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a b s t r a c t 

In the last decade, significant theoretical advances were obtained for steady-state fracture propagation in 

spring-mass lattice structures, that also revealed surprising fracture regimes. Very few articles exist, how- 

ever, on the dynamic fracture processes in lattices composed of beams. In this paper we analyse a failure 

(feeding) wave propagating in a beam-made lattice strip with periodically placed point masses. The frac- 

ture occurs when the strain of the supporting beam reaches the critical value. The problem reduces to 

a Wiener–Hopf equation, from which the complete solution is obtained. Two cases are considered when 

the feeding wave transmits into the intact structure as sinusoidal waves or only as an evanescent wave. 

For both cases, a complete analysis of the strain inside the structure is presented. We determine the crit- 

ical level of the feeding wave, below which the steady-state regime does not exist, and its connections to 

the feeding wave parameters and the failure wave speed. The accompanied dynamic effects are also dis- 

cussed. Amongst much else, we show that the switch between the two considered regimes introduces a 

rapid change in the minimum energy required for the failure wave to propagate steadily. The failure wave 

developing under an incident sinusoidal wave is remarkable due to the fact that there is an upper bound 

of the domain where the steady-state regime exists. In the present paper, only the latter is examined; 

the alternative regimes are considered separately. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Lattice models are used to reveal important quasi-static and dy-

amic phenomena caused by both the microstructure of materi-

ls and the periodic structure of large-scale constructions. In the

rst analytical solutions Slepyan (1981) and Slepyan and Troyank-

na (1984) obtained for mass-spring lattices, the role of the mi-

rostructure in fracture and phase transition was demonstrated. In

articular, it was shown that wave radiation always accompanies

he steady-state dynamic crack and phase propagation ( Mishuris

t al., 2009a; Slepyan, 2010b; Slepyan et al., 2015; 2010 ). The ra-

iation creates the speed-dependent wave resistance, which can-

ot be detected in a homogeneous material model ( Slepyan, 2002;

010a ). This phenomena accounts for instabilities in the crack path

ropagation in a homogeneous material, which is attributed to the

omposition of its microstructure, Marder and Gross (1995) , that

an yield complex crack behaviour such as micro-branching and

scillation of the crack paths ( Bouchbinder et al., 2010 ). 

A discrete structure provides an effective way of building in dif-

erent physical scales to describe local fracture phenomena. In this
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ay, even the atomic-scale influences on fracture processes can be

raced ( Marder, 2004 ). 

On the other hand, linear lattice structures allow one to use

ffective analytical techniques (such as the Fourier and Laplace

ransforms in conjunction with a moving coordinate system;

lepyan, 2002; 2010a ) to reduce to a problem involving a Wiener–

opf equation ( Noble, 1958 ) set along the axis of the crack. This

quation contains a term corresponding to the load applied to the

tructure. One can specify the set of remote loads (see Slepyan,

002 ) and generate the corresponding analytical solutions to this

quation, which contain information on the dynamic features of

arious propagation regimes. Constant and oscillatory loads can be

mbedded into such equations and readily solved to reveal very

ifferent dynamical fracture regimes. A collection of such solutions

or the mass-spring lattice structures, with different geometries

having square or triangular unit cells), can be found in Slepyan

20 01a, 20 02) , Mishuris et al. (20 09a, 20 09b ) and Slepyan et al.

2010) and for homogeneous structures see Slepyan et al. (2015) . 

Conventional materials under various loads may also induce

ther interesting fracture patterns. In this sense, we refer to

eegan et al. (2003) , where experiments conducted on single-

rystal silicon strips under thermal loading with high temperature

radient may produce straight line, wavy or multi-branched cracks.

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.02.033&domain=pdf
mailto:M.J.Nieves@ljmu.ac.uk
http://dx.doi.org/10.1016/j.ijsolstr.2016.02.033
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Fig. 1. The collapse of a roof in Tottenham, U.K., 2014. Picture from http://www. 

tottenhamjournal.co.uk/news/lunchbreak _ saves _ lives _ of _ builders _ in _ tottenham _ 

roof _ collapse _ 1 _ 3858222 . 
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Fig. 2. A heterogeneous discrete structure composed of massless beam members of 

length a with concentrated masses M at the nodes m ∈ Z . Members aligned with 

the horizontal (vertical) axis have Young’s modulus E 1 ( E 2 ) and second moment of 

area I 1 ( I 2 ). Here we show a static situation, where it is permissible to number 

the nodes using the index m ∈ Z . Later, when we consider the propagation of the 

transition front with a constant speed V through the structure, the transition front 

can be traced with the moving coordinate η = m − V t/a . In this case the variable η

replaces m (with η = 0 representing the position of this front). 
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A similar method to that presented in Slepyan (2002) can be

utilised to model a bridged crack propagating within a lattice

( Mishuris et al., 2008b ) or the dynamical extraction of a thread

from the lattice ( Mishuris et al., 2008a ). The techniques are also

applicable to the analysis of cracks propagating at speeds within

subsonic, intersonic and supersonic regimes ( Guozden et al., 2010;

Slepyan, 2001b ) where changes occur in the lattice response in the

vicinity of the crack tip when moving between speed regimes. Brit-

tle fracture propagation in finite triangular mass-spring systems

has been analysed in Behn and Marder (2015) , along with change

in the local crack tip behaviour during the transition from subsonic

to supersonic regimes. 

Other defects such as structured interfaces can be incorporated,

through adjustment of several local material properties within a

lattice. These defects may then play a role in promoting or hinder-

ing the propagation of flaws within a lattice as shown in Mishuris

et al. (2012) . Cracks propagating through inhomogeneous elastic

lattices can also be treated by the same approach in Nieves et al.

(2013) . 

Summarising, there exist many articles concerning the analyti-

cal solution to fracture and phase transition problems in periodic

mass-spring lattices, however, there are few for beam-made pe-

riodic structures. The static problem of a crack within a beam-

made square cell lattice has been considered in Ryvkin and Slepyan

(2010) where bending modes of fracture in a beam-made lattice

were analysed. 

In the case of failure waves inside a massless beam structure,

a simplified model of a bridge was analysed ( Brun et al., 2013 ).

There, models of a failure wave propagating in uniformly and dis-

cretely supported beams under gravity forces were also compared.

Failure was assumed to propagate with constant speed and is rep-

resented by the drop in stiffness of the elastic supports after the

strain at the transition front reaches a critical value. Further, this

model has been applied to the analysis of the progressive collapse

of the San Saba bridge ( Movchan et al., 2015 ), and the collapse rate

of this bridge can be accurately predicted by the model. 

Models of fracture in periodic structures may have applications

to very important phenomena such as the progressive collapse of a

civil engineering structure. Engineering studies of this phenomena

have been used to analyse the collapse of the Twin Towers, World

Trade Centre, New York, on 9/11 ( Bažant et al., 2007 ). Some discus-

sions of progressive collapse in the case of bridges as a result of lo-

calised damage or unwanted vibrations caused by natural disasters

such as earthquakes can be found in Kawashima et al. (2009) and

Liu et al. (2011) . Collapse of the several bridges due to the catas-

trophic Wenchuan earthquake, China, in 2008 has been reported in

Kawashima et al. (2009) . 

As another example, in Fig. 1 we show the result of sponta-

neous progressive collapse of house roofing in Tottenham, London,

U.K., 2014. The rooftop is composed of support rafters that attach

to the walls of the house (along the dashed line at 3) and to a

ridge beam at the roof apex. The damage has been initiated at the

point 1a. where the ridge beam was connected to one of the neigh-

bouring houses. After this, the ridge beam drops from this point

suddenly and as a result the supporting rafters along ridge beam

are progressively pushed outward as the damage propagates to 2.

The collapse has also led to the damage of connections between

the base of the rafters and the house walls (their original posi-

tion marked with the dashed line at 3), leaving a substantial part

of the rooftop hanging over the house walls. The damage process

that can be characterised by the result of transverse movement of

the ridge beam that brings about the damage of the connections

between the support rafters and the house at the dashed line 3.

This process can be linked to the propagation of fracture of the

transverse supports of a discrete structure within a rigid interface

as a result of transverse movement of the central beam, see Fig. 2 .
e note that the rooftop considered in Fig. 1 is one example of

he failure of a beam structure. The focus of the current article

s not to analyse the failure mechanisms of this rooftop, but to

nderstand such a phenomenon in a structure such as in Fig. 2 ,

hich is closely linked to the collapse of buildings, long rooftops

nd bridges amongst many others. 

Civil engineering structures considered in Bažant et al. (2007) ,

awashima et al. (2009) and Liu et al. (2011) are also known as

ulti-structures. Understanding their performance when in opera-

ion and their failure mechanisms is of great importance. An ex-

osition into the asymptotic theory of boundary value problems

or finite multi-structures (without failure mechanisms though) has

een given in the monograph ( Kozlov et al., 1995 ), with applica-

ions to problems in electrostatics, hydrodynamics, structural me-

hanics and in particular fracture mechanics. 

An alternative analysis of multi-structures, again without fail-

re, involves the multi-scale asymptotic homogenisation approach

resented in Panasenko (2005) . This approach encapsulates the ef-

ects brought about by the microstructure, similar to the discrete

eriodic lattice approach presented here, in Slepyan (2002) and

eferences therein. In dynamic problems, homogenisation is fre-

uency dependent and efficient methods have been developed to

reat high frequency regimes ( Craster et al., 2010 ). 

In the present paper, we consider a similar structure as in

yvkin and Slepyan (2010) , Brun et al. (2013) and Movchan et al.

2015) but assume a failure wave propagation under a sinusoidal

ncident wave. The appeal of such structures is that they are more

ommonly found in applications than those formed by springs. For

he first time, the steady dynamic fracture of a beam structure

s considered here. In accordance with Slepyan et al. (2015) , we

xpect that there exists a domain inside some parameter space

http://www.tottenhamjournal.co.uk/news/lunchbreak_saves_lives_of_builders_in_tottenham_roof_collapse_1_3858222
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Fig. 3. Positive directions of displacements, rotations, moments and shear forces 

within elements of the structure in Fig. 2 . 

i  

e  

b  

s  

t  

a  

A  

t  

s  

η  

i

 

c  

s  

i  

d  

w  

m  

o  

s  

a

w  

w  

t  

c  

f

 

w  

i  

t  

s  

t  

t

3

s

 

b  

t  

T  

c

H  

i  

S  

n  

f

3

 

b  
here the steady-state solution is realised. While analysing the

teady-state fracture response gives us a good description of as-

ociated phenomena, non-physical solutions associated with this

odel provide information of when such regimes do not exist. In

ddition, there may be different loading on the structure and since

he problem is nonlinear, the response may be different. We there-

ore restrict ourselves to considering sinusoidal loading, which is

ery typical of such problems. Note that the phenomena corre-

ponding the sinusoidal loading differs much from those for the

nvariable load (as was discussed in Slepyan et al., 2015 ). In par-

icular, in the steady-state regime, the transition wave speed co-

ncides with the incident wave phase speed independently of its

mplitude and frequency, and this limits the domain where such

 regime can exist. Here the transition wave under the action of a

inusoidal incident wave can propagate steadily only if the group

elocity of the latter exceeds the phase speed, which is character-

stic for a bending wave. In addition, for the considered problem,

he lattice periodicity, along with the beam-related mode of the in-

eraction and the wave action are completely incorporated for the

rst time. 

The structure of the article is as follows. In Section 2 we for-

ulate the dynamic fracture problem for discrete beam strip, as

hown in Fig. 2 , composed of massless beams and periodically

laced masses. Section 3 contains the governing equations and

ssociated solutions for the massless beams necessary for fur-

her analysis. We also present the equations for the balance of

hear forces and moments at nodal points inside the strip, which

re then converted in terms of displacements and rotations at

ach node in Section 3.2 . Following this, in Section 3.2 , the prob-

em is reduced to a Wiener–Hopf equation. The dispersion re-

ations for the structure are presented. The general solution of

his Wiener–Hopf equation is derived in Section 4 for a general

peed of the fracture transition front, while also assuming a sinu-

oidal feeding wave provides energy to the front. In addition to

his, Section 4 also contains the analytical description of the dy-

amic properties of the structure. In Section 5 , the distribution

f the feeding wave energy amongst the other dynamic features

n the structure is considered, and this is followed by conclusions

n Section 6 . Finally, some technical derivations of the results pre-

ented here are given in Appendix A . 

. The problem formulation 

We consider the discrete structure as in Fig. 2 , composed of

assless beams connecting periodically placed point masses along

he central axis of the structure (along the x ′ -axis). Each node is

dentified with an integer m ∈ Z and at these nodes the masses are

ssumed to have mass M . The beam connections emanating from

ach mass have length a , and the longitudinal beams have Young’s

odulus E 1 and second moment of area I 1 . In what is considered

elow, transverse beams inside the structure have contrasting ma-

erial properties to the longitudinal beams, and have Young’s mod-

lus E 2 and second moment of area I 2 . 

Equations governing the structure will be completely written

n terms of the displacements w m 

(t) and the rotations θ x 
m 

(t) of

he node at m . Bending moments and shear forces inside the m th

ongitudinal beam are denoted by M 

x 
m 

(x, t) and V x m 

(x, t) . Here,

 = x ′ − am is the local coordinate in the m th beam and 0 < x < a .

y symmetry of the structure we restrict our attention to the shear

orce V y m 

(y, t) inside the m th transverse beam having local coordi-

ate y , 0 < y < a , when considering the balance of shear forces

n Section 3.1 . The positive directions of the bending moments in

he horizontal and vertical directions of the structure are shown in

ig. 3 . 

In Fig. 2 , the case m = 0 represents the interface between

roken structure (without transverse supports, m < 0) and the
ntact structure (with transverse supports, m ≥ 0). In the consid-

red problem, fracture is assumed to occur inside the transverse

eams (symmetric about the longitudinal axis) and propagate with

peed V inside the structure. Thus the transition front at some time

 can be located at m = k (t ) , k (t ) ∈ Z and can move a distance

 within the structure to the right, after the time interval a / V .

s the transition front moves, the broken structure can be iden-

ified by the inequality m < Vt / a and the intact structure corre-

ponds to m > Vt / a . Later we will introduce the moving coordinate

= m − V t/a as in Slepyan (2002) , for which η ≥ 0 represents the

ntact structure and η < 0 will represent the broken structure. 

Fracture occurs inside the structure as follows. Let w c be the

ritical displacement for fracture of the transverse links inside the

tructure to occur. Suppose at a particular time, the transition front

s at the mass m = k, k ∈ Z (corresponding to η = 0 ). When the

isplacement associated with the considered mass, w k (t) , satisfies

 k (t) = w c , the transition front moves to the mass associated with

 = k + 1 . For steady-state fracture, in addition to this condition

ne must also impose that the displacements ahead of the tran-

ition front do not reach the fracture criterion w c . Therefore, we

ssume that 

 k (t) = w c , w j (t) < w c , j > k, (1)

here k ∈ Z represents the node position of the transition front at

ime t . It is worth noting that any solution violating the preceding

ondition provides interesting information about when non-steady

racture regimes can occur. 

Connections will be derived later on the critical displacement

 c in order for the steady-state solution to exist. Several scenar-

os for the fracture of the transverse links are possible. In Fig. 2 ,

he fracture occurs directly at the interfaces above and below the

tructure. It is shown later that the equations governing the struc-

ure are independent of where the breakage occurs, provided that

he symmetry of the structure is maintained. 

. Governing equations, dispersive nature of the structure and 

olution to the problem 

Here, we consider the governing equations for the massless

eam structure in Fig. 2 . First, we introduce the fundamental rela-

ions for the beam connections inside the structure in Section 3.1 .

hen governing equations for the masses in the beam structure are

onsidered in Section 3.2 and this is shown to reduce to a Wiener–

opf equation from which the dispersive nature of the structure is

dentified. We present the solution to this Wiener–Hopf problem in

ection 4 and this is used to provide a full description of the dy-

amic features of the structure that occur during the steady-state

racture process. 

.1. Fundamental equations for the massless beam 

We compute expressions for the displacements inside the

eams that will be used to construct the governing equations in
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terms of the displacements and rotations of the m th node in the

next section. 

For the massless Bernoulli–Euler beam model, from the

equation 

∂ 4 W (x, t) 

∂x 4 
= 0 (2)

and the boundary conditions 

 (0 , t) = w m 

(t) , 
∂W 

∂x 
(0 , t) = θ x 

m 

(t) , 

 (a, t) = w m +1 (t) , 
∂W 

∂x 
(a, t) = θ x 

m +1 (t) , (3)

we have 

 (x, t) = 

[
2(w m 

(t) − w m +1 (t)) + a (θ x 
m 

(t) + θ x 
m +1 (t)) 

]x 3 

a 3 

+ 

[
3(w m +1 (t) − w m 

(t)) − a (θ x 
m +1 (t) + 2 θ x 

m 

(t)) 
] x 2 

a 2 

+ θ x 
m 

(t) x + w m 

(t) , (4)

where the rotation, bending moment and transverse force are

defined as 

θ = 

∂W (x, t) 

∂x 
, M = −EI 

∂ 2 W (x, t) 

∂x 2 
, V = −EI 

∂ 3 W (x, t) 

∂x 3 
. (5)

The expressions in (4) and (5) can be used for both the longitu-

dinal beams and the transverse beams (substituting the respective

boundary conditions at y = 0 and y = a ). Also recall for the longi-

tudinal (transverse) links E = E 1 (E 2 ) and I = I 1 (I 2 ) . Note that if a

transverse massless beam is broken it does not influence the lon-

gitudinal structure’s dynamics. For the intact transverse beams we

state the following conditions: 

W = θ = 0 ( at the interface ) , 

W = w m 

, θ = 0 ( at the central longitudinal beam ) , (6)

which leads to expressions for W inside the intact transverse

beams: 

 (y, t) = 2 w m 

(t) 
y 3 

a 3 
− 3 w m 

(t) 
y 2 

a 2 
+ w m 

(t) 

( above the central longitudinal beam ) , (7)

and to determine the displacement in the transverse beam below

the m th node in the intact part, we replace y by a − y in (7) . 

We note that if the beams composing the structure were

to have non-negligible density then the representations (4) and

(7) are no longer valid as a result of the incorporation of a dy-

namic term in (2) . 

3.2. Governing equations for the massless beam structure 

Here we construct the governing equations for the problem un-

der consideration using the expressions for the displacements in-

side the m th longitudinal and transverse beams derived in the pre-

vious section. The dynamic equation in terms of the balance of

shear forces at the m th node is 

V x m 

(0 , t) − V x m −1 (a, t) + (V y, top 
m 

(0 , t) − V y, bottom 

m 

(a, t)) H(m − V t/a ) 

− M 

d 

2 w m 

(t) 

d t 2 
= 0 , (8)

where M is the mass of the node at the m th junction. Here V x m 

(x, t)

is the shear force in the m th horizontal beam and V y, top 
m 

(y, t)

( V y, bottom 

m 

(a, t) ) is the shear force in the transverse beams above

(below) the m th mass in the intact region. 

Here we do not take into account the moment of inertia of the

mass, and so the balancing of the moments gives 

M 

x 
m 

(0 , t) − M 

x 
m −1 (a, t) = 0 . (9)
We now consider the steady-state problem, where the free

ongitudinal beam with the point masses are placed at η = m −
 t/a < 0 (with the assumption that the speed V = const), and the

upported one is placed at η ≥ 0. 

According to (4) and (5) , we have 

 

x 
m 

(x, t) = −6 E 1 I 1 
a 3 

{ 2(w m 

(t) − w m +1 (t)) + a (θ x 
m 

(t) + θ x 
m +1 (t)) } , 

(10)

 

x 
m 

(x, t) = 

2 E 1 I 1 
a 3 

{ 3(a − 2 x )(w m 

(t) − w m −1 (t)) 

+ a (a − 3 x )(θ x 
m +1 (t) + θ x 

m 

(t)) + a 2 θ x 
m 

(t) } (11)

hereas from (5) and (7) , if m ≥ Vt / a 

 

y, top 
m 

(0 , t) = −12 E 2 I 2 
a 3 

w m 

(t ) and V y, bottom 

m 

(a, t ) = 

12 E 2 I 2 
a 3 

w m 

(t ) .

(12)

ext we introduce the normalisation that V = 

√ 

E 1 I 1 / Ma v , where

 is the dimensionless speed and use (8) –(12) together with the

ssumption 

 m 

(t) = w (m − V t /a ) , θ x 
m 

(t ) = θ x (m − V t/a ) . (13)

o obtain the following equations: 

 { 2[2 w (η) − w (η − 1) − w (η + 1)] + a [ θ x (η + 1) − θ x (η − 1)] } 
+ 24 rw (η) H(η) + v 2 

d 

2 w (η) 

d η2 
= 0 , (14)

nd 

[ w (η + 1) − w (η − 1)] −a [ θ x (η + 1) + θ x (η − 1) + 4 θ x (η)] = 0 ,

(15)

here 

 = E 2 I 2 / (E 1 I 1 ) (16)

s a dimensionless parameter which governs the contrast in ma-

erial properties in orthogonal directions inside the structure. We

ote that when the bending moments appearing in (9) are zero, in

ddition to the rotations of each mass, problem (14) and (15) re-

uces to the familiar one-dimensional fracture problem of the

pring structure in an interface, arranged as in Fig. 2 . 

As suggested by (14) , the transverse connections act as spring

upports. This effect is general and independent of how the trans-

erse beams are connected at the periodically placed masses along

he central axis. In the present case, one could replace the trans-

erse beam connections by an equivalent spring with stiffness � =
4 E 2 I 2 /a 3 . 

In addition to (14) and (15) , for steady-state fracture, we impose

 

′ (+0) < 0 , (17)

hich ensures the displacement of the central axis of the struc-

ure, ahead of the transition front, does not increase past the criti-

al displacement (see (1) ). 

Note for a homogeneous beam structure ordered as in Fig. 2 ,

 = 1 . Next we introduce the Fourier transform with respect to η
s 

 

F (k ) = 

∫ ∞ 

−∞ 

w (η) e i kηdη, and θ x F (k ) = 

∫ ∞ 

−∞ 

θ x (η) e i kηdη, (18)

here the dimensionless wavenumber k = ̃

 k a ( ̃ k is the original

avenumber). This transform is taken in Eqs. (14) and (15) . 

Let ˆ w 

F = w 

F /a which is a dimensionless quantity, the Fourier

ransform of (15) with respect to η leads to 

x F = − 3 i sin k 

2 + cos k 
ˆ w 

F (19)
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a b

Fig. 4. (a) Dispersion relations ω j ( k ), j = 1 , 2 , plotted as functions of the dimensionless wavenumber k , when (a) r = 0 . 5 and (b) r = 1 . In (a) the line ω = k v , for v = 

v 1 , 0 . 78 , 0 . 83 and v 2 , is presented and in (b) the same line is given for v = v 1 , 0 . 8 , 0 . 909 and v 2 . The dashed lines indicate the limits of the gradient v of the lines, which are 

also limits of the speed regimes V I and V II , (see Section 3.2.2 ). The solid black rays corresponding to (a) v = 0 . 78 and (b) v = 0 . 8 are shown, that indicate p j , j = 1 , 2 , as the 

zeros of g 2 ( k ) and q i , 1 ≤ i ≤ 3, as the zeros of g 1 ( k ). 
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h I  
nd consequently from (14) we receive 

 

{
4(1 − cos k ) − 6 sin 

2 
k 

2 + cos k 

}
ˆ w 

F + 24 r ̂  w + + (0 + i k v ) 2 ˆ w 

F = 0 , 

(20) 

here the one-sided transforms ˆ w ± are defined through 

 ̂

 w ± = w ±(k ) = 

∫ ∞ 

−∞ 

˜ w (η) H(±η)e i kη d η , (21) 

nd 0 + i k v = lim ε→ +0 ε + i k v . This limit corresponds to the steady-

tate solution as the limit that is in accordance with the causality

rinciple (see Slepyan, 2002 ). In what follows, we omit the hat ˆ

ccurring in the above the quantities in (21) . 

The Wiener–Hopf equation, without the incorporation of an ex-

ernal load, then follows as 

 1 (k ) w + (k ) + g 2 (k ) w −(k ) = 0 (22) 

ith 

 1 (k ) = 

12(1 − cos k ) 2 

cos k + 2 

+ 24 r + (0 + i k v ) 2 , (23)

 2 (k ) = g 1 (k ) − 24 r, (24)

nd the contrast parameter r is defined in (16) . 

.2.1. Dispersion relations for the beam structure 

The dispersion relations for the structure can be found by set-

ing ω = k v as in Slepyan (2002) , with ω being the dimension-

ess angular frequency ( ̃  ω = ̃

 k V = 

√ 

E 1 I 1 / Ma 3 ω is the actual angu-

ar frequency), and solving g j (k ) = 0 , j = 1 , 2 , which leads to 

 1 (k ) = 

√ 

12(1 − cos (k )) 2 

cos (k ) + 2 

+ 24 r (when g 1 (k ) = 0 ) (25) 

nd 

 2 (k ) = 

√ 

12(1 − cos (k )) 2 

cos (k ) + 2 

(when g 2 (k ) = 0 ) . (26)

The dispersion relations (25) and (26) are plotted in Figs. 4 and

 as functions of the normalised wavenumber k , for the case when

 = 0 . 5 , 1 , 1 . 5 and 4. The ray ω = k v is also plotted in these fig-

res for various speeds. The intersection of the ray ω = k v with

 1 ( k ) ( ω 2 ( k )) represents a wave propagating to the right (left) of

he transition front within the structure. Direct comparison of the

roup velocity of the wave v g = d ω 1 (k ) / d k ( d ω 2 ( k )/ d k ) at these
ntersection points with the phase speed v indicate which waves

ill reach the transition front. At intersections of ω = k v with

 1 ( k ) ( ω 2 ( k )), if v g > v ( v g < v ) then the corresponding waves will

ropagate away the transition front, otherwise they will propagate

owards this front if v > v g ( v g > v ). 

.2.2. A particular speed range and associated fracture phenomena 

As an example, we consider the dimensionless speed in the

ange v 1 < v < v 2 , with v 1 = 0 . 74 and v 2 = 2 . 335 . According to the

ispersion diagrams, in this speed range the function g 2 ( k ) will

nly have a double zero at k = 0 and two pairs of simple zeros at

p 1 , ±p 2 (see the intersections of the solid line ω = k v with the

unction ω 2 ( k ) in Figs. 4 and 5 ). We will see that the considered

peed range for v can also be partitioned into two speed ranges

efined by sets V I and V II : 

V I := { v : g 1 (k ) = 0 for k = ±q 1 , q 1 	 = 0 } , 
 II := { v : g 1 (k ) = 0 for k = ±q j , 1 ≤ j ≤ 3 , 

q j 	 = 0 and are distinct } . (27) 

If the speed v < v 1 , then the same concepts are extendable to

his case. There, one may expect the density of sets representing

arious collections of zeros of g j , j = 1 , 2 , to increase and the pro-

edure developed here can be applied to these cases. 

For v ∈ V I , the pair of simple zeros of g 1 ( k ) is denoted by ± q 1 ,

hereas for v ∈ V II , in addition to these zeros we have two more

airs of simple zeros at k = ±q 2 , ±q 3 . Examples of when the speed

 is chosen so that v ∈ V II can be found in Fig. 4 , whereas when

 ∈ V I an example is shown in Fig. 5 (a) and (b). The behaviour of

he wave numbers p i , i = 1 , 2 , and q j , 1 ≤ j ≤ 3 as a function of

 can be found in Fig. 5 (c) for r = 1 . Here the existence of the

avenumbers q 2 and q 3 as a function of v can be seen and they

ppear when v ∈ V II = (0 . 815 , 0 . 985) . 

The sets V I and V II have a particular physical interpretation. If

 ∈ V I , then no wave will be transmitted into the intact part of the

tructure. If v ∈ V II , then one can find that waves will be transmit-

ed inside the intact part of the structure. The dispersion diagrams

in Figs. 4 and 5 ) show that for certain r values we can expect

o encounter two different physical behaviours of the structure for

uite large speeds v , by the presence of both speed ranges V I and

 II . 

In Fig. 5 (b), another property of the set V II is also highlighted,

here the set can be composed of discrete intervals of values for

 . Here, in Fig. 5 (b), there occurs two small discrete intervals and

or this value of r , V II = (0 . 74 , 0 . 775) ∪ (1 . 272 , 1 . 3) . The same be-

aviour of the set V can also be asserted, and we refer to Fig. 5 (a),
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a b

c

Fig. 5. (a) Dispersion relations ω j ( k ), j = 1 , 2 , plotted as functions of the dimensionless wavenumber k , when r = 1 . 5 . The line ω = k v , for v = v 1 , 0 . 815 , 0.985, 1.2 and v 2 , 
is presented. The description of p i , i = 1 , 2 , and q j , 1 ≤ j ≤ 3 is given in Fig. 4 . (b) Dispersion curves corresponding to the case when contrast parameter r = 4 and the lines 

ω = k v for v = v 1 , 0 . 775 , 1 . 272 , 1 . 3 , 1 . 5 and v 2 . (c) The roots p i , i = 1 , 2 , and q j , 1 ≤ j ≤ 3 plotted as functions of the dimensionless speed v for r = 1 . 5 . 
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to demonstrate that this set can be composed of two discrete inter-

vals, represented as V I = (0 . 74 , 0 . 815) ∪ (0 . 985 , 2 . 335) . Therefore,

for increasing v inside v 1 ≤ v ≤ v 2 , we may oscillate between ei-

ther of the two physical regimes connected with the sets V I and

V II , (see Fig. 5 (b)). 

3.2.3. General description of zeros of the functions g j , j = 1 , 2 

The function g 2 ( k ) has a double zero at k = 0 and two or more

pairs of non-trivial simple zeros at k = ±p 1 , . . . , ±p 2 n , where n ≥
1. Here p 1 < p 2 < ���< p 2 n . Note that n = 1 when v 1 < v < v 2 ,
whereas n = 0 for v > v 2 and non-trivial zeros of g 2 ( k ) do not exist.

For j = 1 , . . . , n 

(i) at k = p 2 j−1 , v < v g , 
(ii) at k = p 2 j , v > v g , 

as demonstrated in Fig. 4 . 

The function g 1 ( k ) has one, three or more pairs of simple zeros

k = ±q 1 , . . . , ±q 2 ν+1 , with ν ≥ 0. These zeros form a monotonically

increasing sequence i.e. q 1 < q 2 < · · · < q 2 ν+1 . For each value of the

contrast parameter r 

ν = 0 , if v > v 0 (r) , 

where v 0 (r) is a monotonically increasing function of r . As an ex-

ample v 0 ( r ) ≈ 1.0519 when r = 2 . Also note if r ≥ 2 

p 2 n < q 1 . 

The preceding inequality does not hold if r < 2. For 

(i) j = 0 , . . . , ν, at k = q 2 j+1 , v > v g , 
(ii) j = 1 , . . . , ν, at k = q 2 j , v < v g . 
L  
ere, those points corresponding to the inequality v < v g , (v > v g )
re located in the lower (upper) half of the complex plane after

ntroduction of the small parameter ε in the above problem (with

 → +0 ). 

In the next section we derive the general solution for the

iener–Hopf equation for any speed v . 

. General solution of the Wiener–Hopf equation (22) 

We discussed the waves propagating internally through two dif-

erent parts of the structure, but these waves should be generated

y an external action. Clearly, the collection of dynamic features

nside the structure will depend on such an action. As an external

oad, here, we will define the remote force that produces waves

ropagating from infinity to the right inside the broken part of the

tructure (feeding waves), that will move the transition front to

he right with a constant speed. This movement will initiate other

aves (reflected waves that move from the right to the left and

ransmitted waves that move from the left to right of the transi-

ion front, see Slepyan, 2002 ). 

We begin by rewriting the homogeneous equation (22) as 

 + (k ) + L ∗(k ) w −(k ) = 0 , (28)

ith L ∗(k ) = g 2 (k ) /g 1 (k ) , that has zeros and singular points lo-

ated in both the upper and lower half of the complex plane and

 ( k ) → 1 as k → ±∞ . It is possible to construct L ∗ in the form 

 

∗(k ) = 

	+ (k ) 

	−(k ) 
L (k ) , (29)
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here according to Section 3.2.3 

+ = 

(1 − i k ) 2(ν−n ) 
∏ n 

j=1 (0 − i (k − p 2 j−1 ))(0 − i (k + p 2 j−1 )) ∏ ν
j=1 (0 − i (k − q 2 j ))(0 − i (k + q 2 j )) 

, 

(30) 

− = 

∏ ν
j=0 (0 + i (k − q 2 j+1 ))(0 + i (k + q 2 j+1 )) 

(1 + i k ) 2(ν−n ) (0 + i k ) 2 
∏ n 

j=1 (0 + i (k −p 2 j ))(0 + i (k + p 2 j )) 
. 

(31) 

The meromorphic functions 	± admit the asymptotes 

± = 1 ± 2i(ν − n ) 

k 
+ O 

(
1 

k 2 

)
, k → ±∞ . (32)

Note L ( k ), has neither zeros nor singular points on the real axis.

n addition, L (k ) > 0 (−∞ < k < ∞ ) and L ( k ) → 1 ( k → ±∞ ), with

e (L (ξ )) = Re (L (−ξ )) and Im (L (ξ )) = −Im (L (−ξ )) . (33)

Thus, we may factorize it using the Cauchy type integral 

L (k ) = L + (k ) L −(k ) , 

 ±(k ) = exp 

[
± 1 

2 π i 

∫ ∞ 

−∞ 

ln L (ξ ) 

ξ − k 
d ξ

]
(±� k > 0) (34) 

ith L ±(±i ∞ ) = 1 . The asymptotes for L ± for k → ±∞ are 

 ±(k ) = 1 ± i l 1 
k 

+ O 

(
1 

k 2 

)
, for k → ±∞ . (35)

ith 

 1 = 

1 

2 π

∫ ∞ 

−∞ 

ln L (ξ ) dξ = 

1 

π

∫ ∞ 

0 

ln | L (ξ ) | dξ . (36)

Then (28) and (29) imply 

1 

L + (k )	+ (k ) 
w + (k ) + 

L −(k ) 

	−(k ) 
w −(k ) = �(k ) , (37)

here �( k ) represents the loading from the left of the transition

ront and appears as a result of the division through Eq. (28) by

actors corresponding to zeros at k = ±p 2 j−1 − i 0 , j = 1 , . . . , n. The

unctions with the supports at k = ±p 2 j−1 , 1 ≤ j ≤ n , reflect the re-

ote actions at the left. If this action has frequency ω = p v v , then

his allows us to introduce in the right-hand side delta functions

f k at ±p v . Thus �( k ) can take the form 

(k ) = 

Ce i φ

0 + i (k − p v ) 
+ 

Ce i φ

0 − i (k − p v ) 

+ 

C e −i φ

0 + i (k + p v ) 
+ 

C e −i φ

0 − i (k + p v ) 
, (38) 

here C is a complex constant to be determined and φ is the

hase shift of the considered load. 

The solution of the Wiener–Hopf equation (37) then follows

s 

 + (k ) = 	+ (k ) L + (k ) 

[
Ce i φ

0 − i (k − p v ) 
+ 

C e −i φ

0 − i (k + p v ) 

]
(39) 

nd 

 −(k ) = 

	−(k ) 

L −(k ) 

[
Ce i φ

0 + i (k − p v ) 
+ 

C e −i φ

0 + i (k + p v ) 

]
. (40) 

.1. Far-field behaviour of the structure 

The poles of the functions w ± reveal information about the dy-

amic features within the structure to the far left and right of the

ransition front. We now trace the expressions which determine

he behaviour of the structure far away from the transition front. 
For η → −∞ , the behaviour of the original function w can be

dentified in the form 

 (η) ∼ w f + w s + 

n ∑ 

j=1 

w 

( j) 
r , η → −∞ . (41)

Here the term w f corresponds to the feeding wave generated

nside the structure which propagates to the transition front, that

s determined by the poles k = ±p v of w −. Note the points k = ±p v 
re removable singularities of w + defined by (39) and (30) . 

We assume that this feeding wave takes the form 

 f (η) = A cos (p v η − φ) , (42)

here A is the amplitude and φ is phase of this wave (already

ntroduced in (37) –(40) ). This feeding wave is produced from the

oad applied at η = −∞ . The phase shift, φ in (42) defines the po-

ition of the transition front, η = 0 , relative to the wave (see (38) ).

The functions w 

( j) 
r , 1 ≤ j ≤ n , represent reflected waves prop-

gating away from the transition front, associated with the poles

 = ±p 2 j , 1 ≤ j ≤ n . The term w s is a linear function of η that rep-

esents the slope of the beam for η → −∞ , which arises owing to

he pole k = 0 of w − in (40) . 

It is worth noting that no wave will propagate inside the intact

tructure if w + has no poles along the real axis (see (30) and (39) ,

or the case when ν = 0 ). On the other hand, if ν ≥ 1, we can ex-

ect the transmission of feeding wave energy into the intact region

nd we find 

 (η) ∼
ν∑ 

j=1 

w 

( j) 
tr , η → ∞ , (43)

here w 

( j) 
tr , 1 ≤ j ≤ ν , represent waves transmitted into the intact

art of the structure. These transmitted waves correspond to the

oles k = ±q 2 j , 1 ≤ j ≤ ν of the function w + . 
Through an appropriate choice of C in (39) and (40) , a relation

onnecting w c , A and φ can be determined which governs the ex-

stence of the steady-state propagation of the transition front. The

orm of remaining functions w 

(i ) 
r , 1 ≤ i ≤ n , w 

( j) 
t , 1 ≤ j ≤ ν and w s 

or η → −∞ can be determined explicitly using a similar approach.

In order to trace the expression for the feeding wave (42) from

he asymptotes of w − in the vicinity of k = ±p v it is necessary to

hoose C in the right-hand side of (38) as: 

 = 

L −(p v ) 

	−(p v ) 

A 

2 a 
, (44) 

nd the detailed derivation of (44) can be found in Appendix A . 

It also follows from (39) and (40) that 

w (0) 

a 
= lim 

k → i ∞ 

(−i k ) w + = lim 

k →−i ∞ 

(i k ) w − = 2 Re (Ce i φ ) , (45) 

nd equating this to the critical displacement, w c , we receive the

rst equation with respect to the unknown constants 

 Re (Ce i φ ) = 

w c 

a 
. (46) 

Here the division by a appears as a result of the normalisation

f displacement by the beam length in Section 3 . Thus, w c is com-

letely determined if the feeding wave amplitude and phase are

upplied. Alternatively, (46) takes the form: 

os (φ + ψ c ) = 

| 	−(p v ) | 
| L −(p v ) | 

w c 

A 

, (47)

 c = arg (C) = arg 

(
L −(p v ) 

	−(p v ) 

)
. (48)

It can then be established from (46) that the feeding wave am-

litude A and critical displacement w c must be chosen to satisfy

A 

w c 
≥ � = 

| 	−(p v ) | 
| L −(p v ) | (49) 
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Fig. 6. (a) The dependence of � on the dimensionless speed v for r = 

0 . 5 , 1 , 2 , 3 , 5 . 5 and 6. Dashed parts of each curve correspond to speeds v ∈ V II for 

that particular r value. (b) The ratio A/w c plotted as a function of the phase φ, for 

r = 1 and several values of the dimensionless speed. Dashed lines indicate the re- 

sults for those speeds in the set V II . The minimum for each curve is marked with 

a cross, which correspond to the points (φ, A/w c ) = (4 . 033 , 3 . 161) , (3.884, 4.471), 

(3.656, 11.589) and (3.634, 13.836). These points coincide with the value of � for 

the given values of v . In addition, circles have been added to curve to indicate com- 

binations of φ and A/w c for which (52) is invalid. 
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in order for the transition front to propagate steadily through the

structure. 

Owing to (32) –(36) the asymptote for w + in (39) as k → ±∞
is 

w + (k ) = 

2 Re (Ce i φ )i 

k 
−2[ Re (Ce i φ ) { l 1 + 2(ν−n ) } + p v Im (Ce ıφ )] 

1 

k 2 

+ O 

(
1 

k 3 

)
. (50)

Upon using the identity: 

lim 

� k → +0 

∫ ∞ 

0 

ηλe i kηdη = 

�(λ + 1) 

(0 − i k ) λ+1 
, 

we obtain from (50) that 

w (η) = w (+0) + ηw 

′ (+0) + O (η2 ) , for η → +0 , 

where 

w (+0) = 2 a Re (Ce i φ ) 

and 

w 

′ (+0) = 2 a 
[
Re (C e i φ ) { l 1 + 2(ν − n ) } + p v Im (C e i φ ) 

]
. (51)

Therefore, in accordance with (17) , with (51) we prescribe that

Re (Ce i φ ) { l 1 + 2(ν − n ) } + p v Im (C e i φ ) < 0 , (52)

where C is determined by (44) . The two conditions (46) and

(52) are then necessary and sufficient for the transition front to

propagate steadily through the structure. 

4.1.1. Minimum value of the feeding wave amplitude to steadily 

propagate the front with a given speed v 
The function � in (49) defines the minimum value of the feed-

ing wave amplitude that generates steady-state fracture at a given

speed v . The function � and its dependence on v for v 1 ≤ v ≤ v 2 , is
presented in Fig. 6 (a), for various values of the contrast parameter

r . The function is monotonically increasing for fixed v and increas-

ing r . Note that the dashed part of the curves correspond to those

speeds v ∈ V II . The function � is continuous as we move between

the sets V I and V II for increasing v , and shows a singular behaviour

as v → v 2 , (in this case p 1 and p 2 are approaching one another to

form a resonance point and where this occurs v = v g ). The function

� can change rapidly as we pass from v ∈ V I to v ∈ V II as shown for

r = 2 in Fig. 6 (a) near v = 0 . 8 . 

Fig. 6 (a) also shows the behaviour of the set V II . The position

of set V II shifts along the interval v 1 ≤ v ≤ v 2 and can redistribute

into several discrete sets inside this interval, for increasing r . From

r = 1 up to r = 5 . 5 one can identify an interval that forms part of

the set V II that shrinks with increase of r , reducing the possibili-

ties for transmission of waves into the intact structure. Further, for

r = 5 . 5 we can see the appearance of another range of speeds for

which transmitted waves can occur in the intact structure. Here,

we refer to the representation of V II in terms of discrete intervals

(mentioned in Section 3.2.2 ) in Fig. 6 (a) that form the set V II . The

set V I also appears in Fig. 6 (a) as the union of discrete intervals for

r > 1. 

A plot of the ratio A/w c as a function of the feeding wave speed

is provided in Fig. 6 (b) for the case r = 1 and various speeds v .
Note that condition (49) indicates the range of values for φ for

which (46) is valid and this range also depends on the speed of the

transition front. In addition, the right-hand side in (47) is positive

and only values of φ for which this condition is valid should be ac-

cepted if the feeding wave amplitude and the critical displacement

are known. 

In Fig. 6 (b), we see that the range of φ for which (47) is valid

shifts in the positive direction along the horizontal axis for increas-

ing v . For a given value of v , the curve will approach two verti-

cal asymptotes for values that coincide with the upper and lower

bounds of the range of admissible φ values. 
For every value of the transition front speed v , there is a value

f φ for which the ratio A/w c takes its minimum value. Physically,

or a given w c , these points can be linked to the minimum am-

litude A of the feeding wave required to propagate the transition

ront with a constant speed. It also implies that the energy gen-

rated by feeding wave to create the latter scenario is also at a

inimum (see Section 5 ). For every value of A/w c above this min-

mum value, we see there corresponds two values of φ satisfying

ondition (46) . 

We indicate on the curves in Fig. 6 (b) those values of A/w c and

for which condition (52) is not satisfied. For all speeds we show

hat the choice of φ is unique, and this is taken from the left of

he minimum point of each curve. 

.2. Other dynamic features to the left of the transition front 

.2.1. The reflected waves 

The terms w 

( j) 
r , 1 ≤ j ≤ n , correspond to the reflected waves

produced by poles at k = ±p 2 j + i0 of w − in (40) ). They can also

e derived through application of the residue theorem and the in-

erse Fourier transform. The function w 

( j) 
r , 1 ≤ j ≤ n , takes the

orm 

 

( j) 
r (η) = A 

( j) 
r cos (p 2 j η − ψ 

( j) 
r − α( j) 

r ) , for 1 ≤ j ≤ n, (53)
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here the reflected wave amplitude is given as 

 

( j) 
r = 

4 a | 	r 
−(p 2 j ) || C| 

| p 2 
2 j 

− p 2 v || L −(p 2 j ) | 
×

√ 

(p 2 j cos (φ + ψ c )) 2 + (p v sin (φ + ψ c )) 2 , (54) 

nd 

r 
−(p 2 j ) = lim 

k → p 2 j 

(0 + i (k − p 2 j ))	−(k ) . 

he terms in this wave’s phase shift are 

 

( j) 
r = arg 

(
	r 

−(p 2 j ) 

i L −(p 2 j ) 

)
(55) 

nd 

( j) 
r = arg 

(
1 

p 2 
2 j 

− p 2 v 
{ p 2 j cos (φ + ψ c ) + i p v sin (φ + ψ c ) } 

)
, 

ψ c = arg (C) . (56) 

or a detailed discussion of the derivation of the functions w 

( j) 
r , 1

j ≤ n , see Appendix A . 

.2.2. The inclination of the beam to the far left of the transition 

ront 

The remaining second order pole of w −, at k = 0i , in (40) gives

s the expression for the slope of the beam when η → −∞ . The

nclination of the beam to the far left of the transition front takes

he form 

 s (η) = A s η + B s (57)

here the coefficient of the linear term in η is 

 s = 

2 a Im (Ce i φ )	sl 
− (0) 

p v L −(0) 
(58) 

nd the constant 

 s = 

2 a i Im (Ce i φ )(	sl 
− ) ′ (0) 

p v L −(0) 

+ 

2 a 	sl 
− (0) 

p v L −(0) 

[
Re (Ce i φ ) 

p v 
+ 

Im (L ′ −(0)) 

L −(0) 
Im (Ce i φ ) 

]
. (59) 

Here, C is defined in (44) and 

sl 
− (k ) = 

(−1) ν−n +1 
∏ ν

j=0 (k 2 − q 2 
2 j+1 

) 

(1 + i k ) 2(ν−n ) 
∏ n 

j=1 (k 2 − p 2 
2 j 

) 
. (60) 

.3. Dynamic features to the right of the transition front 

.3.1. The transmitted waves w 

( j) 
tr 

In addition to the reflected waves propagating inside the struc-

ure to the left of the transition front (see Section 4.2.1 ), for ν >

 there exist transmitted waves inside the intact structure. The

orm of these waves can be traced by considering the poles at

 = ±q 2 j − i0 , 1 ≤ j ≤ ν , in the function w + (see (39) ). Therefore,

hen v is chosen so that ν > 0 and η → ∞ , one will see a linear

ombination of the waves w 

( j) 
tr , 1 ≤ j ≤ ν , in accordance with (43) ,

here 

 

( j) 
tr (η) = A 

( j) 
tr cos (q 2 j η − ψ 

( j) 
tr − α( j) 

tr ) , 1 ≤ j ≤ ν. (61)

Here 

 

( j) 
tr = 

4 a | 	tr 
+ (q 2 j ) || C|| L + (q 2 j ) | 

| q 2 
2 j 

− p 2 v | 
×

√ 

(q 2 j cos (φ + ψ c )) 2 + (p v sin (φ + ψ c )) 2 (62) 

w

here 

tr 
+ (q 2 j ) = lim 

k → q 2 j 

(0 − i (k − q 2 j ))	+ (k ) , 

nd terms in the phase of these waves are 

 

( j) 
tr = arg ( i	tr 

+ (q 2 j ) L + (q 2 j ) ) , 

α( j) 
tr = arg 

(
1 

q 2 
2 j 

− p 2 v 
{ q 2 j cos (φ + ψ c ) + i p v sin (φ + ψ c ) } 

)
, (63) 

ith ψ c defined in (48) . Note that the functions w 

( j) 
t = 0 , 1 ≤ j ≤

if v ∈ V I (this case corresponds to ν = 0 ). 

.4. The rotation of each mass inside the structure 

Having established the behaviour of the structure far from the

ransition front we now use the results of the previous sections to

ddress the behaviour of the rotations by using (19) . 

.4.1. Rotations of the masses to the left of the transition front 

roduced by the waves and the inclination 

Using the (42) and results of Section 4.2.1 , the forms of the

aves that exist inside the damaged part of structure are 

 f (η) = A cos (p v η − φ) , (64) 

 

( j) 
r (η) = A 

( j) 
r cos (p 2 j η − ψ 

( j) 
r − α( j) 

r ) , (65) 

ith 1 ≤ j ≤ n . We will concentrate on the feeding wave w f (η) as

n what follows results for the reflected (and transmitted waves in

he next section) can be derived in a similar way. 

The Fourier transform of w f (η) is then 

 

F 
f = = πA 

[
e i φδ(k − p v ) + e −i φδ(k + p v ) 

]
. (66) 

Insertion of this in (19) gives an expression for the Fourier

ransform of rotations θ x 
f 

generated by the feeding wave: 

x F 
f = − 3 π i sin k 

a (2 + cos k ) 
A [ e i φδ(k − p v ) + e −i φδ(k + p v )] . (67)

Applying the inverse Fourier transform yields 

x 
f (η) = −3 A i 

2 a 

sin p v 

(2 + cos p v ) 
[ e −i (p v η−φ) − e i (p v η−φ) ] . (68) 

Therefore, 

x 
f (η) = −3 A 

sin p v 

a (2 + cos p v ) 
sin (p v η − φ) . (69)

In a similar way to (64) and (66) —(68) , we can derive expres-

ions for the rotations θ x, j 
r associated with reflected waves w 

( j) 
r , in

65) , as 

x, j 
r (η) = −3 A 

( j) 
r 

sin p 2 j 

a (2 + cos p 2 j ) 
sin (p 2 j η − ψ 

( j) 
r − α( j) 

r ) , 

or 1 ≤ j ≤ n . 

In addition to the feeding and reflected waves existing to the

eft of the transition front, in Section 4.2.2 , we also showed there

xists a slope behind the transition front. To calculate the rotations

roduced by the slope, we take the Fourier transform of (57) to

btain 

 

F 
s = 2 π [ −i A s δ

′ (k ) + B s δ(k )] . (70)

Then, in a similar way to the previous section, using (70) we

an write 

x 
s (η) = 

A s 

a 
, (71) 

here θ x 
s are the rotations produced by the linear function w s . 
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a b

Fig. 7. Displacements along the central axis of the beam-made strip based on the inverse Fourier transform of (39), (40) and (19) . Masses in the structure are shown by 

black dots and those masses which are supported by transverse links are also provided with red-crosses ( η ≥ 0). In (a), we show the displacements both ahead and behind 

the transition front, where one can observe the slope inside the structure and the feeding and reflected waves. The gradient of the slope (also predicted by the theory) is 

represented by the red dashed line, with gradient equal to A s ( = −6 . 287 ) of (57) . In (b), we show computations in the vicinity of the transition front, that shows no wave is 

transmitted to the intact structure. Parameters used in the computations where M = 1 , a = 1 , E 1 = I 1 = 1 , E 2 I 2 = 0 . 5 , ( r = 0 . 5 ), and w c = 2 . 51 . The feeding wave amplitude is 

A = 5 . 002 and this profile occurs as the front steadily propagates with speed v = 1 . 7214 ∈ V I . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

s

 

s  

t  

e  

t  

w  

f  

d  

w

>  

n  

f

5

 

f  

t  

h  

o

5

 

s  

a  

f  

l

G  

w

 

 

(iv) G is the kinetic energy of the masses generated by (57) . 
4.4.2. Rotations of the masses produced by the transmitted waves 

ahead of the front 

In similar way to the derivation of (69) , we can assert that the

rotations θ x, j 
tr produced by the waves w 

( j) 
tr , 1 ≤ j ≤ ν , (see (61) ),

are given by the formula 

θ x, j 
tr (η) = −3 A 

( j) 
tr 

sin q 2 j 

a (2 + cos q 2 j ) 
sin (q 2 j η − ψ 

( j) 
tr − α( j) 

tr ) . 

4.5. Illustration: beam profiles during the steady-state fracture 

process 

One can compute the inverse Fourier transform of (39) and

(40) to retrieve the analytical solution for the displacements. In

addition, the solution presented in (39) and (40) needs to be com-

bined with (19) , and then the inverse Fourier transform is taken

to receive the rotations of each mass. The inverse Fourier trans-

forms can be computed numerically to obtain values of the mass

rotations and displacements and we can use these to construct the

beam displacements between each node along the central axis of

the structure with (4) . 

The results are shown for two cases, when v ∈ V I and v ∈ V II in

Figs. 7 and 8 , respectively. In Fig. 7 (a), we show the normalised

displacements w/w c along the central beam of the structure as a

function of η ahead and behind the transition front. In this case,

nodes have mass M = 1 and the beams have the properties a = 1 ,

E 1 = I 1 = 1 , E 2 I 2 = 0 . 5 , ( r = 0 . 5 ), and w c = 2 . 51 . The feeding wave

amplitude is A = 5 . 002 . For these parameters, the speed of the

transition front is v = 1 . 7214 ∈ V I . Masses are represented in this

figure by the black dots and those which are supported by the

transverse beams are supplied with red crosses ( η ≥ 0). We also

represent the critical displacement condition w/w c = 1 by the hori-

zontal dashed line. In Fig. 7 (b), we present the same displacements

in the vicinity of the transition front ( η = 0 ). 

During the steady-state fracture process, one can clearly iden-

tify the slope behind the transition front (in Fig. 7 (a)), along which

the feeding and reflected waves propagate along. The gradient of

this slope is predicted using A s of (57) , we also supply a red dashed

line having gradient A s = −6 . 287 demonstrating the slope behind

the transition front has exactly this inclination. On the other hand,

as v ∈ V , according to the theory presented here, no wave is
I 
ransmitted to the intact structure and this is precisely what is ob-

erved in both Fig. 7 (a) and (b). 

On the contrary, when v ∈ V II , one may expect the transmis-

ion of a wave into the intact structure. In Fig. 8 (a), a view of

he profile of the structure is given, for the same material param-

ters as in Fig. 7 . Here, the feeding wave amplitude is A = 8 . 077 ,

he inclination of the slope A s = −5 . 435 , the critical displacement

 c = 0 . 5468 and v = 0 . 7745 ∈ V II . Again for v ∈ V II we see the slope

ollowing the propagation of the transition front. In Fig. 8 , we

emonstrate there is a wave transmitted into the intact structure

ith amplitude A t = 0 . 07672 when v ∈ V II (clearly observed for η
 2 in Fig. 8 (b), indicated by the red dashed line A t /w c ), whereas

ear η = 0 there is also some local deformation near the transition

ront. 

. Energy redistribution within the structure 

In this section we investigate how the energy carried by the

eeding wave is distributed within in the structure during the frac-

ure process. In particular, we identify how the slope occurring be-

ind the transition front influences the wave radiation properties

bserved in the fracture process. 

.1. Energy balance 

The energy G f carried by the feeding wave can be written as the

um of energies carried by the other waves inside the structure, in

ddition to the kinetic energy given to the masses by the linear de-

ormation (57) and the strain energy required to break transverse

inks at η = 0 . Thus, we can write 

 f = G 0 + 

n ∑ 

j=1 

G 

( j) 
r + 

ν∑ 

j=1 

G 

( j) 
tr + G k (72)

here 

(i) G 0 is the energy spent on breaking the transverse links, 

(ii) G 

( j) 
r , 1 ≤ j ≤ n , is the energy carried by the reflected waves,

(iii) G 

( j) 
tr , 1 ≤ j ≤ ν , is that carried by the transmitted waves, and
k 
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a b

Fig. 8. Displacements along the central axis of the beam-made strip based on the inverse Fourier transform of (39), (40) and (19) . Description of both diagrams is given in 

Fig. 7 . In (a), again we show the slope inside the structure and the feeding and reflected waves during the fracture process. The gradient of the slope (also predicted by 

the theory) is represented by the red dashed line, with gradient equal to A s ( = −5 . 435 ) in (57) . In (b), we show computations in the vicinity of the transition front, where a 

wave is transmitted to the intact structure with amplitude A t = 0 . 07672 (a red dashed line corresponding to A t /w c is shown). Parameters used in the computations where 

M = 1 , a = 1 , E 1 = I 1 = 1 , E 2 I 2 = 0 . 5 , ( r = 0 . 5 ), and w c = 0 . 5468 . The feeding wave amplitude is A = 8 . 077 and this profile occurs as the front steadily propagates with speed 

v = 0 . 7745 ∈ V II . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.1.1. The strain energy G 0 

The energy released due to the breakage of the two transverse

inks at η = 0 can be computed as 

 0 = −
∫ a 

0 

M (y, t) 
∂ 2 W (y, t) 

∂y 2 
dy = 

12 E 2 I 2 
a 3 

w 

2 
c , (73)

here it is noted that the quantity W is defined by (7) for η = 0

under the assumption w m 

(t) = w (η) , θ x 
m 

(t) = θ x (η) ) and M is

iven in (5) with E = E 2 and I = I 2 . Here, if the feeding wave am-

litude A and the phase φ are supplied, then G 0 can be calculated

sing (46) and (73) . 

.1.2. The energy carried by the feeding and dissipative waves 

The energy G f carried by the feeding wave takes the form 

 f = aN f 

| v g − v | 
v g 

, (74) 

hereas the energies G 

( j) 
r and G 

( j) 
tr carried by the reflected and

ransmitted waves, respectively, can be calculated through 

G 

( j) 
J 

= aN 

( j) 
J 

| v g − v | 
v g 

, J = r, tr . (75)

ere N f is the time-averaged energy flux density produced by the

eeding wave and this is given by 

 f = 

3 A 

2 E 1 I 1 p v V sin (p v )( cos (p v ) + 5)(1 − cos (p v )) 

a 4 (2 + cos (p v )) 2 
(76) 

nd for the reflected and transmitted waves 

 

( j) 
J 

= 

3(A 

( j) 
J 

) 2 E 1 I 1 k 
( j) 
J 

V sin (k ( j) 
J 

)( cos (k ( j) 
J 

) + 5)(1 − cos (k ( j) 
J 

)) 

a 4 (2 + cos (k ( j) 
J 

)) 2 
, 

J = r, tr , (77) 

here 

 

( j) 
r = p 2 j , 1 ≤ j ≤ n, and k ( j) 

tr = q 2 j , 1 ≤ j ≤ ν. 

lso, v g is the group velocity for the wave considered ( v g = 

dω 
dk 

). 

.1.3. Kinetic energy of the masses along the inclination of the beam 

The kinetic energy for the masses along the inclination ob-

erved for η → −∞ is 

 k = 

M 

2 

(
∂w s (η) 

∂t 

)2 

= 

M 

2 

V 

2 

a 2 
A 

2 
s , (78)

hich follows from (57) . 
.2. Illustration: energy ratios 

.2.1. Dependence of the energy ratios on φ
In this section, we present numerical computations for the

peed range v 1 < v < v 2 , showing how the energy from the feed-

ng wave is distributed within the structure during the fracture

rocess. For this speed range, there exists a single reflected wave

((n = 1) , G 

( j) 
r = G r ) in the structure and the existence of transmit-

ed waves depends on the speed v and the contrast parameter r .

lso, as discussed in Section 3.2.2 , this speed range may be par-

itioned into the two sets V I and V II . For v ∈ V II , ν = 1 and there

s a single transmitted wave in the intact structure. The energy

his wave carries is denoted by G 

( j) 
tr = G tr . If v ∈ V I , then there exist

o transmitted waves in the intact structure and in (72) the terms

 

( j) 
tr = 0 , 1 ≤ j ≤ ν (in fact in this case ν = 0 ). 

In Fig. 9 (a) and (b), we show the dependence of the energy ra-

ios G 0 / G f , G r / G f , G tr / G f and G k / G f (using (73) —(78) ) on the phase

hift φ for the contrast parameter r = 1 . In this figure, it can be

een that in accordance with (72) , the energy ratios sum to unity. 

This figure shows some main features of the energy ratios as

unctions of φ, which can be observed for any value of r . In partic-

lar, there exists an optimal value of φ = φ∗ = 2 π − ψ c for which

he energy carried by the waves G r , G tr inside the structure and

he energy released due to fracture G 0 take their maximum value,

.g. in Fig. 9 (a), this occurs for approximately φ = 3 . 6 . 

At this optimal value of φ, the kinetic energy G k within the

tructure is zero. Consulting (78) , this implies the inclination A s 

f the structure to the far-left of the transition front is zero and

herefore the feeding wave energy is distributed only amongst the

aves. According to (71) , it also means the rotations produced by

57) to the far-left of the front are equal to zero. Thus, in the case
∗ = 2 π − ψ c , masses will rotate as a result of the influence of the

aves inside the structure and no contribution to this rotation oc-

urs as a consequence of the deformation (57) (which is constant).

The phase φ∗ = 2 π − ψ c gives rise to the extremum in the en-

rgy ratios and corresponds to the minimum feeding wave energy

equired to propagate the transition front with a constant speed

see Section 4.1.1 ). 

Fig. 9 also shows how the feeding wave energy is distributed

or v ∈ V I and v ∈ V II . For v ∈ V II , we see the presence of a transmit-

ed wave in the intact structure and thus some of the feeding wave

nergy is given to this wave in Fig. 9 (a). Note that when v ∈ V I , we

o longer expect any transmission of waves into the intact struc-

ure (since ν = 0 ), therefore the energy in this case goes to the
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a b

Fig. 9. The energy ratios G 0 / G f , G r / G f , G tr / G f and G k / G f plotted as functions of the phase φ for r = 1 , and (a) v = 0 . 75 ( v ∈ V II ) and (b) v = 1 . 5 ( v ∈ V I ). 

a b

Fig. 10. The energy ratios G 0 / G f , G r / G f , 10 · G tr / G f and G k / G f plotted as functions of the phase φ for r = 3 and (a) v = 1 . 15 ( v ∈ V II ) and (b) v = 2 ( v ∈ V I ). 

a b

Fig. 11. The energy ratios G 0 / G f , G r / G f , 10 2 · G tr / G f and G k / G f plotted as functions of the phase φ for r = 6 , and (a) v = 0 . 88 ( v ∈ V II ) and (b) v = 1 . 4 ( v ∈ V I ). 
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reflected waves and the slope of the broken part of the structure

as in Fig. 9 (b). 

We also consider different values of the contrast parameter r

and its effect on the energy ratios. In particular, taking r > 1 we

observe in Figs. 10 and 11 that the intact structure allows for less

energy to be carried by the transmitted wave (and this part of the

structure begins to act like a rigid interface with increase of r ).

In this case, more energy is spent on the reflection of the waves.

In particular for increasing r , if v ∈ V II , the energy carried by the

transmitted wave in the intact structure is clearly seen to decrease

quite rapidly for all φ (see Figs. 10 (a) and 11 (a)). For example, in

the cases r = 3 and r = 6 in Figs. 10 (a) and 11 (a), respectively, the

effect generated by the transmitted waves is very small. As a re-
ult, in these figures, the values of G tr / G f have been appropriately

caled to demonstrate their effect on the partition of feeding wave

nergy. Here, large r corresponds to the intact structure having

tiffer transverse supports or a larger rotational inertia, due to ei-

her Young’s modulus or the second moment of area being larger,

n comparison to those properties for the horizontal links. Such a

ontrast in these material properties could influence the vibrations

ithin the intact structure, making them smaller, and hence we

ee the decrease in the magnitude of G tr / G f as we increase r . 

For r < 1, we can expect much more energy of the feeding

ave to be transmitted into the intact structure for v ∈ V II (see

ig. 12 (a)). Note that the energy given to the transmitted waves in

igs. 10–12 is always less than the energy carried by the reflected
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a b

Fig. 12. The energy ratios G 0 / G f , G r / G f , G tr / G f and G k / G f plotted as functions of the phase φ for r = 0 . 5 (a) v = 0 . 78 ( v ∈ V II ) and (b) v = 1 . 8 ( v ∈ V I ) . 
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aves. The energy spent on fracture is also seen to decrease as we

ncrease r in Figs. 10–12 . 

The way the energy is partitioned inside the structure is de-

endent on the feeding wave phase φ. Focusing on Fig. 12 (a), we

bserve for approximately φ ∈ [2.25, 3.1], most of the feeding

ave energy is given to the slope behind the transition front, with

he rest being distributed to the waves and the fracture energy.

hen φ increases inside the interval [3.1, 3.7] ( ψ c = 3 . 7 ), the en-

rgy along the slope tends to zero at ψ = ψ c , whereas the energy

istributed to the fracture process and the waves increases. Simi-

ar competition between the energy consumption of the dynamic

eatures of the structure can be found in Figs. 10–12 . 

. Conclusions 

Here we have considered dynamic fracture inside a discrete

tructure composed of periodically placed masses connected by

eams. This problem has been solved using the Wiener–Hopf tech-

ique ( Noble, 1958 ) for any given speed v of the transition front.

wo distinct regimes of the structure have been identified during

he steady-state fracture process for a specific range of the speed

 . In one of these regimes, there exists a sinusoidal wave transmit-

ed to the intact part of the structure. In the other regime, only the

vanescent waves exists there. 

We have also identified the magnitude of the feeding wave am-

litude required to propagate the transition front with a constant

peed v . One may also observe a rapid transition of the feeding

ave energy associated with this amplitude as the structure moves

etween the regimes discussed above. 

Note that the displacement criterion at the transition front is

nsufficient in guaranteeing the steady-state regime. In addition,

t is necessary to prescribe that the displacement of nodes ahead

f the transition front remain below this critical displacement

 Marder and Gross, 1995 ). This admissibility criterion is violated

hen the feeding wave amplitude (at a given frequency) is high

nough. In such cases, alternative ordered regimes arise ( Mishuris

t al., 2009a; Slepyan et al., 2015 ). Alternative regimes arising in

he considered structure are examined separately. 

In the analysis of the structural dynamics during fracture, we

ave identified that behind the transition front, waves reflected

rom and incident on the front will propagate along a slope. Ahead

f the front, one may find waves transmitted to the intact struc-

ure. Rotations of the masses also accompany the displacements

roduced by these effects. 

The distribution of energy amongst these dynamic effects has

lso been obtained. The minimum energy required to propagate

he front steadily with a certain speed has been shown to coin-

ide with the case when the gradient of the slope behind the front
anishes. Consequently, it occurs that the rotations for the masses

ssociated with this inclination are zero, and there only one can

xpect the rotations of these masses to be produced by the feed-

ng and reflected waves. 
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ppendix A 

First, we provide the details of the derivations of (44) and

49) in Section A.1 , where the latter determines the lower bound

or the feeding wave energy required to propagate the transition

ront with constant speed. Then in Section A.2 , we determine the

ynamic features of the structure during the fracture process. 

.1. Derivation of (44) 

For a large distance from the transition point, the feeding wave

s also defined by the residue at k = ±p v + i0 in the inverse Fourier

ransform. From (40) , the leading order term in the function defin-

ng w − at k = p v is 

	−(p v ) 

L −(p v ) 

Ce i φ

0 + i (k − p v ) 
, (A.1) 

nd for k → −p v it is 

	−(p v ) 

L −(p v ) 

C e −i φ

0 + i (k + p v ) 
. 

Here 	−(p v ) of (31) is simplified to 

−(p v ) = (−1) ν−n 1 

p 2 v 

∏ ν
j=0 (p 2 v − q 2 

2 j+1 
) ∏ n 

l=1 (p 2 v − p 2 
2 j 

) 
(1 + i p v ) 

2(n −ν) , 

nd owing to (30), (31) and (33) , 

L −(−k ) = L −(k ) , 

±(−k ) = 	±(k ) . 

Therefore, choosing C as in (44) and applying the residue the-

rem at the poles k = ±p v + 0i of w −, for η → −∞ we receive

42) as the expression for the feeding wave (here a again ap-

ears because of the normalisation of w by the beam length in

ection 3 ). 

http://dx.doi.org/10.13039/501100004963
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A.2. Derivation of dynamic features of the beam structure 

A.2.1. Derivation of the expressions for the reflected waves w 

( j) 
r . Now

we show how to obtain the representation for the reflected waves

w 

( j) 
r , 1 ≤ j ≤ n in Section 4.2.1 . The function w 

( j) 
r arises in the

consideration of the residues of k = ±p 2 j + 0i in the expression for

w − in (40) . The leading order term in asymptotics of the function

defining w − in (40) , for k → ±p 2 j is 

	r 
−(±p 2 j ) 

i L −(±p 2 j ) 

[
Ce i φ

(±p 2 j − p v ) 
+ 

C e −i φ

(±p 2 j + p v ) 

]
1 

0 + i (k ∓ p 2 j ) 
, 

where 

	r 
−(±p 2 j ) = lim 

k →±p 2 j 

(0 + i (k ∓ p 2 j ))	−(k ) 

= ∓(−1) ν−n 1 

2 i p 3 
2 j 

∏ ν
l=0 (p 2 

2 j 
− q 2 

2 l+1 
) ∏ n 

l=1 
l 	 = j 

(p 2 
2 j 

− p 2 
2 l 
) 

(1 ± i p 2 j ) 
2(n −ν) , 

(see (31) ) and 

	r 
−(−p 2 j ) = 	r −(p 2 j ) 

for j = 1 , . . . , n . Since the poles of w − reside in the upper half of

the complex plane, by application of the inverse Fourier transform

and the residue theorem it is possible to determine the asymptotes

for η → −∞ of the original function w 

( j) 
r (η) in the form 

w 

( j) 
r (η) ∼ a i 

∑ 

k ∗
Res (w −(k ) e −i kη, k ∗) , η → −∞ (A.2)

where k ∗ = ±p 2 j + 0i , j = 1 , . . . , n, are the simple poles of w −(k )

× e −i kη . Therefore, 

w 

( j) 
r (η) = 

a 	r 
−(p 2 j ) 

i L −(p 2 j ) 

[
Ce i φ

(p 2 j − p v ) 
+ 

C e −i φ

(p 2 j + p v ) 

]
e −i p 2 j η

− a 	r −(p 2 j ) 

i L −(p 2 j ) 

[
Ce i φ

(p 2 j + p v ) 
+ 

C e −i φ

(p 2 j − p v ) 

]
e i p 2 j η

= 2 a Re 

{
	r 

−(p 2 j ) 

i L −(p 2 j ) 

[
Ce i φ

(p 2 j − p v ) 
+ 

C e −i φ

(p 2 j + p v ) 

]
e −i p 2 j η

}
. 

(A.3)

Thus from this we obtain (53) –(56) . 

A.2.2. Derivation of the transmitted waves w 

( j) 
tr . The transmitted

waves appear from the residues of the poles of the function w + 
in (39) at k = ±q 2 j − 0i , 1 ≤ j ≤ ν , provided ν > 0 (otherwise no

transmitted waves exist). 

Consider the asymptotes of w + near k = ±q 2 j − 0i . Then the

leading order term in these asymptotes of w + is 

i	tr 
+ (±q 2 j ) L + (±q 2 j ) 

[
Ce i φ

±q 2 j − p v 
+ 

C e −i φ

±q 2 j + p v 

]
1 

0 − i(k ∓ q 2 j ) 
, 

(A.4)

for k → ±q 2 j − 0i , with 

	tr 
+ (±q 2 j ) = lim 

k →±q 2 j 

(0 − i (k ∓ q 2 j ))	+ (k ) 

= ∓(−1) n −ν+1 1 

2i q 2 j 

∏ n 
l=1 (q 2 

2 j 
− p 2 

2 l−1 
) ∏ ν

l=1 
l 	 = j 

(q 2 
2 j 

− q 2 
2 l 
) 

1 

(1 ∓ i q 2 j ) 2(n −ν) 
.

(A.5)

Next performing the inverse Fourier transform and the residue

theorem, together with (A.4) and applying similar steps used in the

previous section allows one to derive expressions (61) –(63) . 
.2.3. Derivation of the inclination behind the transition front. The

econd order pole at k = 0 of the function w − produces a lin-

ar displacement behind the transition front as discussed in

ection 4.2.2 . To obtain the expressions for the slope shown there,

onsider the function 

 (k ) = w −(k )(0 + i k ) 2 

= 

	sl 
− (k ) 

L −(k ) 

[
Ce i φ

0 + i (k − p v ) 
+ 

C e −i φ

0 + i (k + p v ) 

]
. 

hich is obtained from (40) . The function 	sl − in (60) has the fol-

owing asymptote near k = 0 : 

sl 
− (k ) = 	sl 

− (0) + k (	sl 
− ) ′ (0) + O (k 2 ) 

or k → 0 with 

sl 
− (0) = 

∏ ν
j=0 q 

2 
2 j+1 ∏ n 

j=1 p 
2 
2 j 

, (	sl 
− ) ′ (0) = −2i(ν − n ) 

∏ ν
j=0 q 

2 
2 j+1 ∏ n 

j=1 p 
2 
2 j 

. 

Also note 

1 

L −(k ) 

[
Ce i φ

0 + i (k − p v ) 
+ 

C e −i φ

0 + i (k + p v ) 

]

= −2 Im (Ce i φ ) 

p v L −(0) 
+ 

2i 

p v L −(0) 

×
[

Re (Ce i φ ) 

p v 
+ 

Im (L ′ −(0)) 

L −(0) 
Im (Ce i φ ) 

]
k + O (k 2 ) . 

Thus, computing the Taylor expansion of M (k ) near k = 0 we

ave to first order: 

 (k ) = M (0) + k M 

′ (0) + O (k 2 ) , for k → 0 , 

here 

 (0) = −2 Im (Ce i φ )	sl 
− (0) 

p v L −(0) 
(A.6)

nd 

 

′ (0) = −2 Im (Ce i φ )(	sl 
− ) ′ (0) 

p v L −(0) 

+ 

2i	sl 
− (0) 

p v L −(0) 

[
Re (Ce i φ ) 

p v 
+ 

Im (L ′ −(0)) 

L −(0) 
Im (Ce i φ ) 

]
. (A.7)

This then provides the asymptote of w − near k = 0 in the

orm: 

 −(k ) = 

1 

(0 + i k ) 2 

[
M ( 0) + k M 

′ (0) 
]

+ O ( 1) . 

Application of the inverse Fourier transform and the residue

heorem, for η → −∞ , then yields 

 s (η) = −i M 

′ (0) − M (0) η, 

nd this with (A.6) and (A.7) gives (57) –(60) . 
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