðx,tÞ ¼ Sþ � �s��P� � �uþ : ð40Þ

We also use the representation

Q ¼QstþQw, Qstðx,tÞ ¼ Sþ � �s�, Qwðx,tÞ ¼�P� � �uþ , ð41Þ

where Qst corresponds to the remote static load. If v=0 then D+(0)=1, F¼ K
ffiffiffiffiffiffiffiffiffi
p=2

p
[(9.126)], and in accordance with

[(9.162)] this term can be expressed as

Qst½lðtÞ,t� ¼ �
1ffiffiffi
2
p K0: ð42Þ

Note that under this remote action the stress intensity factor depends on the crack speed, K=K(v); however, the loading
function is defined by the static value, K0=K(0), independently of the crack speed.

The wave part of the loading function, Qw, for modes I and II is

Qw½lðtÞ,t� ¼ AIfexp½ioðt�lðtÞ=cRÞ�Qg,

Q¼
Z t

0

Z 1
-1

P�ðx,tÞHð�x�cRtÞHðxþc1tÞexp½�ioðt�x=cRÞ�H½lðtÞ�x�lðt�tÞ�H½cRðt�tÞ�lðtÞþx�dxdt, ð43Þ

where the step functions are introduced to show the supports explicitly. Note that S7 and P7 are real functions.
The most important point in our considerations is that, in the limit, t�lðtÞ=cR-1, the latter integral becomes the

double, Laplace and Fourier, integral transform, namely

Q� P�ðk,sÞ with k¼o=cR, s¼ 0þ io, ð44Þ

where P�(k,s)=1/S�(k,s) (35), (36).
In order to prove this asymptotic relation, we represent Q (43) as a sum

Q¼
Z t0

0
ð� � �Þdtþ

Z t

t0

ð� � �Þdt, t0 ¼
cRt�lðtÞ

c1þcR
: ð45Þ

With respect to the first integral it follows from (43) that the support of P�ðx,tÞ, �c1trxr�cRt, falls within the
integration region. For subcritical crack speeds, vðtÞrconstocR, t0-1 as t-1, while the other term tends to zero since
the convolution integral converges. It therefore follows from (43) that relation (44) is true.

Referring to (35), (36), the loading function asymptote is found as

Qw0 ¼�
Kwffiffiffi

2
p sinðfþp=4Þ, Kw ¼

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2o=cR

p
A

ð1�nÞD�ðcRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcR=c1,2

p , ð46Þ

and the total asymptotic value of the loading function is

Q ¼�
1ffiffiffi
2
p ½K0þKwsinðfþp=4Þ�: ð47Þ

In the example of mode III crack growth it will be seen that the transient solution approaches the asymptote very soon
after the wave arrival.

Finally recall that no crack closure is assumed. It follows that the necessary condition for mode I is

K0ZKw: ð48Þ
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5.1. The wave loading function for mode III

Referring to Eqs. (37) and (43), the exact expression of the loading function can be found as

QwðlðtÞ,tÞ ¼�P� � �uþ ¼ A
m

2
ffiffiffiffiffiffiffiffipc2
p Ifexp½ioðt�lðtÞ=c2�Qg,

Q¼
Z t

0

Z 1
-1

t�3=2
þ dðc2tþxÞexp½�ioðt�x=c2Þ�H½c2ðt�tÞ�lðtÞþx�H½lðtÞ�x�lðt�tÞ�dxdt

¼�4i
ffiffiffiffiffi
o
p

Z f=2

0
t�1=2expð�2itÞdt¼�4i

ffiffiffiffiffiffiffiffi
po
p

½Cð
ffiffiffiffiffiffiffiffiffiffiffiffi
2f=p

q
Þ�iSð

ffiffiffiffiffiffiffiffiffiffiffiffi
2f=p

q
Þ�, ð49Þ

where the Fresnel integrals are defined as

SðxÞ ¼

Z x

0
sinðpt2=2Þdt¼

1

2
�

Z 1
x

sinðpt2=2Þdt,

CðxÞ ¼

Z x

0
cosðpt2=2Þdt¼

1

2
�

Z 1
x

cosðpt2=2Þdt: ð50Þ

It follows that for mode III

Qw ¼�
Kwffiffiffi

2
p f ðfÞ, f ðfÞ ¼

ffiffiffi
2
p

C

ffiffiffiffiffiffiffi
2f
p

r !
cosfþS

ffiffiffiffiffiffiffi
2f
p

r !
sinf

" #
, Kw ¼ 2Am

ffiffiffiffiffi
o
c2

r
: ð51Þ

Based on (50) this function can also be represented as

Qw ¼Qw0þQw1,

Qw0 ¼�
Kwffiffiffi

2
p sinðfþp=4Þ,

Qw1 ¼ Am

ffiffiffiffiffiffiffiffiffiffiffi
2of
pc2

s Z 1
1

cos½fðt�1Þ�ffiffiffi
t
p dt: ð52Þ

The expression for Qw0 is similar to that for modes I and II (46). It corresponds to the double, Laplace and Fourier, transform
of P�(x,t), equal to P� =1/S� (37)

P�ðx,tÞ � �exp½ioðt�x=c2Þ� ¼ P�ðk,sÞexp½ioðt�x=c2Þ�,

P� ¼�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0þ2io=c2

q
ðs¼ 0þ io, k¼o=c2Þ, ð53Þ

and it is an asymptote of the exact expression (51) for large f. The other term, Qw1, rapidly tends to zero as f-1

Qw1 � Am
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o=ð2pc2Þ

p
f�3=2: ð54Þ

The normalized transient loading function, f ðfÞ (51), with its periodic asymptote, sinðfþp=4Þ (52), are plotted in Fig. 3.
6. Crack growth

6.1. Implicit differential equations

The relations (38), (42), (46) and (52) completely define the energy release rate based on the periodic expressions of the
loading functions, while the transient solution obtained for mode III is based on the expression (51) instead of (52). Equating
the energy release rate to the critical one, Gc, the following first-order ordinary differential equations are obtained:

G0
I,IIðvÞ ¼

mGc

ð1�nÞQ2ðlðtÞ,tÞ
ðmodes I,IIÞ,

G0
IIIðvÞ ¼

mGc

Q2ðlðtÞ,tÞ
ðmode IIIÞ, v¼ vðtÞ ¼

dlðtÞ

dt
, ð55Þ

where the expressions for Q(l(t),t) depend on the fracture mode, and G0 is defined in (38). Note that if Gc is independent of
the crack speed, the right-hand side of the equation is independent of the derivative. These equations are valid, however,
only for nonnegative crack speeds, and for any time-interval, when a negative crack speed is obtained, the crack tip position
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must be considered as fixed, v=0. For all three modes 0rG0ðvÞr1, and the crack is growing when

Q2
Z

mGc

ð1�nÞ ðmodes I,IIÞ, Q2
ZmGc ðmode IIIÞ ð56Þ

with the inequality (48) holding for mode I.

6.2. Crack speed-oscillation period and the time-averaged speed

In the numerical results, n¼ 1
3 have been chosen unless otherwise indicated. Assuming Gc=const, it is convenient to

introduce nondimensional values

l0 ¼ol=cR, t0 ¼ot, L¼
2mGc

ð1�nÞðK0þKwÞ
2
o1 ðmodes I, IIÞ,

l0 ¼ol=c2, t0 ¼ot, L¼
2mGc

ðK0þKwÞ
2
o1 ðmode IIIÞ,

K0ðwÞ ¼
K0ðwÞ

K0þKw
, K0Z0, KwZ0, K0þKw ¼ 1: ð57Þ

In those terms, the crack growth equation is

G0ðVðtÞÞ ¼
L
Q2

0

, ð58Þ

where

Q0 ¼K0þKwsinc, c¼ t�lðtÞþp=4, ð59Þ

the superscript (0) is omitted, and V=v/cR(modes I, II), V=v/c2(mode III).
The energy release functions, G0(V), for modes I and II are rather complicated. On the other hand, dependencies for the

crack speed oscillations period and for the time-averaged crack speed can be obtained in general form. Each of these
functions decreases monotonically from unity to zero as V increases from zero to unity. Hence an inverse function exists,
V= f(G0). For modes I and II this function is plotted in Figs. 2 and 3 together with their approximations

V � fIðG
0Þ ¼ 1�0:5117G0�1:1459ðG0Þ

2
þ0:6576ðG0Þ

3
ðmode IÞ,

V � fIIðG
0Þ ¼ ð1�0:1586G0�1:2967ðG0Þ

3
ÞHð0:6004�G0Þþð2:1859�1:5618G0ÞHðG0�0:6004Þ ðmode IIÞ: ð60Þ

Eq. (58), which is valid for nonnegative crack speeds, can be re-arranged as

VðtÞ ¼ ZðcÞ ¼ f ðL=Q2
0 ÞHðQ

2
0�LÞ, ð61Þ
0
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g

Fig. 2. Fracture mode I. The normalized crack speed, V=v/cR, as a function of G0(the lower curve) and the approximation (60) (the upper curve).
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where Q0 is defined in (59) and f is a fracture mode-dependent function. The crack speed, V(t), is a periodic function.
Expressions for the nondimensional period, T, and the averaged crack speed, /VS, can be found from the latter equation in
the following way:

T ¼

Z T

0
dt¼

Z 2p

0

dc
1�V

¼

Z 2p

0

dc
1�ZðcÞ

¼
2p

1�/VS
,

/VS¼
1

T

Z T

0
VðtÞdt¼

1

T

Z 2p

0

V

1�V
dc¼

1

T

Z 2p

0

ZðcÞdc
1�ZðcÞ

: ð62Þ

In accordance with (61) and (59), the support of Z can also be presented as

aocop�a and pþboco2p�b,

a¼R arcsin

ffiffiffiffi
L
p
�K0

Kw

 !
, b¼R arcsin

ffiffiffiffi
L
p
þK0

Kw

 !
: ð63Þ
0
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lam

Fig. 4. Fracture mode I. The normalized time-period of the crack speed, LT , as a function of L; K0 ¼
2
3 , Kw ¼

1
3.
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Fig. 3. Fracture mode II. The normalized crack speed, V=v/cR, as a function of G0. In the figure the ‘exact’ and approximate (60) curves coincide.
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Thus the averaged speed relation in (62) can also be represented as

/VS¼
1

T

Z p�a

a

ZðcÞdc
1�ZðcÞ

þ

Z 2p�b

pþb

ZðcÞdc
1�ZðcÞ

" #
: ð64Þ

From this, in particular, asymptotes of the period, T, and of the time-averaged speed, /VS (L-0), can be
straightforwardly found. Indeed, in this case b��a (63), and for modes I and II we have

f ð0Þ ¼ 1, f � 1þG0 df

dG0
¼ 1þ

1

dG0=dV

L
Q2

0

: ð65Þ
0

5

10

15

20
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lam

Fig. 6. Fracture mode II. The normalized time-period of the crack speed, LT , as a function of L; K0=0, Kw=1.
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Fig. 5. The time-averaged crack speed as a function of L for fracture mode I; K0 ¼
2
3 , Kw ¼

1
3.
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It follows that

T �

Z 2p

0

dc
1�f
¼�

dG0

dV

2p
L
K2

0þ
1

2
K2

w

� �
,

/VS�
1

T

Z 2p

0

f dc
1�f
¼ 1�

L
ð�dG0=dVÞðK2

0þ
1
2 K2

wÞ
, ð66Þ

where the derivatives are assumed to be taken at G0=0 (V=1). These derivatives are found to be

dG0

dV
��1:9543 mode I,

dG0

dV
��6:303 mode II: ð67Þ

For mode III, referring to (38), it is found that

f ¼ 1�
2ðG0Þ

2

1þðG0Þ
2
¼ 1�

2L2

Q4
0�L

2
, ð68Þ
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Fig. 8. Fracture mode III. The normalized time-period of the crack speed, L2T , as a function of L; K0=0, Kw=1.
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Fig. 7. The time-averaged crack speed as a function of L for fracture mode II, K0 ¼ 0, Kw ¼ 1.
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Fig. 9. The time-averaged crack speed as a function of L for fracture mode III, K0 ¼ 0, Kw ¼ 1.
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Fig. 10. Fracture mode I. The normalized crack speed, V=v/cR, as a function of time; K0 ¼
2
3, Kw ¼

1
3, L¼ 0:01.
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and based on (62) the period and the time-averaged crack speed can be expressed in terms of elementary functions. The
crack speed time-period and time-averaged crack speed as functions of L (62) are plotted in Figs. 4–9. Note that if K0=0 the
main period comes to half of the value defined in (62).

6.3. The explicit differential equations

Referring to (58), (59) and (38), we find the explicit differential equations based on high-accuracy approximations for
modes I and II (60)

dlðtÞ

dt
¼ fI

L
Q2

0

" #
HðQ2

0�LÞ ðmode IÞ,

dlðtÞ

dt
¼ fII

L
Q2

0

" #
HðQ2

0�LÞ ðmode IIÞ,
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dlðtÞ

dt
¼

Q4
0�L

2

Q4
0 þL

2
HðQ2

0�LÞ ðmode IIIÞ, ð69Þ

where the ‘exact’ equation corresponds to mode III. Thus, there exist two parameters here: L and K0 (for mode I the crack
closure condition yields the inequality 1

2 rK0r1). It follows from these equations that if the wave amplitude is nonzero,
Kw40, then the crack speed is variable, and if

K0r1
2ð1þ

ffiffiffiffi
L
p
Þ ð70Þ

the crack grows interruptedly.
Some illustrations of the crack motion are presented in Figs. 10–15. Plots based on the transient loading function, Qw,

(51) and its periodic asymptote, Qw0, (52) for mode III are presented in Fig. 16. The transient crack growth based on the
transient loading function is shown in Fig. 17 (compare with Fig. 15 where the periodic regime is shown).
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Fig. 11. Fracture mode I. The normalized crack speed, V=v/cR, as a function of time; K0 ¼
2
3, Kw ¼

1
3, L¼ ðK0�KwÞ
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Fig. 12. Fracture mode I. The normalized crack speed, V=v/cR, as a function of time; K0 ¼
2
3, Kw ¼

1
3, L¼ 0:75.
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Fig. 13. Fracture mode II. The normalized crack speed, V=v/cR, as a function of time; K0 ¼ 0, Kw ¼ 1, L¼ 0:1.

0

0.1

0.2

0.3

1 2 3 4 5 6
t

Fig. 14. Fracture mode II. The normalized crack speed, V=v/cR, as a function of time; K0 ¼ 0, Kw ¼ 1, L¼ 0:75.
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7. Energy relations for the plane problem

The energy flux associated with a complex wave localized at the upper half-plane boundary is

N¼

Z 1
0

IðourxÞdy, ð71Þ

where sx is the corresponding traction vector (the stress acting from the right on the line x=const). Note that the complex
wave is composed of two real waves of the same amplitude and frequency, and the energy flux (71) corresponds to that in
these two waves. In the considered fracture problem, there also exist two real waves; one is localized at the upper half-
plane boundary, and the other is localized at the lower one. Thus the total energy flux in the two real incident waves is just
equal to that corresponding to the complex wave (71).
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Fig. 15. Fracture mode III. The normalized crack speed, V=v/cR, as a function of time; K0 ¼ 0, Kw ¼ 1, L¼ 0:25.
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Fig. 16. Fracture mode III loading function: Transient solution, f ðfÞ (51), curve (1), and its periodic asymptote, sinðfþp=4Þ, curve (2).
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The complex Rayleigh wave displacements and stresses are presented in (10) and (12). Using identity (8) the energy flux
can be found in a rather compact form

N¼A2mo
1�a2

2

a1þa2
1þ

a1�a2

2a1a2
2

 !
,

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

R=c2
1

q
, a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

R=c2
2

q
: ð72Þ

In the above considerations, A is the amplitude related to the fracture mode, that is, uy-amplitude for mode I or ux-
amplitude for mode II. In these terms, in accordance with (8), the corresponding expressions for the energy flux in the
complex Rayleigh wave are

N¼NI ¼ A2mo
1�a2

2

a1
1þ

a1�a2

2a1a2
2

 !
ðmode IÞ,

N¼NII ¼
a1

a2
NI ðmode IIÞ: ð73Þ
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Fig. 17. Fracture mode III transient solution. The normalized crack speed as a function of time, V=v/c2; L¼ 0:25.
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Fig. 18. The normalized energy flux in Rayleigh wave, N=ðomA2
Þ, as a function of Poisson’s ratio.
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At the same time, the energy flux in a wave is a product of the energy density and the group velocity. In the considered case, cR is
the group velocity. Thus, the energy flux into a free moving-boundary domain (as if it were free), xZ lðtÞ, dl/dt=v(t), from the left is

Nv ¼ ð1�v=cRÞN and /NvS¼ ð1�/vS=cRÞN ðvocRÞ: ð74Þ

A part of this energy flux is spent on the fracture development; that part is given by

Nf ¼/vSGc or Nf ¼/GcvS: ð75Þ

The other part, Nv�Nf, goes into the reflected and scattered waves.
Referring to (46), (57), (73) and (74), the energy ratio for Gc=const is obtained as

F¼
/vSGc

/NvS
¼

/VSL
1�/VS

xðnÞ,

xðnÞ ¼ 4

ð1�nÞð1þcR=c1,2ÞD2
�ðcRÞ

a1,2

1�a2
2

1þ
a1�a2

2a1a2
2

 !�1

: ð76Þ
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The normalized energy flux in the Rayleigh wave, N=ðomA2
Þ, as a function of Poisson’s ratio, and the energy ratio, F, as a

function of L are shown in Figs. 18 and 19, respectively.

8. Some concluding remarks

As can be seen by the example of mode III (Figs. 15–17) the transient period is rather short. Note, however, that the
corresponding periodic asymptotes (46), (52) are valid only for periodic regimes.

The ratio (76) shown in Fig. 19 approaches unity as the load intensity tends to infinity, L-0. This is in accordance with
a one-dimensional case, where the reflective wave amplitude vanishes as the speed of an obstacle approaches the wave
group velocity.

In this paper, dynamic crack growth due to the combined action of static prestress and a sinusoidal Rayleigh wave is
described. At the same time, since the loading function linearly depends on the load, a Rayleigh wave of any periodic shape
can also be considered. The Fourier series representation of a displacement component at y=0 allows both the Rayleigh
wave and the loading function to be determined. In all other respects, the former way of the considerations, leading to the
crack growth equation, remains valid; however, the crack speed transient period is defined by the polychromatic wave
period.

In the case where the crack speed period sufficiently exceeds the transient period, space- or/and time-dependent crack
resistance can also be considered based on the above-derived results. In this regard see Freund (1987, 1990).

In the same way the action of an oblique longitudinal or shear incident wave can be considered. In this case, the wave at
the crack faces can have arbitrary large speed, c4c2, while the crack speed is bounded.

The results of this paper can contribute, in particular, to seismology and to the theory of ultrasonic and vibroimpact
cutting. The solution can also be used as the theoretical framework in the corresponding experiments. Rayleigh wave
radiation by an oscillating-speed crack is among other related topics.
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