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a b s t r a c t

The steady-state solution for an elastic half-plane under a moving frictionless smooth

indenter of arbitrary shape is derived based on the corresponding transient problem

and on a condition concerning energy fluxes. Resulting stresses and displacements are

found explicitly starting from their expressions in terms of a single analytical function.

This solution incorporates all speed ranges, including the super-Rayleigh subsonic and

intersonic speed regimes, which received no final description to date. Next, under a

similar formulation the wedging of an elastic plane is considered for a finite wedge

moving at a distance from the crack tip. Finally, we solve the problem for such a wedge

moving along the interface of two elastic half-planes compressed together. Considering

these problems we determine the driving forces caused by the main underlying factors:

the stress field singular points on the contact area (super-Rayleigh subsonic speed

regime), the wave radiation (intersonic and supersonic regimes) and the fracture

resistance (wedging problem). In addition to the sub-Rayleigh speed regime, where

the sliding contact itself gives no contribution to the driving forces, there exists a sharp

decrease in the resistance in the vicinity of the longitudinal wave speed with zero limit

at this speed.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For potential flow of unbounded incompressible perfect fluid d’Alembert proved that the solid body moving with constant

velocity meets zero drag force (see, e.g., Darrigol, 2002). This follows from the Laplace equation as a highly simplified
mathematical model of fluid dynamic. At the same time, this ‘paradox’ has more wide underlying physics. In particular,
it can be met in elasticity, which is also an appropriate model. By comparing and considering the viscosity and instability
of potential flow of fluid, the elasticity looks even more adequate.

For example, we can consider a smooth indenter uniformly moving without friction along an elastic half-plane boundary or
along an infinite layer rested on a rigid foundation. Of course, contrary to fluids, a macroscopic rigid body can move through an
intact elastic medium only if the movement is accompanied by fracture, that creates resistance to the movement. In this case,
the question remains as whether the contact interaction itself gives a contribution to the resistance in addition to the fracture
resistance alone.
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So, under certain conditions, the d’Alembert’s statement remains valid in more general steady-state cases. Namely,
it can be true with respect to any medium or structure, where such regime can exist, if no energy can be dissipated or
released in the medium in which the body moves, in the contact zones, in other boundaries, if exist, and at infinity. In other
words, this means that (a) the medium and the boundaries are perfect, (b) no singular points exist at which the energy can
be dissipated or released, including such point at infinity, that is, no configurational and remote forces exist , and (c) there
are no waves which could carry the energy away from the body or to the body. Since no energy is radiated or absorbed
while in motion, no driving force is required to support the steady-state regime. In the present paper, we assume the
strains to be sufficiently small so that strain-associated thermal effects can be neglected. Along with the ‘paradoxical’
regimes, we study in detail the others, where driving forces arise caused by singular points, wave radiation and fracture
resistance.

It can happen that a couple of singular points exists, one of them, the energy-source point radiates energy, while the other,
the energy absorbing point absorbs the radiated energy. In this energy-balance case, the regime might be considered as a free
motion, which does not require any driving force. This, however, could be true if the energy-source point is physically justified
as a real ‘micro-level’ source. Otherwise, the energy-source point must be eliminated. This consideration has a crucial
importance for the super-Rayleigh subsonic speed regime. An indenter uniformly moving along the elastic half-plane boundary
with subsonic speeds (except the Rayleigh wave speed) excites no wave. Thus, in this speed range, only the existence of friction
or/and energy-flux-significant singular points can prohibit d’Alembert’s paradox. Such singular points really appear at the super-
Rayleigh subsonic speeds. This also concerns the movement of a body along the interface between two elastic half-planes
compressed together.

The steady-state dynamic contact problem was repeatedly considered. In particular, the problem for a parabolic
indenter was considered by Craggs and Roberts (1967), Georgiadis and Barber (1993), Brock (2002) and in Galin and
Gladwell (2008). While the problem for the sub-Rayleigh speed range received the complete solution, the super-Rayleigh
sub- and intersonic regimes are still under question. These regimes were discussed in Georgiadis and Barber (1993) and
Brock (2002), where no way was found how to make the solutions to be unique and/or physically accepted. Note that
dynamic problems for straight-propagating cracks are closely related to the dynamic contact problems. The super-critical
regimes for cracks are considered in many works, mainly for mode II shear fracture, see, e.g., Freund (1990), Huang et al.
(1998), Broberg (1999), Needleman (1999), Gao et al. (2001), Geubelle and Kubair (2001), Samudrala et al. (2002) and
Slepyan (2002). Mode I opening crack, intersonic speed problem was considered by Radi and Loret (2008) for a porous,
liquid-saturated material, where, however, ‘intersonic’ does not mean the shear–longitudinal range in the uniform solid
material considered below.

The above-mentioned nonuniqueness suggests that there is a missed point in the problem formulation. In this
connection, in addition to the well-known Signorini contact conditions, we add the condition concerning the energy-flux
significant singular points in the stress–particle velocity field: no energy-source singular point can exist, as a source of
energy, unless such a point source is physically justified. Thus, we base our solutions on the following three conditions:

ðaÞ positive ðtensileÞ normal contact stresses are not allowed,

ðbÞ penetration of the elastic material into the indenter is not allowed,

ðcÞ energy-source singular points are not allowed: ð1Þ

With respect to the latter condition we note that an angular point of the body surface can give rise of an energy
absorbing singular point. In the super-Rayleigh speed regimes, singular points arise in the case of a smooth body shape as
well. As an example of energy-transfer singular point a moving semi-infinite crack can be considered. Under sub-Rayleigh
speeds the crack tip appears to be an energy absorbing singular point. In the hypothetic case of super-Rayleigh subsonic
speeds, the crack tip is an energy source. Usually, there is no such source in the elastic material, and if the crack tip is free
of external actions, this regime is impossible. However, if a hypothetic tool exists, which can act directly on the crack tip
just giving the required energy, the super-Rayleigh crack speed seems to be possible. In any case, the semi-infinite crack
growth requires external energy.

In the case of the Yoffe (1951) model of the propagating constant-length crack, there are two singularities, the front and
the rear end points of the crack. For sub-Rayleigh speeds the former is the energy absorber, while the latter is the energy
source. The energy radiated by the rear point goes to the front point and thereby supports the crack movement. A body
embedded inside the crack can thus move freely together with the crack. Is this the ‘paradox’ manifestation? It would be so
if there was a sort of ‘channel’ through which the energy could be transferred from one point to the other. Otherwise, a real
source of energy must exist at the rear point to support the process, that is, a nonzero driving force must exist. In any case,
if no such energy source is assumed, the formal solution for the moving finite-length crack cannot be accepted.
Nevertheless, a configuration like a propagating constant-length crack can exist as a finite separation zone between two
elastic half-planes, or two layers, which are compressed together. Such ‘nonsingular’ moving zone was considered with
respect to a different problem by Comninou and Dundurs (1977).

The above-mentioned three conditions (1) are sufficient for the half-plane contact problem, and the solutions, obtained
here for a smooth frictionless contact area moving at any speed, are uniquely defined. In the super-Rayleigh subsonic
speed range, the leading point of the contact area appears as an energy absorbing singular point. Thus, a speed-dependent
driving force is required for the motion. In the intersonic and supersonic speed regimes, the wave radiation creates
resistance.
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The contact configurations for the sub- and super-Rayleigh subsonic, intersonic and supersonic speed regimes can be
compared in Fig. 1, where we anticipate the results of Section 3. It is of interest that not only for subsonic speeds but also
for the longitudinal wave speed there is no resistance to the movement in the steady-state regime.

Besides the half-plane contact problem, the related problem of the steady-state wedging of an elastic plane by a smooth
rigid body is investigated below. This problem for sub- and super-Rayleigh speeds was considered by Barenblatt and
Cherepanov (1960) and Barenblatt and Goldstein (1972), respectively. In the former work, a semi-infinite, ‘moving-with-
friction’ rigid wedge placed at a distance from the crack tip was considered, while in the latter a finite-length, ‘moving-
without-friction’ wedge in contact with the crack tip was analyzed, and condition (a) in (1) was used. In both cases, only
one simply connected stress-free region was present in the problem formulation. Here, we consider this problem for a
finite-length wedge placed at a distance from the crack tip. In this case, there are two stress-free regions, and the problem
appears more complicated but analytically solvable. The obtained solution presents relations between all the input and
output quantities: the fracture resistance, the wedge shape and width and the driving force (or the speed), on one hand,
and the wedge/crack speed (or the driving force), the wedge position, the contact area and the contact stress distribution,
on the other.

We also consider the movement of a finite rigid body along the interface of two elastic half-planes compressed
together, where no energy significant singularities exist at sub-Rayleigh speeds. The paper by Comninou and Dundurs
(1977) prompted the authors to address this problem.

The steady-state solution of these problems is preceded by the analysis of the transient problem for a normal load
moving along the elastic half-plane boundary. We construct the solution corresponding to the load distributed as a pre-
delta function that results in a more transparent solution, with the corresponding Green’s function as a limit. Then we
derive the steady-state limit and the asymptotic representations. The transient solution allows us to extract explicitly the
general expressions of the normal traction and the derivative of the displacement trough a single analytical function. These
expressions valid for all ranges of the speed are then used to address the above-mentioned mixed problems. The use of the
transient problem with zero initial conditions also allows us to exclude automatically the energy flux from infinity, which
is important for intersonic and supersonic regimes.

The problems are considered in the framework of linear isotropic elasticity. This implies that strains and rotations are
assumed to be small enough, and contact normal stresses can be considered as a true traction, syy, acting on the half-plane
boundary. Mathematically, the considered mixed problems are formulated and solved (a) for a single region where the
real part of an analytical function is given, whereas the imaginary part of this function is given outside of this region
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Fig. 1. The contact configurations in different speed regimes (Section 3). The bold curve is the deformed elastic half-plane boundary. The leading, xþ , and

the rear, x� , end points of the contact region are marked by black and white circles, respectively. In this figure, notation x is used instead of Z as accepted

below beginning from Section 2.3. The localized longitudinal wave in equilibrium with the indenter is sketched in (c). (a) Subsonic regime: vrc2.

(b) Intersonic regime: c2 rvoc1. (c) Longitudinal wave speed: v¼ c1. (d) Supersonic regime: v4c1.
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(the dynamic contact problem for the half-plane), (b) for two such regions (the wedging problem for the elastic plane) and
(c) for three regions (the two half-planes compressed together). Note that the analytical technique used in this paper is
applicable for any number of the ‘real-part’ regions and for a periodic array of the real/imaginary (stress/displacement)
regions. So the considered problems can also be solved, in the same way, for the contact zone consisting of several simply
connected regions or of a periodic array of such regions.

In the wedging problem a driving force is required to force the crack to grow as it should be. However, in the sub-
Rayleigh speed regime, the driving force is just equal to the crack resistance; the contact interaction gives no additional
contribution to the driving force. At Rayleigh wave speed cR there is no steady-state solution of the half-plane problem. In
this resonant regime, the displacement grows in proportion to time if a constant vertical force is given, or the contact
stresses rapidly vanish in time if a constant vertical displacement of the indenter is given. For the super-Rayleigh subsonic
speeds, cRovrc2, there is energy release though a singular point at the front end of the contact zone. In this case,
a driving force is required to support the motion. It can be equally treated as a Newtonian force or as a configurational
force of the same power (as in the case where the indenter is a self-propelled body):

P¼�

Z xþ

x�

syyðxÞu
0
yðxÞ dx¼

1

v

Z xþ

x�

syyðxÞ _uyðxÞ dx, ð2Þ

respectively, where ½x�,xþ � is the contact segment and the equality follows from the fact that, in the steady-state regime,
@uy=@t¼�v@uy=@x. Note that the first equality is valid for the transient regime too. Indeed, let the half-plane boundary be
defined as yðx,tÞ. The partial t-derivative, @yðx,tÞ=@t, corresponds to a given point on the half-plane boundary, whereas the
‘total’ derivative, dyðxðtÞ,tÞ=dt, corresponds to the vertical speed of the rigid body moving with horizontal speed
vðtÞ ¼ dxðtÞ=dt. The latter derivative, the work rate due to the vertical movement of the body, NQ, and the total rate of
the work, N, are

dyðxðtÞ,tÞ

dt
¼
@yðx,tÞ

@t
þvðtÞ

@yðx,tÞ

@x
,

NQ ¼�

Z xþ

x�

syyðx,tÞ
dyðxðtÞ,tÞ

dt
dx, N¼�

Z xþ

x�

syyðx,tÞ
@yðx,tÞ

@t
dx ð3Þ

and the driving force is

P¼�
N�NQ

vðtÞ
¼�

Z xþ

x�

syyðx,tÞ
@yðx,tÞ

@x
dx: ð4Þ

(Green’s function for the latter derivative is presented in (19).)
In the intersonic regime, c2ovoc1, the singular point becomes weaker, it can neither absorb nor release energy;

however, a shear wave arises which carries energy from the indenter. At a special speed, v¼ c2

ffiffiffi
2
p

, the field is represented
by this wave only. It is the speed of the point of intersection of the x-axis with the wave front tilted at an angle of 451.
In this orientation, the shear wave is supported by the normal pressure, syyðxÞ, only, and no other field can arise. This is
why the half-plane outside of the wave, x�yox�,x�y4xþ , remains at rest (with a shift of the displacement). Note that by
the same reason no wave is excited in the case of a tangential action, which could be referred to mode II symmetry. In the
supersonic case, v4c1, both the shear wave and the longitudinal wave are radiated.

Note that the body–elastic half-plane interaction at these speeds, v¼
ffiffiffi
2
p

c2 and v4c1, resembles the aquaplaning, and
this is not a coincidence: these are similar wave phenomena.

Lastly, at the longitudinal wave speed limit the resistance appears equal to zero with a sharp decrease in the vicinity of
this speed. In this limit, only a localized longitudinal wave exists in the half-plain, in equilibrium with the indenter. This is
a special example where no driving force is needed to sustain the motion.

2. Transient problem for a moving load

First we consider the transient problem corresponding to zero initial conditions. The solution will allow us to predict
possible steady-state regimes, to extract the steady-state limits, if exist, and to see the transient process otherwise.

2.1. General solution

Consider an elastic half-plane, �1oxo1, yo0, initially at rest and subjected at t¼0 to a hereafter invariable normal
load uniformly moving along the x-axis. The load can be represented as

syyðx,tÞ ¼ sðZÞHðtÞ, Z¼ x�vt, v¼ const, ð5Þ

where H is the Heaviside step function. In the following we use the Fourier transform on x (ð: :ÞF) and on Z (ð: :ÞFZ ), and the
Laplace transform on time, t (ð: :ÞL). Note that in these terms

sLF
yyðk,sÞ ¼

Z 1
-1

Z 1
0

syyðx,tÞeikx�st dt dx¼
sFZ ðkÞ

s�ikv
,

L.I. Slepyan, M. Brun / J. Mech. Phys. Solids 60 (2012) 1883–19061886



Author's personal copy

sFZ ðkÞ ¼

Z 1
-1

sðZÞeikZ dZ: ð6Þ

To avoid singularities and thus to make the corresponding Green’s function more transparent we choose the load to be
distributed as a regular pre-delta function, namely

sðZÞ ¼
eQy

pðZ2þe2Þ
-QydðZÞ ðe-0Þ, sFZ ðkÞ ¼ Qye�e9k9 ðIk¼ 0, e40Þ, ð7Þ

where the constant Qy ¼�Q ðQ Z0Þ is the total force. Note that in the plane problem the dimension of Q is N/m.
The Laplace and Fourier, LF-transform of the prelimiting Green’s function (multiplied by Qy) for the normal particle

velocity at y¼0 is (see, e.g., Slepyan, 2002, p. 300)

ð _uyÞ
LF
ðk,sÞ ¼ GLF

e ðk,sÞ ¼
s3n1

c2
2mRn

sLF
yyðk,sÞ ¼

Qys3n1e�e9k9

c2
2ðs�ikvÞmRn

, ð8Þ

where

Rn ¼ ðk
2
þn2

2Þ
2
�4k2n1n2, n1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þs2=c2

1;2

q
ð9Þ

and the longitudinal and shear wave speeds are

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2mÞ=R

q
, c2 ¼

ffiffiffiffiffiffiffiffiffi
m=R

p
, ð10Þ

respectively, with l,m the Lamé elastic constants and R the mass density. In addition to these waves, an important role is
played by the Rayleigh surface wave. Its speed, cRoc2, is defined by RðcRÞ ¼ 0, in which the Rayleigh function

RðvÞ ¼ ð1þa2
2ðvÞÞ

2
�4a1ðvÞa2ðvÞ, a1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

1;2

q
ð0ovoc2Þ,

¼ ð1�b2
2ðvÞÞ

2
þ4ia1ðvÞb2ðvÞ, b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2

2�1
q

¼ ia2 ðc2ovoc1Þ,

¼ ð1�b2
2ðvÞÞ

2
þ4b1ðvÞb2ðvÞ, b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2

1�1
q

¼ ia1 ðv4c1Þ: ð11Þ

Expression (8) satisfies the conditions which allow the original expression for function Geðx,tÞ to be obtained using the
Cagniard–de Hoop method, Cagniard (1962) and De Hoop (1959). A modified version of this method, which does not
require any transformation of the integration path, was presented in Slepyan (1972, pp. 80–85; 2002, pp. 61–63), where
the result was derived explicitly for a general case. Here, for the convenience of the reader, we do not use the final result
but the method itself in its application to the considered double transform.

First, we introduce parameter q by equality k¼qs, assuming s40. We now have dk¼ s dq and

GLF
e ðk,sÞ ¼

Qy

s
f ðqÞe�es9q9, f ðqÞ ¼

m1

c2
2mð1�iqvÞRmðqÞ

,

RmðqÞ ¼ ð2q2þ1=c2
2Þ

2
�4q2m1m2, m1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ1=c2

1;2

q
: ð12Þ

Next, we represent L-transform of Green’s function as the generalized inverse Fourier transform

GL
eðz,sÞ ¼

Qy

2p
lim

z-�ix
GL
eþ ðz,sÞþ lim

z-ix
GL
e�ðz,sÞ

� �
,

GL
eþ ðz,sÞ ¼

Z 0

�1

f ðqÞeðeþ zÞsq dq¼

Z 1
0

f ð�qÞe�ðeþ zÞsq dq ðRz40Þ,

GL
e�ðz,sÞ ¼

Z 1
0

f ðqÞe�ðeþ zÞsq dq ðRz40Þ: ð13Þ

In the third step, we substitute qðeþzÞ ¼ t, assuming for the moment that z lies on the real positive half-axis, z40. This
yields

GL
eþ ðz,sÞ ¼

1

eþz

Z 1
0

f ð�t=ðeþzÞÞe�st dt,

GL
e�ðz,sÞ ¼

1

eþz

Z 1
0

f ðt=ðeþzÞÞe�stdt: ð14Þ

Further, since each of the integrals represent the Laplace transform, it follows that

Ge7 ðz,tÞ ¼
m1

c2
2mðeþzÞð17 iqvÞRmðqÞ

: ð15Þ
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Now, in accordance with the generalized Fourier transform, we make analytical continuation from z40 to the imaginary
axis, z-8 ix for Ge7 ðz,tÞ, respectively. We obtain

Geðz,tÞ ¼
Qy

2p lim
z-�ix

Geþ ðz,tÞþ lim
z-ix

Ge�ðz,tÞ

� �
, ð16Þ

with

q¼ 7
it

x7 ie , m1;2 ¼ 7
it

x7 ie a1;2, ð17 iqvÞ ¼ 1�
vt

x7 ie ,

Rm ¼
t4

ðx7 ieÞ4
Rððx7 ieÞ=tÞ, ð17Þ

where symbol 7 corresponds to Ge7 ðz,tÞ, respectively.
Finally, referring to (12) and (15) we obtain

Geðx,tÞ ¼ _uyðx,tÞ ¼
Qy

p R lim
z-�ix

Geþ ðz,tÞ

� �
¼�

Qy

pmc2
2t3

R
ðxþ ieÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðxþ ieÞ2=ðc1tÞ2

q
ðx�vtþ ieÞR½ðxþ ieÞ=t�

2
4

3
5: ð18Þ

This fundamental relation between the stress and the time-derivative of the displacement is valid for any speed, v. Below it
is extended by superposition for an arbitrary stress distribution and used in the formulation of the contact problems. Note
that this technique is valid for the determination of the field for yo0 as well as for y¼0. We recall that Green’s function
itself is the limit of Geðx,tÞ (e-þ0).

Green’s functions corresponding the displacement and its x-derivative follow from (18) as

Guðx,tÞ ¼�
Qy

pmc2
2

R

Z 1
x=t

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2=c2

1

q
ðx�vÞRðxÞ

dx x¼ lim
e-þ0

xþ ie
� �

,

@Guðx,tÞ

@x
¼

Qy

pmc2
2

R
ðx=tÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx=c1tÞ2

q
ðx�vtÞRðx=tÞ

x¼ lim
e-þ0

xþ ie
� �

: ð19Þ

2.2. The steady-state limits and the asymptotic representations

2.2.1. The limits

The steady-state limit, if exists, follows from (18) with e40 as

lim GeðvtþZ,tÞ ¼ GeðZÞ ¼ _uyðZÞ ¼�vu0yðZÞ ¼�
Qyv3

pmc2
2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

1�i0
q
ðZþ ieÞRðv�i0Þ

2
4

3
5 ðt-1, Z=t-0Þ: ð20Þ

For the subsonic speed regime, including the shear wave speed and except the Rayleigh wave speed, cR, it follows that

GeðZÞ ¼�
Qyv3a1ðvÞ

pmc2
2RðvÞ

Z
Z2þe2

ð0ovocR, cRovrc2Þ: ð21Þ

In this speed regime, there is no limit for the displacement.
For the intersonic speed region, c2rvrc1, we have

GeðZÞ ¼�
Qyv3a1ðvÞ

pmc2
2

ð1þa2
2ðvÞÞ

2Z�4a1ðvÞb2e
ð1þa2

2ðvÞÞ
4
þ16a2

1ðvÞb
2
2ðvÞ

1

Z2þe2
: ð22Þ

Finally, for the supersonic regime, vZc1,

GeðZÞ ¼
Qyv3

pmc3
2

b1ðvÞ

ð1þa2
2ðvÞÞ

2
þ4b1ðvÞb2ðvÞ

e
Z2þe2

: ð23Þ

2.2.2. The asymptotic representations

There are two special rays in this problem: x¼ cRt and x¼ c1t, where there is no steady-state limit for eZ0 and for
e¼ 0, respectively. For these cases we consider the asymptotic representations, t-1, for the particle velocities and for the
displacements. Also we consider the asymptotic difference between the transient and the corresponding steady-state limit
for some cases where the latter exists. From the solution (18) it follows that

Ge ��
Qyc3a1

pmc2
2ðc�vÞRðcÞt

ðx¼ ctavt, 0ococ2, cacRÞ,
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Ge ��
Qy

pmc2
2

UZþUt

� �
ðx¼ vtþZ, c24vacRÞ,

UZ ¼
v3a1

RðvÞ

Z
Z2þe2

, Ut ¼
v2a1

RðvÞt
3�

v2

c2
1a2

1

�
vR0ðvÞ

RðvÞ

 !
, ð24Þ

with

R0ðvÞ ¼
dRðvÞ

dv
¼

4v

c2
2

c2
2a2

c2
1a1
þ
a1

a2
�1�a2

2

 !
: ð25Þ

The latter asymptotic representation consists of two very different terms. In the moving coordinate system, the first
term, UZ ¼UZðv,ZÞ, is independent of time; it corresponds to the steady-state regime. This term is orthogonal to the load
and the corresponding rate of the work and hence the driving force is zero. Indeed, for sub-Rayleigh speeds, the load is
symmetric but the particle velocities are antisymmetric. Note that this statement concerning the driving force is still valid
for the contact stress distribution corresponding to a smooth indenter of an arbitrary shape (see Section 3.2.1).

The second term, Ut ¼Utðv,tÞ, is asymptotically independent of the coordinate but depends on time. It corresponds to
the subsidence of the elastic half-plane under the load. Contrary to the former the latter has the same signum in both sub-
Rayleigh and super-Rayleigh subsonic regimes; namely, Ut o0 ð0ovocR, cRovoc2Þ. Besides, it is symmetric, and the
load does work on this vertical motion. There exists the steady-state limit with respect to the particle velocities since Ut

vanishes in time; however, the decrease rate does not result in the limit for the displacement which grows unboundedly.
Nevertheless, the limit exists in term of relative displacement between different points in a finite region. Note that this is
associated with the 2D infinite domain; the displacement has a finite limit in the 3D case.

Thus, the steady-state formulation is acceptable for the determination of the particle velocities and the disturbed shape
of the half-plane boundary. The asymptotic representation of the vertical displacement at the center of the load support,
x¼vt, which is valid for nonzero subsonic speeds, except the Rayleigh wave speed, follows from (18) as

uðvt,tÞ ¼

Z x=v

0
Geðx,tÞ dt��

Qyv2

pmc2
2

u1þR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

1�i0
q

Rðvþ i0Þ
ln

vt

e

0
@

1
A ðx¼ vt, vt=e-1Þ,

u1 ¼R

Z 1

0

f ðtÞ�f ð1Þ

1�t
dt, f ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=ðc2

1t2Þ�i0
q

t3Rðv=tþ i0Þ
: ð26Þ

In this asymptotic representation, we take into account the constant term along with the logarithmic one because the
latter increases very slowly.

It can be seen in (26) that the logarithmic term does not exist for v¼
ffiffiffi
2
p

c2 and for the supersonic regime (in these
cases, the coefficient of the logarithm is pure imaginary). Thus, at these speeds the displacement have the steady-state
limit as well as its derivative.

For the Rayleigh wave speed

Ge ��
Qyc3

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

R=c2
1

q
pmc2

2ðcR�vÞR0ðcRÞ

Z
Z2þe2

ðx¼ cRtþZ, vacR, 0ovoc2Þ,

Ge ��
Qyc3

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

R=c2
1

q
pmc2

2R0ðcRÞ

ðZ2�e2Þt

ðZ2þe2Þ
2
ðx¼ cRtþZ, v¼ cRÞ ð27Þ

the steady-state regime at the Rayleigh wave speed, v¼ cR, cannot be reached.
For v¼ c1

Ge �
Qyc3

1c2
2

pmðc2
1�2c2

2Þ
2 ffiffiffiffiffiffiffi

c1t
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2þe2

p
�Z

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2þe2

p : ð28Þ

It follows that the particle velocities and the displacements in the vicinity of x¼ c1t tend to zero. It is remarkable that this
statement is entirely valid for a distributed load (e40), but not for the concentrated one (e¼ 0). Indeed, at the limit, e¼ 0,
the square-root type singular point arises as const �Hð�ZÞ=

ffiffiffiffiffiffiffiffiffi
�tZ

p
, which, however, vanishes by its intensity as t-1.

At this speed, the true Green’s function for the displacements (e¼ þ0) can be found from (18) as

uyðxÞ ¼
Qyc2

1Hðc2
1t2�x2Þ

pmc2
2

Z 1

x=ðc1tÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þx
1�x

s
R

1

Rðc1xÞ

� �
x2 dx: ð29Þ

The corresponding plot, UðXÞ ¼ uyðXÞpm=Q with X ¼ x=ðc1tÞ, is presented in Fig. 2. As shown below, Section 3, Fig. 6,
the steady-state regime for a smooth indenter, moving at this speed, corresponds to zero driving force.
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2.3. The steady-state limit for a general load

In the following, considering the steady-state regime, we express the solution in the moving coordinates. With this in
mind in the following we keep notation x instead of Z as x belongs to the moving coordinate system, the origin of which is
attached to the lower point of the boundary of the moving body as indicated in Figs. 1, 7 and 11. Recall that in these terms,
@=@t¼�v@=@x.

Consider the relation between the load (7) and the steady-state limit of uy
0ðxÞ (20). It can be seen that both quantities

are expressed in terms of one analytical function as follows:

syyðxÞ ¼ �QyI
1

pz , u0yðxÞ ¼
Qy

m R
1

pOðvÞz ,

OðvÞ ¼
c2

2Rðvþ i0Þ

v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2=c2

1�i0
q , z¼ xþ ie: ð30Þ

In the limit, e-þ0, the stress corresponds to the Dirac delta function (multiplied by Qy); hence the expression for u0yðxÞ

becomes the corresponding Green’s function. So we write

u0yðxÞ ¼ lim
e-þ0

R
1

pOðvÞz corresponds to syyðxÞ ¼�m lim
e-þ0

I½1=ðpzÞ� ¼ mdðxÞ: ð31Þ

Let an arbitrarily given stress distribution be s0ðxÞ. We make a convolution on x of s0ðxÞ with each part of the relation in
(31), or, which is the same, the convolution with the pre-delta. We find that if

fðzÞ ¼�
1

mp

Z 1
-1

s0ðxÞ
x�z

dx ðe40Þ ð32Þ

then

syyðxÞ ¼ �m lim
e-þ0

IfðzÞ, u0yðxÞ ¼ lim
e-þ0

R
fðzÞ
OðvÞ

: ð33Þ

We define

OðvÞ ¼
c2

2RðvÞ

v2a1ðvÞ
¼o1ðvÞþ io2ðvÞ,

1

OðvÞ
¼c1ðvÞþ ic2ðvÞ, ð34Þ

where o1;2ðvÞ,c1;2ðvÞ are real.
In these terms

u0yðxÞ ¼�
c1ðvÞ

mp V :p:

Z 1
-1

s0ðxÞ
x�x

dxþ
c2ðvÞ

m syyðxÞ: ð35Þ

Replacing in (33) fðzÞ-fðzÞOðvÞ we obtain the inverse relation

syyðxÞ ¼ �m lim
e-þ0

I½OðvÞfðzÞ� ¼ m o1ðvÞ

p
V :p:

Z 1
-1

u0yðxÞ
x�x

dx�o2u0yðxÞ

� �
,

u0yðxÞ ¼ lim
e-þ0

RfðzÞ, ð36Þ

with

fðzÞ ¼
1

pi

Z 1
-1

u0yðxÞ
x�z

dx ðe40Þ: ð37Þ

Fig. 2. The normalized displacement caused by a concentrated normal force moving at the longitudinal wave speed (v¼ c1), UðXÞ ¼ uyðXÞpm=Q with

X ¼ x=ðc1tÞ. The transient problem.
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These relations, where syyðxÞ and u0yðxÞ are expressed through one analytical function, represent the base for the solution of
the mixed problems considered below. Note that a homogeneous solution can be added, which must satisfy conditions at
infinity and other conditions of the problem, as done, for example, in (42).

3. The half-plane steady-state contact problem

We consider the steady-state regime of frictionless-contact of a smooth rigid body moving along a half-plane boundary.
The plane strain dynamic problem is examined with conditions at the boundary, y¼0

u0ðxÞ ¼ y0ðxÞ, x 2 ðx�,xþ Þ; syy ¼ 0, x=2ðx�,xþ Þ;

u0ðxÞ ¼Oð1=9x9Þ 9x9-1: ð38Þ

Recall that a moving coordinate system is used.
The solution is obtained for any speed and for an arbitrary shape of the indenter such that it corresponds to a single

simply connected contact domain. For the parabolic indenter the distributions of the contact stresses and the
displacements are presented explicitly. Then each speed range is examined in more detail. Although the solutions to
this problem for the sub-Rayleigh and supersonic speed regimes and for the special intersonic speed v¼

ffiffiffi
2
p

c2 are known,
for completeness we present the corresponding simplest results among the others.

3.1. General speed solution

Referring to relations (36)–(37) and (11) we introduce a new analytical function of the complex variable z¼ xþ ie, e40

FðzÞ ¼CðzÞfðzÞ, CðzÞ ¼ ðz�x�Þ
1=2þn

ðxþ�zÞ1=2�n,

0rn¼ 1

p
arctan

o2ðvÞ

o1ðvÞ
r

1

2
, ð39Þ

with1

CðxÞ ¼ ðx�x�Þ
1=2þn

ðxþ�xÞ1=2�n
ðx�oxoxþ Þ,

¼�iðx�x�Þ
1=2þn

ðx�xþ Þ
1=2�neipn ðx4xþ Þ,

¼ iðx��xÞ1=2þn
ðxþ�xÞ1=2�neipn ðxox�Þ: ð40Þ

The real part of this function is known on the whole x-axis

RFðxÞ ¼CðxÞy0ðxÞ ðx�oxoxþ Þ, RFðxÞ ¼ 0 ðxox�,x4xþ Þ, ð41Þ

where y(x) is the coordinate of the indenter lower surface. We define this function by means of the Cauchy type integral
with an additional imaginary constant

FðzÞ ¼
1

pi

Z xþ

x�

CðxÞy0ðxÞ
x�z

dxþ iC: ð42Þ

It follows from (42) and (36) that the contact stresses2 are

syyðxÞ ¼ m
o1ðvÞ

CðxÞ
1

pV � p �

Z xþ

x�

CðxÞy0ðxÞ
x�x

�C

� �
�o2ðvÞy

0ðxÞ

� �
: ð43Þ

Quantities o1;2 and n as functions of the speed, v, are plotted in Fig. 3.
Outside the contact region

u0yðxÞ ¼ �
cos pn

ðx�xþ Þ
1=2�n
ðx�x�Þ

1=2þn
1

p

Z xþ

x�

CðxÞy0ðxÞ
x�x

dxþC

� �
ðx4xþ Þ,

¼
cos pn

ðxþ�xÞ1=2�n
ðx��xÞ1=2þn C�

1

p

Z xþ

x�

CðxÞy0ðxÞ
x�x

dx
� �

ðxox�Þ: ð44Þ

Then we have to eliminate the singularity at x¼ x�. For n40 it is too strong and it cannot be accepted because it
corresponds to an infinite energy. For n¼ 0 it leads to violation of condition (b) in (1) (if vocR) or condition (c) in (1) (for
cRovrc2). Note that this requirement is also in agreement with the finite-stress condition introduced in Barenblatt and
Cherepanov (1960) for the leading separation point (in the case of a smooth semi-infinite wedge—for sub-Rayleigh speeds)
and in Barenblatt and Goldstein (1972) for the rear end point (in the case of a smooth wedge adjacent to the crack tip—for
super-Rayleigh subsonic speeds). However, this condition cannot be applied to the leading separation point for an indenter
moving with the super-Rayleigh speed at a distance from the crack tip.

1 Note that n is not Poisson’s ratio!
2 In the following part of this section, for brevity, we will not indicate the contact region, x 2 ðx� ,xþ Þ, for the contact stresses.
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So we define constant C as

C ¼
1

p

Z xþ

x�

xþ�x
x�x�

� �1=2�n
y0ðxÞ dx: ð45Þ

It is now found that

syyðxÞ ¼ m
x�x�
xþ�x

� �1=2�n o1ðvÞ

p
V � p �

Z xþ

x�

xþ�x
x�x�

� �1=2�n y0ðxÞ
x�x

dx�o2ðvÞy
0ðxÞ

" #
,

u0yðxÞ ¼�
x�x�
x�xþ

� �1=2�n cos pn
p

Z xþ

x�

xþ�x
x�x�

� �1=2�n y0ðxÞ
x�x

dx ðx4xþ Þ,

u0yðxÞ ¼
x��x

xþ�x

� �1=2�n cos pn
p

Z xþ

x�

xþ�x
x�x�

� �1=2�n y0ðxÞ
x�x

dx ðxox�Þ: ð46Þ

The asymptotic representation for the contact zone ends are

u0yðxÞ ��
xþ�x�
x�xþ

� �1=2�n cos pn
p

Z xþ

x�

y0ðxÞ dx
ðx�x�Þ

1=2�n
ðxþ�xÞ1=2þn ,

syy ��m
xþ�x�
xþ�x

� �1=2�n o1ðvÞ

p

Z xþ

x�

y0ðxÞ dx
ðx�x�Þ

1=2�n
ðxþ�xÞ1=2þn þo2ðvÞy

0ðxþ Þ

" #
ð47Þ

for x-xþ70, respectively, and

u0yðxÞ-y0ðx�Þ ðx-x��0Þ, syy-0 ðx-x�þ0Þ: ð48Þ

These results are valid for any n, 0rnr1=2, that is, for any speed regime, v40.
In the case of symmetric indenter, yð�xÞ ¼ yðxÞ, and symmetric contact zone, x� ¼�xþ , (corresponding to the sub-

Rayleigh speed regime, where n¼ 0, o1ðvÞ ¼OðvÞo0, o2ðvÞ ¼ 0, see Fig. 3) the results can be simplified. Symmetrization
leads to

syyðxÞ ¼ mOðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x2

q
2

pV � p �

Z xþ

0

xy0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x

2
q

ðx2
�x2Þ

dx,

u0yðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x2

þ

q
2

p

Z xþ

0

xy0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x

2
q

ðx2�x2
Þ

dx sign x ð9x94xþ Þ: ð49Þ

For a symmetric parabolic indenter, uy
0ðxÞ ¼ x=r, results in (49) specialize to

syyðxÞ ¼
mOðvÞ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x2

q
,

u0yðxÞ ¼
1

r
x�sign x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x2

þ

q� �
ð9x9Zxþ Þ: ð50Þ

Fig. 3. The real and imaginary parts of the function OðvÞ (34) and the parameter n (39), computed for Poisson’s ratio equal to 1/3 (c1 ¼ 2c2).
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The displacement profile has the form

uðxÞ ¼
1

2r
x2�9x9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x2

þ

q
þx2
þ ln 9x=xþ 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=xþ Þ

2
�1

q� �� �
ð9x9Zxþ Þ, uðxÞ ¼

x2

2r
ð9x9rxþ Þ: ð51Þ

The indenter–half-plain configuration is shown in Fig. 1a left.
For greater speeds, v4cR, when o1Z0, for a parabolic indenter, uy

0ðxÞ ¼ x=r, it follows from (46) that

syyðxÞ

m
¼�

o1ðvÞ

cos pn
x�x�
xþ�x

� �1=2�n x�x�þg
r

,

u0yðxÞ ¼
x

r
þ

x��x

xþ�x

� �1=2�n x��x�g
r

ðxrx�Þ,

u0yðxÞ ¼
x

r
�

x�x�
x�xþ

� �1=2�n x�x�þg
r

ðx4xþ Þ,

g¼ ð1=2�nÞxþ�ð3=2�nÞx�: ð52Þ

Note that, in the derivation of these expressions, we have used the identityZ 1

0

1�x
x

� �1=2�n dx
x�ie

¼
p

cos pn
1þ

i

e

� �1=2�n
�1

" #
ðRe40, 0rno1=2Þ, ð53Þ

with the corresponding analytical continuation.
We find from the expression for syyðxÞ in (52) that the condition (a) in (1) is satisfied only if gZ0. On the other hand, as

can be seen in the expression for u0yðxÞ ðxrx�Þ the condition (b) in (1) is satisfied only if gr0. Thus, to satisfy both
conditions the only possibility remains that g¼ 0. Now the expressions in (52) [also see (46)] can be rewritten in the form

syyðxÞ ¼�
m
r

o1ðvÞ

cos pn
ðx�x�Þ

3=2�n

ðxþ�xÞ1=2�n ðo1a0Þ,

syyðxÞ ¼�mo2ðvÞ
x

r
ðo1 ¼ 0, o2a0Þ,

u0yðxÞ ¼
x

r
þ
ðx��xÞ3=2�n

rðxþ�xÞ1=2�n ðxrx�Þ,

u0yðxÞ ¼
x

r
�
ðx�x�Þ

3=2�n

rðx�xþ Þ
1=2�n ðx4xþ Þ,

x� ¼
1�2n
3�2n xþ : ð54Þ

Note that the latter relation also results in elimination of the constant terms in the asymptotic representation of u0yðxÞ for
x-81, respectively. For no1=2 they become of order 1=9x9, for n¼ 1=2 the derivatives outside the contact region are
zero (x� ¼ 0). The plots of x�=xþ and of the stress distributions are presented in Figs. 4 and 5, respectively.

3.2. Subsonic regime

In subsonic regime, function OðvÞ is real, OðvÞo0 in the sub-Rayleigh speed regime, 0ovocR, and OðvÞ40 in the
super-Rayleigh subsonic speed regime, cRovoc2.

Sub-Rayleigh regime. In the sub-Rayleigh speed regime, the stress and displacement derivative distributions are
presented in (50). The remaining parameter, that is, the contact zone half-length follows from the equilibrium relation as

Qy ¼ 2

Z xþ

0
syyðxÞ dx¼

pmx2
þOðvÞ
2r

) xþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rQy

pmOðvÞ

s
: ð55Þ

(Note that Qyo0 and R(v) is also negative in this speed regime.) There is no resistance to the movement.

Contact area
Normalized

Normalized

(cR) (c2) (c1)

Fig. 4. The normalized contact zone, x�=xþox=xþo1, as a function of the speed, v. Results correspond to Poisson’s ratio equal to 1/3 (c1 ¼ 2c2). Note

that the value of xþ depends on both v and Qy (55), (60), (74) and (81). In the case v¼ c1, xþ ¼ x� ¼ 0.
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3.2.1. Zero driving force in the sub-Rayleigh speed regime. a general statement

In the sub-Rayleigh speed regime, 0ovocR, there is no resistance to the movement of a smooth indenter of any shape.
Although this statement follows directly from energy considerations, here we present a formal proof. We first note that, in
this speed range, in accordance with condition (b) in (1), the remaining singularity at x¼ xþ must be eliminated. Referring
to (46) with x-xþ we thus have to impose

Z xþ

x�

y0ðxÞ dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðx�x�Þ

p ¼ 0: ð56Þ

It also follows from (46) that the driving force is

P¼�

Z xþ

x�

syyðxÞy
0ðxÞ dx¼�

mOðvÞ
p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x�
xþ�x

r
P � v �

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ�x
x�x�

s
y0ðxÞy0ðxÞ
x�x

dx dx: ð57Þ

Consider a sum of the integrant corresponding to points which are symmetric relatively to the singular line, x¼ x, that is,
points ðx,xÞ and ðx,xÞ. It is

y0ðxÞy0ðxÞ
x�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðxþ�xÞ
ðxþ�xÞðx�x�Þ

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðxþ�xÞ

ðxþ�xÞðx�x�Þ

s" #
¼�

y0ðxÞy0ðxÞðxþ�x�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðx�x�Þðx�x�Þðxþ�xÞ

p : ð58Þ

The latter expression is symmetric relatively this line, and we can preserve the integration over the initial square domain,
x�o ðx,xÞoxþ . Now we find from (58) and (56) that P¼0, as it should be.

Note that if the expression in (56) is not equal to zero, that is, if the singularity at x¼ xþ is not canceled out, the result
in (58), with reference to (46), evidences that P is equal to the energy release rate associated with the singular point, thus
confirming the validity of the result.

Super-Rayleigh regime. In the super-Rayleigh subsonic regime, cRovoc2, where OðvÞ40, the contact zone is defined in
(54) with n¼ 0

x� ¼
xþ
3
: ð59Þ

Fig. 5. The contact stress distributions as a function of the normalized coordinate ~x ¼ x=xþ . The plots are based on (50) for sub-Rayleigh speed regime,

(54) for super-Rayleigh subsonic and intersonic speed regimes and (81) for the supersonic speed regime. The special case v¼
ffiffiffi
2
p

c2 (77) is the same as in

the supersonic regime. At v¼ c1 the contact zone is localized, syy ¼QydðxÞ (83). In the super-Rayleigh subsonic (b) and in the intersonic (c) speed regimes,

the leading end points of the contact zone, xþ , are singular, syy-�1 as x-xþ�0. In (b) it is an energy absorbing square-root type point, whereas in (c) it

is a weak point, which can neither absorb nor release energy. (a) Sub-Rayleigh regime: vocR. (b) Super-Rayleigh regime: cR ovrc2. (c) Intersonic

regime: c2 rvoc1. (d) Supersonic regime: v4c1.
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The stress and displacement’s derivative distributions are also presented in (54). This solution corresponds to the vertical
force

Qy ¼

Z xþ

xþ =3
syy dx¼�

pOðvÞmx2
þ

6r
ð60Þ

applied at position

x¼ xQ ¼

Z xþ

xþ =3
xsyydx

Z xþ

xþ =3
syy dx

,
¼

8

9
xþ : ð61Þ

In this case, the front end point of the contact zone, xþ , is the singular point of the square root type, and there exists the
energy flux to this point. The corresponding stress intensity factor is

KI � lim
x-xþ �0

syy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðxþ�xÞ

p
¼�

2xþ
3

� �3=2
ffiffiffiffiffiffi
2p
p

mOðvÞ
r

ð62Þ

and the energy release rate is

G¼
K2

I

4mOðvÞ
¼

4pmOðvÞx3
þ

27r2
¼

8

9
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Q

pOðvÞmr

s
: ð63Þ

(The relation between the energy release rate and the stress intensity factors for crack dynamics was introduced in Kostrov
et al., 1969.) This relation (see Fig. 6) just corresponds to the horizontal driving force

P¼�

Z xþ

xþ =3
syyðxÞu

0
yðxÞdx¼ G, ð64Þ

which is not surprising since there is no wave radiation at these speeds, and the energy produced by the contact stresses
completely goes to the singular point. Recall that this driving force can be equally treated as a Newtonian horizontal force
or as a configurational force. The nondimensional P�Q relation looks as

P ¼ P

Q

ffiffiffiffiffiffi
mr

Q

r
¼

8

9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6

pOðvÞ

s
: ð65Þ

The equality P¼G confirms that no wave is radiated in this speed regime. In this connection, note that the radiation
mentioned in Barenblatt and Goldstein (1972) can be caused by an energy-source singular point existing at the crack tip in
the super-Rayleigh speed regime.

The displacement profile has the form

uðxÞ ¼
x2
þ

2r
~x2
þð ~xþ2=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ~xÞð1=3� ~xÞ

q
þ

2

3
ln

ffiffiffiffiffiffiffiffiffi
3=2

p ffiffiffiffiffiffiffiffiffiffi
1� ~x
p

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3� ~x

q� �� �	 

ðxrxþ =3Þ,

uðxÞ ¼
x2

2r
ðxþ =3rxrxþ Þ,

uðxÞ ¼
x2
þ

2r
~x2
�ð ~xþ2=3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~x�1Þð ~x�1=3Þ

q
�

2

3
ln

ffiffiffiffiffiffiffiffiffi
3=2

p ffiffiffiffiffiffiffiffiffiffi
~x�1
p

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x�1=3

q� �� �	 

ðxZxþ Þ, ð66Þ

where ~x ¼ x=xþ . The indenter–half-plain configurations are shown in Fig. 1a right.
What happens at the front singular points, through which the energy releases under compression? What happens to

this energy, where is it spent? The classical elasticity cannot answer these questions, whereas a ‘micro’-structure
mechanisms of energy dissipation can be different. One of them is plasticity. Indeed, in the vicinity of the singular point,

Fig. 6. The driving force–vertical force relation: P ¼ P=½Q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mr=Q �

p
as a function of the speed, v. It can be seen that the resistance to the movement is zero

at sub-Rayleigh speeds. It drops down sharply in the vicinity of the longitudinal wave speed, c1 (v-c1 70).
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the normal stresses are (see, e.g., Slepyan, 2002, pp. 303–304)

sxxðxÞ ��syy 1þ
2ða2

1ðvÞ�a2
2ðvÞÞð1þa2

2ðvÞÞ

RðvÞ

� �
, syyðxÞ �

KIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðxþ�xÞ

p : ð67Þ

In this case, syyðxÞo0 ðKI o0Þ, sxxðxÞ40 and sxxðxÞ49syyðxÞ9. Thus this point is singular with respect to shear stresses. This
suggests that plastic deformations, possibly with melting, can occur in a surface layer. For a brittle material, high level
tensile stresses can result in cracking and fragmentation of the surface layer. Note that latter inequality was mentioned in
Barenblatt and Cherepanov (1960) for the case of a moving wedge approaching the Rayleigh wave speed from below.

3.2.2. The crack healing limit

Expressions (54), which is valid for the parabolic indenter, can be reduced to match the super-Rayleigh subsonic speed
regime of crack closure. For this regime, where n¼ 0, o1ðvÞ ¼OðvÞ40, we put

r-1, xþ-1,
ðð2=3Þxþ Þ

3=2

r
-

ffiffiffi
a
p

ða40Þ,

uyðxþ Þ ¼ 0, x-xþ þx: ð68Þ

For any finite x we find

uyðxÞ ¼ 0 ðxr0Þ, uyðxÞ ¼�
ffiffiffiffiffiffiffiffi
2ax
p

ðxZ0Þ,

syyðxÞ ¼ �mOðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð�xÞ

p
Hð�xÞ ðcRovrc2Þ, ð69Þ

where the displacement corresponds to the lower half-plane. The equilibrium is achieved by adding a symmetrically
disturbed upper half-plane. As a result we have the super-Rayleigh subsonic speed regime of the crack closure with the
energy absorbing singular point, x¼0 (recall that x is the moving coordinate), the end point of the semi-infinite crack,
0oxo1. Now the energy is coming from infinity; the energy release rate is

G¼ pmaOðvÞ: ð70Þ

If G is large enough the crack healing may be expected. The limit, a, depends on the speed. Assume the healing criterion to
be G¼ Gc ¼ const; it follows that the critical value of the above limit and the critical stress intensity factor are

a¼ acðvÞ ¼
Gc

pmOðvÞ
, KIcðvÞ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mGcOðvÞ

p
: ð71Þ

The latter relation is in agreement with the Kostrov–Nikitin–Flitman formula (Kostrov et al., 1969). Thus the critical stress
intensity factor increases by its modulus from zero to

Kmax ¼ KIcðc2Þ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mGcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�c2

2=c2
1

q
vuut ð72Þ

as the speed growth from cR to c2.
Note that this crack related solution follows, of course, directly from the corresponding problem formulation. We here

have shown only the connection with the contact problem.

3.3. Intersonic regime

The general relations for this regime and those for a parabolic indenter are presented in Section 3.1. In the transition
from the subsonic speed range to the intersonic one, the solution varies continuously. Parameter n grows from zero to 1/2
as the speed increases from c2 to

ffiffiffi
2
p

c2; then it decreases to zero as v-c1. Thus 0onr1=2 for c2ovoc1. Under these
inequalities the strongest singular point at x¼ xþ is weak in the sense that it cannot conduct energy. However, in this
speed range, shear waves arise excited by the moving body. Thus, in the intersonic range, a driving force is required to
support the movement. It is

P¼
4pmð1�nÞð1�2nÞo1ðvÞx

3
þ

3ð3�2nÞ2 cos2ðpnÞr2
, ð73Þ

whereas the vertical force is

Qy ¼�
pmð1�2nÞo1ðvÞx

2
þ

2ð3�2nÞcos2ðpnÞr
: ð74Þ

The indenter–half-plane configuration is shown in Fig. 1b. The nondimensional ratio

P ¼ P

Q

ffiffiffiffiffiffi
mr

Q

r
¼

16ð1�nÞcos pn
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�2nÞð3�2nÞo1ðvÞ

p ð75Þ

as a function of v is plotted in Fig. 6 for Poisson’s ratio equal 1=3 ðc1 ¼ 2c2Þ. For the super-Rayleigh subsonic range the plot
is based on (65).

L.I. Slepyan, M. Brun / J. Mech. Phys. Solids 60 (2012) 1883–19061896



Author's personal copy

3.4. Special speed value, v¼
ffiffiffi
2
p

c2, and the supersonic regime

At this intersonic speed n¼ 1=2, o1 ¼ 0, o2 ¼ 2, x� ¼ 0, and, as it follows directly from (43),

syyðxÞ ¼�2mu0yðxÞ, Qy ¼�2myðxþ Þ: ð76Þ

For the parabolic indenter the contact stresses, the vertical force and the driving force are

syyðxÞ ¼�
2mx

r
, Qy ¼�

mx2
þ

r
, P¼

2mx3
þ

3r2
, ð77Þ

respectively, which is also in agreement with the limit (n-1=2) following from (73) and (74). The half-plane boundary
outside the contact zone is horizontal, whereas there is a shift in the displacement

u0yðxÞ ¼ 0 ðxo0, x4xþ Þ, uyðxþ Þ�uyð0Þ ¼ yðxþ Þ: ð78Þ

The solution of the same type corresponds to the supersonic regime, which differs by the presence of both the shear and
the longitudinal waves. In the transition to this regime, parameter n has a jump discontinuity from zero at v¼ c1�0 to 1/2
at v4c1 (see Fig. 3). For the latter regime

o1ðvÞ ¼ 0, o2ðvÞ ¼
c2

2RðvÞ

v2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=c2

1�1
q , ð79Þ

where the corresponding expression for the Rayleigh function, R(v) is shown in (11). Thus, the stresses and the vertical
force are

syyðxÞ ¼�mo2ðvÞu
0
yðxÞ, Qy ¼�

mo2ðvÞyðxþ Þ

r
: ð80Þ

For the parabolic indenter the contact stresses, the vertical force and the driving force are

syyðxÞ ¼�
mo2ðvÞx

r
, Qy ¼�

mo2ðvÞx
2
þ

2r
, P¼

mo2ðvÞx
3
þ

3r2
,

P ¼ P

Q

ffiffiffiffiffiffi
mr

Q

r
¼

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

o2ðvÞ

s
: ð81Þ

3.5. The limiting resistance-free steady-state regime, v-c1

It follows from (73) and (81) that, for nonzero Poisson’s ratio,

P � 16

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6po1ðvÞ

p -0 ðo1-1 as v-c1�0Þ,

P-0 ðo2-1 as v-c1þ0Þ: ð82Þ

In this case xþ ¼ x� ¼ 0, and the indenter, under the external vertical force Qy, is in equilibrium with a concentrated
longitudinal wave propagating in the half-plane. Thus, this is a special case of d’Alembert’s paradox manifestation

xþ ¼ x� ¼ 0, syy ¼ QydðxÞ, P¼ 0 ðv¼ c1Þ: ð83Þ

Recall that this result corresponds to the limit, v-c1, of the established steady-state regimes for voc1 and v4c1.

4. Wedging

The plane problem for the motion of a rigid symmetric wedge through the elastic material is examined in this section.
To avoid geometrical nonlinearities we do not consider the case when the wedge is to close to the crack tip. We derive the
exact solution for the sub-Rayleigh regime. A simplified solution is also given based on the assumption that the contact
zone is much shorter than its distance to the crack tip.

First we note that there is no crack closure in the considered problem. This follows from relation (5.73) in Slepyan
(2002), which remains qualitatively valid for the sub-Rayleigh speed regime. It can be seen in this relation that, for
compressive crack face traction, the crack opening behind the contact zone (xox�) remains positive and it tends to zero as
x-�1. Thus the traction behind the contact region is zero. Denote the contact region end points and the crack tip
coordinates as x�oxþoxc , respectively (see Fig. 7). The conditions on the lower half-plane boundary (and similar
conditions on the upper half-plane boundary) are

uyðxÞ ¼ yðxÞ ðx�oxoxþ Þ, uyðxÞ ¼ h ðxZxcÞ,

u0yðxÞ ¼Oð9x9�3=2
Þ ðx-�1Þ, syy ¼ 0 ðxox� and xþoxoxcÞ, ð84Þ
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where h is the wedge half-width (the origin of the coordinates coincides with the lower point of the wedge as above). We
use the same representation as above, namely for vocR,

u0yðxÞ ¼RfðxÞ, syyðxÞ ¼ �mOðvÞIfðxÞ, ð85Þ

where fðzÞ is an analytical function of the complex variable z¼ xþ ie, e40. Next, another analytical function is introduced as

FðzÞ ¼CðzÞfðzÞ, CðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�x�Þðz�xþ Þðz�xcÞ

p
, ð86Þ

where

CðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðx�xþ Þðx�xcÞ

p
ðx4xcÞ,

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðx�xþ Þðxc�xÞ

p
ðxþoxoxcÞ,

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðxþ�xÞðxc�xÞ

p
ðx�oxoxþ Þ,

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx��xÞðxþ�xÞðxc�xÞ

p
ðxox�Þ:

8>>>>><
>>>>>:

ð87Þ

Since outside the contact region RFðxÞ ¼ 0, we can express this function in the same way as above

FðzÞ ¼
i

p

Z xþ

x�

y0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðxþ�xÞðxc�xÞ

p
x�z

dxþ iC: ð88Þ

Now consider the stress intensity at the end points. It follows from (85) and (88) that

lim
x-x� þ0

syyðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
x�x�
p

¼
mOðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ�x�Þðxc�x�Þ
p 1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðxc�xÞ

x�x�

s
y0ðxÞ dxþC

 !
,

lim
x-xþ �0

syyðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ�x
p

¼�
mOðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ�x�Þðxc�xþ Þ
p 1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x�Þðxc�xÞ

xþ�x

s
y0ðxÞ dx�C

 !
,

lim
x-xc þ0

syyðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
x�xc
p

¼
mOðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxc�x�Þðxc�xþ Þ
p 1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðx�x�Þ

xc�x

s
y0ðxÞ dx�C

 !
: ð89Þ

For the sub-Rayleigh speed regime the stress intensities at the contact region ends, x¼ x7 , must be zero to avoid
interpenetration. Let the stress intensity factor at the crack tip be given as KI. These three conditions lead to the following
relations:

C ¼�
1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðxc�xÞ

x�x�

s
y0ðxÞ dx,

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc�x

ðx�x�Þðxþ�xÞ

s
y0ðxÞ dx¼ 0,

mOðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc�x�
xc�xþ

r
1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ�x

ðx�x�Þðxc�xÞ

s
y0ðxÞ dx¼

KIffiffiffiffiffiffi
2p
p : ð90Þ

An additional condition concerning the wedge maximal width 2 h must be taken into account; recalling that the
coordinate of the maximal width is taken as the origin of the x-axis the following equation is obtained:

yðxþ Þþ

Z xc

xþ

u0yðxÞ dx¼ h, ð91Þ

where, in this region, xþoxoxc

u0yðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x�

ðx�xþ Þðxc�xÞ

r
1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðxc�xÞ

x�x�

s
y0ðxÞ
x�x

dx: ð92Þ

Finally, the nonzero normal stress component is

syyðxÞ ¼ mOðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�x�
ðxþ�xÞðxc�xÞ

r
1

p
V � p �

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðxc�xÞ

x�x�

s
y0ðxÞ
x�x

dx ð93Þ

vP

x

y

x+x- xc

2h

Fig. 7. Crack face contour in the wedging, vocR.
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in the contact region ðx�oxoxþ Þ and

syyðxÞ ¼�mOðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x�x�
ðx�xþ Þðx�xcÞ

r
1

p

Z xþ

x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðxc�xÞ

x�x�

s
y0ðxÞ
x�x

dx ð94Þ

ahead of the crack tip.
Thus, three unknowns remain: x�,xþ and xc; they can be obtained from (91) and the last two relations in (90). In

particular, it follows from the second relation in (90) that x�o0 and xþ40.

4.1. The parabolic wedge

For the parabolic wedge, yðxÞ ¼ x2=ð2rÞ, the second condition in (90) and Eq. (91) lead to the following relations:

ðxc�xþ ÞK
xþ�x�
xc�x�

� �
�ðxc�2xþ�2x�ÞE

xþ�x�
xc�x�

� �
¼ 0, ð95Þ

mOðvÞðxc�x�Þ

3pr
K

xþ�x�
xc�x�

� �
ð2xcþx�Þ�E

xþ�x�
xc�x�

� �
ð2xcþ2x��xþ Þ

� �
¼

KIffiffiffiffiffiffi
2p
p , ð96Þ

where KðmÞ ¼
R p=2

0 ð1�m sin2 yÞ�1=2 dy and EðmÞ ¼
R p=2

0 ð1�m sin2 yÞ1=2 dy are the complete elliptic integrals of the first and
second kind, respectively.

To proceed we make some simplification assuming the contact zone to be much shorter than its distance to the crack
tip, xþ�x�5xc�xn, xn ¼ ðxþ þx�Þ=2, namely, for the integrals over the contact region we replace

ffiffiffiffiffiffiffiffiffiffiffi
xc�x

p
, where

x 2 ðx�,xþ Þ, by its two-term asymptote asffiffiffiffiffiffiffiffiffiffiffi
xc�x

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xc�xn

p
þ

xn�x
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xc�xn

p ,
1ffiffiffiffiffiffiffiffiffiffiffi

xc�x
p �

1ffiffiffiffiffiffiffiffiffiffiffi
xc�x

p �
xn�x

2ðxc�xnÞ
3=2

: ð97Þ

The second condition in (90) of zero stress intensity at xþ leads now to an explicit expression for xc in terms of x7

xc ¼
5x2
þ þ6xþ x�þ5x2

�

8ðxþ þx�Þ
: ð98Þ

Note that xc-1 when x�-�xþ þ0 as it should be (in the limit, we have a half-plane under the moving indenter, that is,
we return the previous problem), and x�-�3=5xþ when xc-xþ þ0.

The relative position of the crack tip ~xc ¼ xc=xþ as a function of the ratio ~x� ¼ x�=xþ is shown in Fig. 8, where the
approximate result (98) is compared with the exact one following from (95). It is evident that the approximation can be
acceptable for ~xc 42.

Next, the last condition in (90) concerning the stress intensity at xc yields

mOðvÞ
2r

7x2
þ þ18xþ x�þ7x2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5xþ þ3x�Þð�3xþ�5x�Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ þx�
p

¼
KIffiffiffiffi
p
p : ð99Þ

Approx
Exact

Fig. 8. Distribution of the normalized position of the crack tip, ~xc ¼ xc=xþ , as a function of the ratio ~x� ¼ x�=xþ for the parabolic indenter. Approximate

results (in black) are compared with the exact one (in gray).
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We also represent this relation in a normalized form as

OðvÞx̂3=2
þ gwð ~x�Þ ¼Mw, ð100Þ

with

Mw ¼ 2
r

h3

� �1=4 KIffiffiffiffi
p
p

m
, gwð ~x�Þ ¼

7þ18 ~x�þ7 ~x2
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð5þ3 ~x�Þð�3�5 ~x�Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ~x�
p

, ð101Þ

where Mw is supposed to be given and x̂þ ¼ xþ =
ffiffiffiffiffi
rh
p

. Note that gwð ~x�Þ is a monotonically decreasing function spanning the
negative real axis in the admissible range �1o ~x�o�3=5, so that Eq. (100) admits a unique solution in terms of ~x� for
each values of the positive quantities x̂þ and Mw.

Finally, the condition (91) on the opening displacement imposed by the wedge can be expressed in the normalized
form:

x̂
2
þhwð ~x�Þ ¼ 1, ð102Þ

with

hwð ~x�Þ ¼�
1

120

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~x�

p
ð1þ ~x�Þ

2
f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~x�

p
½2ð1� ~x�Þð17þ22 ~x�þ17 ~x2

�ÞEðkÞ

þð5þ3 ~x�Þð1þ26 ~x�þ13 ~x2
�ÞKðkÞ�þð3þ67 ~x�þ63 ~x2

�þ25 ~x3
�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�5�3 ~x�

p
g,

k¼ ð3þ5 ~x�Þ=ð8ð1þ ~x�ÞÞ: ð103Þ

where, similarly to the previous condition, hwð ~x�Þ is now a positive monotonically decreasing real function of ~x� spanning
the positive real axis in the admissible range �1o ~x�o�3=5. Thus Eq. (102) admits a unique solution in terms of ~x� for
each value of the positive quantity x̂þ .

Further, using Eqs. (100) and (102) we can eliminate x̂þ and find ~x� numerically from the obtained relation:

f wð ~x�Þ ¼
hwð ~x�Þ

½�gwð ~x�Þ�
4=3
¼
�OðvÞ

Mw

� �4=3

: ð104Þ

After this xþ is found from Eq. (102) as

x̂þ ¼ hwð ~x�Þ
�1=2: ð105Þ

Then, the stresses for x�oxoxþ and for x4xc are

syyðxÞ ¼
mOðvÞ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ þx�Þ

p
xþ�x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðx�x�Þ

xc�x

s
f 1ðxÞ,

syyðxÞ ¼
mOðvÞ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ þx�Þ

p
ðxþ�x�Þ

ffiffiffiffiffiffiffiffiffiffiffi
xc�x
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xþ Þðx�x�Þ

p
f 1ðxÞ�xf 2ðxÞ

h i
, ð106Þ

respectively, where

f 1ðxÞ ¼ x�
ðxþ�x�Þ

2

4ðxþ þx�Þ
and f 2ðxÞ ¼ x�

3x2
þ þ2xþ x�þ3x2

�

4ðxþ þx�Þ
: ð107Þ

The total vertical force in each separated wedge contact area and its position are

Qy ¼

Z xþ

x�

syyðxÞ dx¼�
p
4

mOðvÞ
r
ðx2
þ þ4xþ x�þx2

�Þ,

xQ ¼
ðxþ þx�Þðxþ þ3x�Þð3xþ þx�Þ

4ðx2
þ þ4xþ x�þx2

�Þ
, ð108Þ

respectively. In addition, the total driving force P is given by

P¼�2

Z xþ

x�

syyðxÞu
0
yðxÞ dx¼�

mOðvÞ
r2

pðxþ þx�Þ

8
ðxþ þ3x�Þð3xþ þx�Þ ð109Þ

and it can be compared with the energy release rate G¼ K2
I =ð2mOðvÞÞ, that assumes the approximate form

G¼�
mOðvÞ

r2

pðxþ þx�Þ

8

ð7xþ þ18xþ x�þ7x2
�Þ

2

ð5xþ þ3x�Þð3xþ þ5x�Þ
ð110Þ

and the exact one

GEx ¼
mOðvÞ

r2

ðxc�x�Þ
2

9p K
xþ�x�
xc�x�

� �
ð2xcþx�Þ�E

xþ�x�
xc�x�

� �
ð2xcþ2x��xþ Þ

� �2

: ð111Þ
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Results (109)–(111) are compared in Fig. 9, where they are given as functions of the relative crack-tip distance
ðxc�xþ Þ=ðxþ�x�Þ. The comparative analysis shows the precision of the approximation and the fact that, except when
xc-xþ the driving force decreases at increasing distance of the crack tip, as expected on physical ground.

The nonzero displacement derivative is

u0yðxÞ ¼
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ þx�Þ

p
xþ�x�

1ffiffiffiffiffiffiffiffiffiffiffi
xc�x
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ�xÞðx��xÞ

p
f 1ðxÞ�xf 2ðxÞ

h i
ðxox�Þ,

¼
x

r
ðx�oxoxþ Þ,

¼
1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ þx�Þ

p
xþ�x�

1ffiffiffiffiffiffiffiffiffiffiffi
xc�x
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xþ Þðx�x�Þ

p
f 1ðxÞ�xf 2ðxÞ

h i
ðxþoxoxcÞ: ð112Þ

Finally, the displacement uy(x) takes the form:

uyðxÞ ¼
x2
�

2r
þ

1

15

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ�x�Þ

p 1

xþ�x�
gþ ðxÞ�gþ ðx�Þ
� �

ðxox�Þ,

¼ x2=2r ðx�oxoxþ Þ, ¼
x2
þ

2r
þ

1

15

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðxþ�x�Þ

p 1

xþ�x�
½g�ðxÞ�g�ðxþ Þ� ðxþoxoxcÞ, ð113Þ

where

g7 ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
xc�x
p

½12x2ðxþ þx�Þ�ðxþ2xcÞð5x2
þ�2xþ x�þ5x2

�Þ

7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx��xÞðxþ�xÞ

p
ð12xðxþ þx�Þþx2

þ þ14xþ x�þx2
�Þ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xÞ

p
ðxþ�x�Þð13x2

þ þ26xþ x�þx2
�ÞF½arcsinðwðxÞÞ,w�2ðxþ Þ�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xÞ

p ðxþ�x�Þ
2

4ðxþ þx�Þ
ð17x2

þ þ22xþ x�þ17x2
�ÞE½arcsinðwðxÞÞ,w�2ðxþ Þ�,

wðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc�xÞ=ðxc�x�Þ

p
, ð114Þ

with Fðf,mÞ ¼
Rf

0 ð1�m sin2yÞ�1=2dy and Eðf,mÞ ¼
Rf

0 ð1�m sin2yÞ1=2dy the incomplete elliptic integral of the first and
second kind, respectively.

In Figs. 10 and 7 results are shown for ð�OðvÞ=MwÞ
4=3
¼ 2:5. Eqs. (104) and (105) yield

~x� ¼�0:894, x̂þ ¼ 0:872, ðx̂� ¼ x�=
ffiffiffiffiffi
rh
p
¼�0:779, x̂c ¼ xc=

ffiffiffiffiffi
rh
p
¼ 3:723Þ ð115Þ

such that

~xc ¼ xc=xþ ¼ 4:269, ðxc�xþ Þ=ðxþ�x�Þ ¼ 1:726 ð116Þ

in Fig. 8 and in Fig. 9, respectively.
Distribution of the traction syyðxÞ is given in Fig. 10, whereas the deformed contour is represented in Fig. 7. We note

that conditions (a) and (b) in (1) are fully respected. In particular, a compressive stress is present in the contact zone and
there is no interpenetration between the wedge and the elastic material. The absence of stress singularity at the ends of
the contact zone is associated to the continuity of u0y. The presence of the crack tip and the constraint u¼0 in the crack
continuation line induce a stress distribution which is nonsymmetric with respect to x¼0 and the consequent existence of

Fig. 9. The driving force as a function of the normalized crack-tip distance, ðxc�xþ Þ=ðxþ�x�Þ. The exact solution ĜEx ¼ GExr2=ðmOðvÞÞ (111), the

approximate solutions P̂ ¼ Pr2=ðmOðvÞÞ (109) and Ĝ ¼ Gr2=ðmOðvÞÞ (110). The plot corresponds to Poisson’s ratio equal to 1/3 (c1 ¼ 2c2).
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the driving force P¼G. It should be stressed that the driving force is generated by the crack resistance but not by the
contact interaction, consistently with Fig. 9.

5. Wedge moving in the interface between two elastic half-planes compressed together

The plane problem for the motion of a rigid wedge through the interface of two elastic half-planes compressed at
infinity by a uniform stress syy ¼�s0o0 is studied. As for the previous wedge problem, we consider the steady-state
movement of a finite-length rigid indenter in the sub-Rayleigh regime.

The wedge is assumed symmetric relatively to both the longitudinal axis, y¼h, and the normal y-axis, yð�x,0Þ ¼
yðx,0Þ, yð7x,2hÞ ¼ 2h�yðx,0Þ. We also assume that the deformed half-plane boundaries possess the same symmetry in the
considered sub-Rayleigh speed regime. Denote the wedge contact region and the half-plane contact region ends as shown
in Fig. 11. The wedge–half-plane boundaries’ configuration is assumed to consist of five regions, three regions where the
displacement is given and two regions where the stresses are given. Namely, with refer to the conditions (a) and (b) in (1),
the boundary conditions for the lower half-plane are

uyðxÞ ¼ yðxÞ ð9x9rxþ Þ, uyðxÞ ¼ 0 ð9x9ZxcÞ,

syy ¼ 0 ðxþr9x9rxcÞ, syy-�s0 ð9x9-1Þ ð117Þ

and the symmetric conditions are valid for the upper half-plane.
Representation (85) is used for the displacement derivative and the normal traction, and the following analytical

function is introduced:

FðzÞ ¼CðzÞfðzÞ, CðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2
�x2
þ Þðz

2
�x2

c Þ

q
, z¼ xþ ie ðe40Þ, ð118Þ

where

CðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x2

þ Þðx2�x2
c Þ

q
ð9x94xcÞ,

i sign x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�x2

þ Þðx2
c�x2Þ

q
ðxþo9x9oxcÞ,

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2
þ�x2Þðx2

c�x2Þ

q
ð9x9oxþ Þ:

8>>>>><
>>>>>:

ð119Þ

Fig. 10. Distribution of the normalized stress, syy=m
ffiffiffiffiffiffiffiffi
r=h

p
, as a function of x̂ ¼ x=

ffiffiffiffiffi
rh
p

, where x̂ þ ¼ xþ =
ffiffiffiffiffi
rh
p

and x̂� ¼ x�=
ffiffiffiffiffi
rh
p

. Results are given for

Poisson’s ratio equal to 1/3 and ð�OðvÞ=MwÞ
4=3
¼ 2:5 (104), which corresponds to ~xc ¼ xc=xþ ¼ 4:269.

v

x

y

x+ xc-x+-xc

2h

Fig. 11. The wedge moving between two prestress elastic half-planes, vocR.
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Outside the contact region RFðxÞ ¼ 0, and the function FðzÞ is now defined as

FðzÞ ¼
i

p

Z xþ

�xþ

y0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2
þ�x

2
Þðx2

c�x
2
Þ

q
x�z

dxþ iðC1þC2z
2
Þ: ð120Þ

Note that the latter term, C2z
2, reflects the prestress, whereas the linear term is not present due to the symmetry of the

problem.
Now consider the stress at remote points and the stress intensity at contact end points. It follows from (85) and (120)

that

syyðxÞ ��mOðvÞC2 ðx-1Þ,

syyðxÞ ��
mOðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xþ ðx2
c�x2

þ Þðxþ�xÞ
q �

1

p

Z xþ

�xþ

y0ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ þxÞðx2

c�x
2
Þ

xþ�x

s
dx�ðC1þC2x2

þ Þ

2
4

3
5 ðx-xþ�0Þ,

syyðxÞ �
mOðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xcðx2
c�x2

þ Þðx�xcÞ

q �
1

p

Z xþ

�xþ

y0ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxcþxÞðx2

þ�x
2
Þ

xc�x

s
dx�ðC1þC2x2

c Þ

2
4

3
5 ðx-xcþ0Þ, ð121Þ

The conditions in (117) lead to the following equalities:

C2 ¼
s0

mOðvÞ ,

C1 ¼
2

p

Z xþ

0
y0ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c�x
2

x2
þ�x

2

vuut x dx�
s0

mOðvÞ x
2
þ ,

2

p

Z xþ

0
y0ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x

2

x2
c�x

2

vuut x dxþ
s0

mOðvÞ
ðx2

c�x2
þ Þ ¼ 0: ð122Þ

As for the previous wedge case, the condition concerning the wedge maximal width must be taken into account and
Eq. (91) must be satisfied.

From (122) the different expressions for the contact stresses suitable for 9x9rxþ and 9x9Zxc are

syyðxÞ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x2

x2
c�x2

s
s0�

2mOðvÞ
p

V � p �

Z xþ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
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þ�x

2
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�x2

2
4

3
5 ð123Þ

and

syyðxÞ ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x2

c

x2�x2
þ

s
s0þ

2mOðvÞ
p

Z xþ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x

2

x2
c�x

2

vuut y0ðxÞx dx
x2�x2

2
4

3
5, ð124Þ

respectively. Each of these relations can be analytically continued from one region to the others, and one expression
appears equal to the other due to the last condition in (122). From the latter representation in (124) it follows that the
analytical function fðzÞ can be represented as

fðzÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
�x2

c

z2
�x2
þ

vuut s0

mOðvÞ þ
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p
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þ�x

2

x2
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2
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�x2

2
4

3
5 ð125Þ

and this yields

u0yðxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c�x2

x2�x2
þ

s
s0

mOðvÞ
þ

2

p

Z xþ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
þ�x

2

x2
c�x

2
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x2�x2

2
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3
5sign x ðxþr9x9rxcÞ: ð126Þ

The unknown values xþ and xc are defined by Eq. (91) and the last condition in (122).

5.1. The parabolic wedge

For this shape we consider the solution independently. When the shape of the indenter at the contact zone is parabolic
the condition in (121) of zero stress intensity at xþ gives

C1 ¼�x2
þ

2xþ
3pr

~xc ð ~x
2
c�1ÞKð ~x�2

c Þ�ð ~x
2
c�2ÞEð ~x�2

c Þ

h i
þ

s0

mOðvÞ

	 

, ð127Þ
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where ~xc ¼ xc=xþ . The condition (121) of zero stress intensity at xc takes the form

x2
þ ð ~x

2
c�1Þ

2xþ
pr

~xc½Kð ~x
�2
c Þ�Eð ~x�2

c Þ�þ
s0

mOðvÞ

	 

¼ 0, ð128Þ

where the solution ~xc ¼ 1 is associated with tensile stress in the region 9x9oxþ and it cannot be accepted. Then, Eq. (128)
can be given the equivalent normalized form

OðvÞx̂þ gpð ~xcÞ ¼Mp, ð129Þ

where

x̂þ ¼
xþffiffiffiffiffi

rh
p , gpð ~xcÞ ¼

2 ~xc

p
½Eð ~x�2

c Þ�Kð ~x�2
c Þ�, Mp ¼

s0

m

ffiffiffi
r

h

r
ð130Þ

and gpð ~xcÞ is a monotonic increasing real function of ~xc spanning the negative real axis in the admissible range 1o ~xc o1,
so that Eq. (129) admits a unique solution in term of ~xc for each value of the positive quantities x̂þ and Mp.

Lastly, condition (91) is represented in the normalized form

x̂
2
þhpð ~xcÞ ¼ 1, ð131Þ

where

hpð ~xcÞ ¼ 1þ
2

p �
1
~xc

Z 1
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P �
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 �
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c E
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 �h i8<
:

9=
;

ð132Þ

and Pðn,mÞ ¼
R p=2

0 ð1�n sin2 yÞ�1
ð1�m sin2 yÞ�1=2dy is the complete elliptic integral of the third kind. Note that the integral

in Eq. (132) has been computed numerically and that hpð ~xcÞ is a monotonic increasing function of ~xc spanning the positive
real axis in the admissible range 1o ~xc o1, so that Eq. (131) admits a unique solution in terms of ~xc for each value of the
quantity x̂þ .

Similarly to Section 4.1, a solution of Eqs. (129) and (131) can be found numerically. We define

f pð ~xcÞ ¼
hpð ~xcÞ

gpð ~xcÞ
2
¼

OðvÞ
Mp

� �2

ð133Þ

in terms of ~xc , where Mp is a given quantity, and compute x̂þ as

x̂þ ¼ hpð ~xcÞ
�1=2: ð134Þ

Then, the nonzero stresses for 9x9oxþ and 9x94xc are
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, ð135Þ

respectively, where ~x ¼ x=xþ . The stress distribution is reported in Fig. 12 for Mp¼0.122, ~xc ¼ 3:000, x̂þ ¼ 0:703.

Fig. 12. Distribution of the normalized contact stresses syy=s0, as a function of ~x ¼ x=xþ for Mp¼0.122, ~xc ¼ 3:000.
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Finally, the displacements are
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where

Lð ~x, ~xcÞ ¼

Z 1
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with Pðn,f,mÞ ¼
Rf

0 ð1�n sin2 yÞ�1
ð1�m sin2 yÞ�1=2 dy the incomplete elliptic integral of the third kind.

Note that there is no driving force, and the wedge moves freely inside the structure with any constant sub-Rayleigh speed.

6. Concluding remarks

In this paper, we have discussed the general conditions under which a body moving in contact with an elastic medium
meets zero driving force and presented some examples of resistance-free motion. In addition to the resistance-free sub-
Rayleigh speed regimes in the half-plane problem and for the two half-planes compressed, we have found a sharp decrease
in the resistance in the vicinity of the longitudinal wave speed, with zero limit at this speed.

We also have examined in detail all the other speed regimes, where a driving force is required to support the motion.
In particular, we have derived a general solution of the moving-contact plane problem valid for all speed ranges, 0ovo1,
including super-Rayleigh sub- and intersonic speeds (Section 3.1). In the case of a single simply connected contact zone,
this solution is presented for a general smooth shape of the indenter. The general expressions are then deduced for the
case of symmetry, and then for a parabolic (or a constant curvature) indenter. Also, the dynamic wedging problem is
considered for a finite length wedge moving at sub-Rayleigh speed at a distance of the crack tip and within two half-planes
compressed together.

In all these cases, we have determined the driving forces caused by the main underlying factors: stress field singular
points in the contact region (the super-Rayleigh subsonic regime), wave radiation (the intersonic and supersonic regimes)
and crack resistance (the wedging problem). Note that in the latter sub-Rayleigh speed problem, the driving force is equal
to the crack resistance, while the contact sliding itself gives no contribution to this force.

The contact problems are considered based on a general solution as the steady-state limit of the corresponding
transient problem. In this solution, the stresses and the displacements are expressed through a single analytical function
for all speed ranges. The uniqueness is achieved by this limit and by an energy condition. The latter states that energy-
source singular points, which can appear in a solution, must be eliminated, and only energy absorbing ones can be
accepted.

Based on the conditions allowing the ‘paradox’ to exist, it is clear that the considered examples do not exhaust the class
of structures where such resistance-free motion can exist. In particular, this concerns various 1D models and more
complicated 2D and 3D structures. Note that, in the latter case, the Rayleigh waves can be excited by a finite indenter
moving with a super-Rayleigh speed along the boundary of an elastic half-space.

The considered problems are studied in the framework of linear elasticity; strains and rotations are assumed to be small
except in the vicinity of a singular point. However, the resistance-free motion conditions are valid independently of the
elastic medium model, the exact or the linearized one. The only condition for the medium is that the strain energy must be
potential (in the nonlinear elasticity terminology an hyperelastic material). In this connection we recall that the energy
fluxes can be determined using the Eshelby–Cherepanov–Rice integral over a suitably built contour or surface, applicable
for both the exact nonlinear elasticity and the linearized one. Along with this, if the contact strains and rotations are not
small enough, the exact formulation may lead to essential changes of the contact area and the contact stress distribution.
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