International Journal of Solids and Structures 97-98 (2016) 699-713

SOLIDS. AND
STRUCTURES

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Analysis of dynamic damage propagation in discrete beam structures @CmssMark

M.. Nieves®*, G.S. Mishuris®, L.I. Slepyan°¢

@ Mechanical Engineering and Materials Research Centre, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
b Department of Mathematics, Aberystwyth University, Wales, UK
¢School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel

ARTICLE INFO ABSTRACT

Article history:

Received 17 August 2015
Revised 7 January 2016
Available online 12 April 2016

In the last decade, significant theoretical advances were obtained for steady-state fracture propagation in
spring-mass lattice structures, that also revealed surprising fracture regimes. Very few articles exist, how-
ever, on the dynamic fracture processes in lattices composed of beams. In this paper we analyse a failure
(feeding) wave propagating in a beam-made lattice strip with periodically placed point masses. The frac-
ture occurs when the strain of the supporting beam reaches the critical value. The problem reduces to
a Wiener-Hopf equation, from which the complete solution is obtained. Two cases are considered when
the feeding wave transmits into the intact structure as sinusoidal waves or only as an evanescent wave.
For both cases, a complete analysis of the strain inside the structure is presented. We determine the crit-
ical level of the feeding wave, below which the steady-state regime does not exist, and its connections to
the feeding wave parameters and the failure wave speed. The accompanied dynamic effects are also dis-
cussed. Amongst much else, we show that the switch between the two considered regimes introduces a
rapid change in the minimum energy required for the failure wave to propagate steadily. The failure wave
developing under an incident sinusoidal wave is remarkable due to the fact that there is an upper bound
of the domain where the steady-state regime exists. In the present paper, only the latter is examined;
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the alternative regimes are considered separately.
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1. Introduction

Lattice models are used to reveal important quasi-static and dy-
namic phenomena caused by both the microstructure of materi-
als and the periodic structure of large-scale constructions. In the
first analytical solutions Slepyan (1981) and Slepyan and Troyank-
ina (1984) obtained for mass-spring lattices, the role of the mi-
crostructure in fracture and phase transition was demonstrated. In
particular, it was shown that wave radiation always accompanies
the steady-state dynamic crack and phase propagation (Mishuris
et al., 2009a; Slepyan, 2010b; Slepyan et al., 2015; 2010). The ra-
diation creates the speed-dependent wave resistance, which can-
not be detected in a homogeneous material model (Slepyan, 2002;
2010a). This phenomena accounts for instabilities in the crack path
propagation in a homogeneous material, which is attributed to the
composition of its microstructure, Marder and Gross (1995), that
can yield complex crack behaviour such as micro-branching and
oscillation of the crack paths (Bouchbinder et al., 2010).

A discrete structure provides an effective way of building in dif-
ferent physical scales to describe local fracture phenomena. In this
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way, even the atomic-scale influences on fracture processes can be
traced (Marder, 2004).

On the other hand, linear lattice structures allow one to use
effective analytical techniques (such as the Fourier and Laplace
transforms in conjunction with a moving coordinate system;
Slepyan, 2002; 2010a) to reduce to a problem involving a Wiener-
Hopf equation (Noble, 1958) set along the axis of the crack. This
equation contains a term corresponding to the load applied to the
structure. One can specify the set of remote loads (see Slepyan,
2002) and generate the corresponding analytical solutions to this
equation, which contain information on the dynamic features of
various propagation regimes. Constant and oscillatory loads can be
embedded into such equations and readily solved to reveal very
different dynamical fracture regimes. A collection of such solutions
for the mass-spring lattice structures, with different geometries
(having square or triangular unit cells), can be found in Slepyan
(20014a, 2002), Mishuris et al. (2009a, 2009b) and Slepyan et al.
(2010) and for homogeneous structures see Slepyan et al. (2015).

Conventional materials under various loads may also induce
other interesting fracture patterns. In this sense, we refer to
Deegan et al. (2003), where experiments conducted on single-
crystal silicon strips under thermal loading with high temperature
gradient may produce straight line, wavy or multi-branched cracks.
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A similar method to that presented in Slepyan (2002) can be
utilised to model a bridged crack propagating within a lattice
(Mishuris et al., 2008b) or the dynamical extraction of a thread
from the lattice (Mishuris et al., 2008a). The techniques are also
applicable to the analysis of cracks propagating at speeds within
subsonic, intersonic and supersonic regimes (Guozden et al., 2010;
Slepyan, 2001b) where changes occur in the lattice response in the
vicinity of the crack tip when moving between speed regimes. Brit-
tle fracture propagation in finite triangular mass-spring systems
has been analysed in Behn and Marder (2015), along with change
in the local crack tip behaviour during the transition from subsonic
to supersonic regimes.

Other defects such as structured interfaces can be incorporated,
through adjustment of several local material properties within a
lattice. These defects may then play a role in promoting or hinder-
ing the propagation of flaws within a lattice as shown in Mishuris
et al. (2012). Cracks propagating through inhomogeneous elastic
lattices can also be treated by the same approach in Nieves et al.
(2013).

Summarising, there exist many articles concerning the analyti-
cal solution to fracture and phase transition problems in periodic
mass-spring lattices, however, there are few for beam-made pe-
riodic structures. The static problem of a crack within a beam-
made square cell lattice has been considered in Ryvkin and Slepyan
(2010) where bending modes of fracture in a beam-made lattice
were analysed.

In the case of failure waves inside a massless beam structure,
a simplified model of a bridge was analysed (Brun et al., 2013).
There, models of a failure wave propagating in uniformly and dis-
cretely supported beams under gravity forces were also compared.
Failure was assumed to propagate with constant speed and is rep-
resented by the drop in stiffness of the elastic supports after the
strain at the transition front reaches a critical value. Further, this
model has been applied to the analysis of the progressive collapse
of the San Saba bridge (Movchan et al., 2015), and the collapse rate
of this bridge can be accurately predicted by the model.

Models of fracture in periodic structures may have applications
to very important phenomena such as the progressive collapse of a
civil engineering structure. Engineering studies of this phenomena
have been used to analyse the collapse of the Twin Towers, World
Trade Centre, New York, on 9/11 (BaZant et al., 2007). Some discus-
sions of progressive collapse in the case of bridges as a result of lo-
calised damage or unwanted vibrations caused by natural disasters
such as earthquakes can be found in Kawashima et al. (2009) and
Liu et al. (2011). Collapse of the several bridges due to the catas-
trophic Wenchuan earthquake, China, in 2008 has been reported in
Kawashima et al. (2009).

As another example, in Fig. 1 we show the result of sponta-
neous progressive collapse of house roofing in Tottenham, London,
UK., 2014. The rooftop is composed of support rafters that attach
to the walls of the house (along the dashed line at 3) and to a
ridge beam at the roof apex. The damage has been initiated at the
point 1a. where the ridge beam was connected to one of the neigh-
bouring houses. After this, the ridge beam drops from this point
suddenly and as a result the supporting rafters along ridge beam
are progressively pushed outward as the damage propagates to 2.
The collapse has also led to the damage of connections between
the base of the rafters and the house walls (their original posi-
tion marked with the dashed line at 3), leaving a substantial part
of the rooftop hanging over the house walls. The damage process
that can be characterised by the result of transverse movement of
the ridge beam that brings about the damage of the connections
between the support rafters and the house at the dashed line 3.
This process can be linked to the propagation of fracture of the
transverse supports of a discrete structure within a rigid interface
as a result of transverse movement of the central beam, see Fig. 2.

Fig. 1. The collapse of a roof in Tottenham, UK. 2014. Picture from http://www.
tottenhamjournal.co.uk/news/lunchbreak_saves_lives_of_builders_in_tottenham_
roof_collapse_1_3858222.
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Fig. 2. A heterogeneous discrete structure composed of massless beam members of
length a with concentrated masses M at the nodes m € Z. Members aligned with
the horizontal (vertical) axis have Young’s modulus E; (E;) and second moment of
area I; (). Here we show a static situation, where it is permissible to number
the nodes using the index m e Z. Later, when we consider the propagation of the
transition front with a constant speed V through the structure, the transition front
can be traced with the moving coordinate 7 = m — Vt/a. In this case the variable n
replaces m (with n = 0 representing the position of this front).

We note that the rooftop considered in Fig. 1 is one example of
the failure of a beam structure. The focus of the current article
is not to analyse the failure mechanisms of this rooftop, but to
understand such a phenomenon in a structure such as in Fig. 2,
which is closely linked to the collapse of buildings, long rooftops
and bridges amongst many others.

Civil engineering structures considered in BaZant et al. (2007),
Kawashima et al. (2009) and Liu et al. (2011) are also known as
multi-structures. Understanding their performance when in opera-
tion and their failure mechanisms is of great importance. An ex-
position into the asymptotic theory of boundary value problems
for finite multi-structures (without failure mechanisms though) has
been given in the monograph (Kozlov et al., 1995), with applica-
tions to problems in electrostatics, hydrodynamics, structural me-
chanics and in particular fracture mechanics.

An alternative analysis of multi-structures, again without fail-
ure, involves the multi-scale asymptotic homogenisation approach
presented in Panasenko (2005). This approach encapsulates the ef-
fects brought about by the microstructure, similar to the discrete
periodic lattice approach presented here, in Slepyan (2002) and
references therein. In dynamic problems, homogenisation is fre-
quency dependent and efficient methods have been developed to
treat high frequency regimes (Craster et al., 2010).

In the present paper, we consider a similar structure as in
Ryvkin and Slepyan (2010), Brun et al. (2013) and Movchan et al.
(2015) but assume a failure wave propagation under a sinusoidal
incident wave. The appeal of such structures is that they are more
commonly found in applications than those formed by springs. For
the first time, the steady dynamic fracture of a beam structure
is considered here. In accordance with Slepyan et al. (2015), we
expect that there exists a domain inside some parameter space
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where the steady-state solution is realised. While analysing the
steady-state fracture response gives us a good description of as-
sociated phenomena, non-physical solutions associated with this
model provide information of when such regimes do not exist. In
addition, there may be different loading on the structure and since
the problem is nonlinear, the response may be different. We there-
fore restrict ourselves to considering sinusoidal loading, which is
very typical of such problems. Note that the phenomena corre-
sponding the sinusoidal loading differs much from those for the
invariable load (as was discussed in Slepyan et al., 2015). In par-
ticular, in the steady-state regime, the transition wave speed co-
incides with the incident wave phase speed independently of its
amplitude and frequency, and this limits the domain where such
a regime can exist. Here the transition wave under the action of a
sinusoidal incident wave can propagate steadily only if the group
velocity of the latter exceeds the phase speed, which is character-
istic for a bending wave. In addition, for the considered problem,
the lattice periodicity, along with the beam-related mode of the in-
teraction and the wave action are completely incorporated for the
first time.

The structure of the article is as follows. In Section 2 we for-
mulate the dynamic fracture problem for discrete beam strip, as
shown in Fig. 2, composed of massless beams and periodically
placed masses. Section 3 contains the governing equations and
associated solutions for the massless beams necessary for fur-
ther analysis. We also present the equations for the balance of
shear forces and moments at nodal points inside the strip, which
are then converted in terms of displacements and rotations at
each node in Section 3.2. Following this, in Section 3.2, the prob-
lem is reduced to a Wiener-Hopf equation. The dispersion re-
lations for the structure are presented. The general solution of
this Wiener-Hopf equation is derived in Section 4 for a general
speed of the fracture transition front, while also assuming a sinu-
soidal feeding wave provides energy to the front. In addition to
this, Section 4 also contains the analytical description of the dy-
namic properties of the structure. In Section 5, the distribution
of the feeding wave energy amongst the other dynamic features
in the structure is considered, and this is followed by conclusions
in Section 6. Finally, some technical derivations of the results pre-
sented here are given in Appendix A.

2. The problem formulation

We consider the discrete structure as in Fig. 2, composed of
massless beams connecting periodically placed point masses along
the central axis of the structure (along the x’-axis). Each node is
identified with an integer m € Z and at these nodes the masses are
assumed to have mass M. The beam connections emanating from
each mass have length a, and the longitudinal beams have Young’s
modulus E; and second moment of area I;. In what is considered
below, transverse beams inside the structure have contrasting ma-
terial properties to the longitudinal beams, and have Young’s mod-
ulus E; and second moment of area I,.

Equations governing the structure will be completely written
in terms of the displacements wy,(t) and the rotations 6%(t) of
the node at m. Bending moments and shear forces inside the mth
longitudinal beam are denoted by M, (x,t) and V¥ (x,t). Here,
X =x' —am is the local coordinate in the mth beam and 0 < x < a.
By symmetry of the structure we restrict our attention to the shear
force VY, (v, t) inside the mth transverse beam having local coordi-
nate y, 0 < y < a, when considering the balance of shear forces
in Section 3.1. The positive directions of the bending moments in
the horizontal and vertical directions of the structure are shown in
Fig. 3.

In Fig. 2, the case m =0 represents the interface between
broken structure (without transverse supports, m < 0) and the

m | \Mi;a (z)
In the m'" longitudinal beam 0y, * J €T
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Uil M2 ()
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Fig. 3. Positive directions of displacements, rotations, moments and shear forces
within elements of the structure in Fig. 2.

intact structure (with transverse supports, m > 0). In the consid-
ered problem, fracture is assumed to occur inside the transverse
beams (symmetric about the longitudinal axis) and propagate with
speed V inside the structure. Thus the transition front at some time
t can be located at m = k(t), k(t) € Z and can move a distance
a within the structure to the right, after the time interval a/V.
As the transition front moves, the broken structure can be iden-
tified by the inequality m < Vt/a and the intact structure corre-
sponds to m > Vt/a. Later we will introduce the moving coordinate
n=m—Vt/a as in Slepyan (2002), for which n > 0 represents the
intact structure and n < 0 will represent the broken structure.

Fracture occurs inside the structure as follows. Let w, be the
critical displacement for fracture of the transverse links inside the
structure to occur. Suppose at a particular time, the transition front
is at the mass m =k, k € Z (corresponding to n = 0). When the
displacement associated with the considered mass, wy(t), satisfies
wy(t) = we, the transition front moves to the mass associated with
m =k + 1. For steady-state fracture, in addition to this condition
one must also impose that the displacements ahead of the tran-
sition front do not reach the fracture criterion wc. Therefore, we
assume that

Wi (t) =we, w;(t) <we, Jj>k, (1)

where k € Z represents the node position of the transition front at
time t. It is worth noting that any solution violating the preceding
condition provides interesting information about when non-steady
fracture regimes can occur.

Connections will be derived later on the critical displacement
we in order for the steady-state solution to exist. Several scenar-
ios for the fracture of the transverse links are possible. In Fig. 2,
the fracture occurs directly at the interfaces above and below the
structure. It is shown later that the equations governing the struc-
ture are independent of where the breakage occurs, provided that
the symmetry of the structure is maintained.

3. Governing equations, dispersive nature of the structure and
solution to the problem

Here, we consider the governing equations for the massless
beam structure in Fig. 2. First, we introduce the fundamental rela-
tions for the beam connections inside the structure in Section 3.1.
Then governing equations for the masses in the beam structure are
considered in Section 3.2 and this is shown to reduce to a Wiener-
Hopf equation from which the dispersive nature of the structure is
identified. We present the solution to this Wiener-Hopf problem in
Section 4 and this is used to provide a full description of the dy-
namic features of the structure that occur during the steady-state
fracture process.

3.1. Fundamental equations for the massless beam

We compute expressions for the displacements inside the
beams that will be used to construct the governing equations in
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terms of the displacements and rotations of the mth node in the
next section.

For the massless Bernoulli-Euler beam model, from the
equation
%W (x,t)

axd
and the boundary conditions

0 (2)

WO.0) = (). D% (0.0 =50,

ow
W(a, t) = w1 (t), W(a, t) =05,(0), (3)
we have

3
W, 0) = [20Wn(6) = Winet () + 603 (0) + 0, ()] 5

2
+ Bt (O = win(©) = a3, (©) +265(0)] 55
+ 65 (OX + Wi (0), (@)

where the rotation, bending moment and transverse force are
defined as

oW (x, t) 02W (x, t) BPW (x,t)
0= FIV M = —EI FICI = —EI e (5)
The expressions in (4) and (5) can be used for both the longitu-
dinal beams and the transverse beams (substituting the respective
boundary conditions at y =0 and y = a). Also recall for the longi-
tudinal (transverse) links E = E;(E;) and I =I;(I;). Note that if a
transverse massless beam is broken it does not influence the lon-
gitudinal structure’s dynamics. For the intact transverse beams we
state the following conditions:

W = 0 =0 (at the interface),
W = wp, 0 =0 (at the central longitudinal beam), (6)

which leads to expressions for W inside the intact transverse
beams:

y? ¥y
Wy, t) = 2wm(t)a—3 - 3Wm(t)? + W (t)
(above the central longitudinal beam), (7)

and to determine the displacement in the transverse beam below
the mth node in the intact part, we replace y by a —y in (7).

We note that if the beams composing the structure were
to have non-negligible density then the representations (4) and
(7) are no longer valid as a result of the incorporation of a dy-
namic term in (2).

3.2. Governing equations for the massless beam structure

Here we construct the governing equations for the problem un-
der consideration using the expressions for the displacements in-
side the mth longitudinal and transverse beams derived in the pre-
vious section. The dynamic equation in terms of the balance of
shear forces at the mth node is

VE(0,8) = Vi (a,t) + (V5P (0, t) — VL™ (@ £))H(m — Vit /a)
d2wy, (t)
Tar =Y ®)

where M is the mass of the node at the mth junction. Here V% (x, t)
is the shear force in the mth horizontal beam and V%P (y,t)
(Vi;bottom g t)) s the shear force in the transverse beams above
(below) the mth mass in the intact region.

Here we do not take into account the moment of inertia of the
mass, and so the balancing of the moments gives

ME(0.t) — M (a.t) =0. 9)

-M

We now consider the steady-state problem, where the free
longitudinal beam with the point masses are placed at n =m —
Vt/a < 0 (with the assumption that the speed V = const), and the
supported one is placed at n > 0.

According to (4) and (5), we have

6E; I
V(. 0) = == 2(Win () = Win (0) + @ (0) + 65 (0)},
(10)
2,1
M (x.£) = =5 {3(a = 20 (Wi (£) = Wi (0))
+a(a—3x) (6,1 (t) + 05(6)) + a®05, ()} (11)
whereas from (5) and (7), if m > Vt/a
VHP(0,6) = — 12532'2 W(t) and VP (a,t) = 1253212 Win ().
(12)

Next we introduce the normalisation that V = ,/E{l;/Mav, where
v is the dimensionless speed and use (8)-(12) together with the
assumption

Wp(t) =w(m—Vt/a), 6 (t)=6*(m—-Vt/a). (13)
to obtain the following equations:

6{2[2w(n) —w(n - 1) —w(n + D] +al0*(n +1) - 0*(n - D]}
d*w(n)

+24rw(n)H(n) + 12 ap =0, (14)
and
3w +1) —w(n — D]-al0*(n + 1) +0%(n — 1) +46*(1n)] = 0,
(15)
where
r=ED/(Eih) (16)

is a dimensionless parameter which governs the contrast in ma-
terial properties in orthogonal directions inside the structure. We
note that when the bending moments appearing in (9) are zero, in
addition to the rotations of each mass, problem (14) and (15) re-
duces to the familiar one-dimensional fracture problem of the
spring structure in an interface, arranged as in Fig. 2.

As suggested by (14), the transverse connections act as spring
supports. This effect is general and independent of how the trans-
verse beams are connected at the periodically placed masses along
the central axis. In the present case, one could replace the trans-
verse beam connections by an equivalent spring with stiffness »x =
245212/(13.

In addition to (14) and (15), for steady-state fracture, we impose

W (+0) <0, (17)

which ensures the displacement of the central axis of the struc-
ture, ahead of the transition front, does not increase past the criti-
cal displacement (see (1)).

Note for a homogeneous beam structure ordered as in Fig. 2,
r=1. Next we introduce the Fourier transform with respect to n
as

WF (k) = / Y wopeidn, and 6% (k) = / S or(petndy, (18)

where the dimensionless wavenumber k =ka (k is the original
wavenumber). This transform is taken in Egs. (14) and (15).

Let wF = wFf/a which is a dimensionless quantity, the Fourier
transform of (15) with respect to n leads to
3isink _f

=W (19)

F_
0 2+ cosk
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Fig. 4. (a) Dispersion relations wj(k), j = 1,2, plotted as functions of the dimensionless wavenumber k, when (a) r=0.5 and (b) r=1. In (a) the line w = kv, for v=
11, 0.78,0.83 and 1, is presented and in (b) the same line is given for v = v;,0.8,0.909 and v,. The dashed lines indicate the limits of the gradient v of the lines, which are
also limits of the speed regimes V; and Vj, (see Section 3.2.2). The solid black rays corresponding to (a) v = 0.78 and (b) v = 0.8 are shown, that indicate p;, j = 1,2, as the

zeros of g,(k) and q;, 1 < i < 3, as the zeros of g (k).

and consequently from (14) we receive

6sin’k | .p . o
6{4(1 —cosk) — 2-|—cosk}w +24rw, + (0 +ikv)*w" =0,
(20)
where the one-sided transforms w.. are defined through
avs =ws (k) = [ WODH(En)E dy. (21)

and 0 + ikv = lim,_, , o € + ikv. This limit corresponds to the steady-
state solution as the limit that is in accordance with the causality
principle (see Slepyan, 2002). In what follows, we omit the hat *
occurring in the above the quantities in (21).

The Wiener-Hopf equation, without the incorporation of an ex-
ternal load, then follows as

g1(kywy (k) +g2(k)yw_(k) =0 (22)
with

_ 12(1 — cosk)? o
82(k) = g1 (k) — 24r, (24)

and the contrast parameter r is defined in (16).

3.2.1. Dispersion relations for the beam structure

The dispersion relations for the structure can be found by set-
ting w = kv as in Slepyan (2002), with @ being the dimension-
less angular frequency (& = kV = /E1I;/Ma3 w is the actual angu-
lar frequency), and solving g;(k) =0, j = 1,2, which leads to

— 2
wi (k) = \/ % +24r (when g; (k) = 0) (25)

and

_ 2
@, (k) = /% (when g, (k) = 0). (26)

The dispersion relations (25) and (26) are plotted in Figs. 4 and
5 as functions of the normalised wavenumber k, for the case when
r=0.5,1,1.5 and 4. The ray w = kv is also plotted in these fig-
ures for various speeds. The intersection of the ray w = kv with
w1(k) (wy(k)) represents a wave propagating to the right (left) of
the transition front within the structure. Direct comparison of the
group velocity of the wave vy = dw;(k)/dk (dw,(k)/dk) at these

intersection points with the phase speed v indicate which waves
will reach the transition front. At intersections of w = kv with
w1(k) (wa(k)), if v > v (Vg < V) then the corresponding waves will
propagate away the transition front, otherwise they will propagate
towards this front if v > vg (vg > V).

3.2.2. A particular speed range and associated fracture phenomena

As an example, we consider the dimensionless speed in the
range v < vV < vy, with v; = 0.74 and v, = 2.335. According to the
dispersion diagrams, in this speed range the function g(k) will
only have a double zero at k = 0 and two pairs of simple zeros at
+ p1, £p, (see the intersections of the solid line w = kv with the
function w,(k) in Figs. 4 and 5). We will see that the considered
speed range for v can also be partitioned into two speed ranges
defined by sets V; and Vj;:

Vii={v:gi(k) =0 for k==q1, g1 #0 },
Viii={v:gi(k)=0fork=4q; 1<j<3,
qj # 0 and are distinct}. (27)

If the speed v < vq, then the same concepts are extendable to
this case. There, one may expect the density of sets representing
various collections of zeros of g, j = 1,2, to increase and the pro-
cedure developed here can be applied to these cases.

For v €V}, the pair of simple zeros of g;(k) is denoted by + ¢y,
whereas for v € V;, in addition to these zeros we have two more
pairs of simple zeros at k = +q5, +q3. Examples of when the speed
v is chosen so that v € Vj; can be found in Fig. 4, whereas when
v eV, an example is shown in Fig. 5(a) and (b). The behaviour of
the wave numbers p;, i = 1,2, and gj, 1 < j < 3 as a function of
v can be found in Fig. 5(c) for r = 1. Here the existence of the
wavenumbers g, and g3 as a function of v can be seen and they
appear when v € Vj; = (0.815, 0.985).

The sets V; and Vj; have a particular physical interpretation. If
v €V}, then no wave will be transmitted into the intact part of the
structure. If v € Vj;, then one can find that waves will be transmit-
ted inside the intact part of the structure. The dispersion diagrams
(in Figs. 4 and 5) show that for certain r values we can expect
to encounter two different physical behaviours of the structure for
quite large speeds v, by the presence of both speed ranges V; and
V”.

In Fig. 5(b), another property of the set V; is also highlighted,
where the set can be composed of discrete intervals of values for
v. Here, in Fig. 5(b), there occurs two small discrete intervals and
for this value of r, V; = (0.74,0.775) U (1.272,1.3). The same be-
haviour of the set V; can also be asserted, and we refer to Fig. 5(a),
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Vir Vi

roots of g1(k), ga(

Fig. 5. (a) Dispersion relations wj(k), j =1, 2, plotted as functions of the dimensionless wavenumber k, when r = 1.5. The line w = kv, for v =v;,0.815, 0.985, 1.2 and v,.
is presented. The description of p;, i=1,2, and g;, 1 <j < 3 is given in Fig. 4. (b) Dispersion curves corresponding to the case when contrast parameter r =4 and the lines

= kv for v=1v,0.775,1.272,1.3,1.5 and v,. (c) The roots p;, i = 1,2, and q;, 1 < j < 3 plotted as functions of the dimensionless speed v for r = 1.5.

to demonstrate that this set can be composed of two discrete inter-
vals, represented as V; = (0.74,0.815) U (0.985, 2.335). Therefore,
for increasing v inside v; <v < v,, we may oscillate between ei-
ther of the two physical regimes connected with the sets V; and
Vi1, (see Fig. 5(b)).

3.2.3. General description of zeros of the functions g;, j=1,2
The function g(k) has a double zero at k =0 and two or more
pairs of non-trivial simple zeros at k = &+pq, ..., +£py,, Where n >
1. Here p; < py <---< pau. Note that n=1 when vy <v <v,,
whereas n = 0 for v > v, and non-trivial zeros of g,(k) do not exist.
For j=1,...,n

(i) atk=pyj_1.
(ii)  at k= py;,

as demonstrated in Fig. 4.

The function g;(k) has one, three or more pairs of simple zeros
k ==+qq, ..., £q2y41, with v > 0. These zeros form a monotonically
increasing sequence i.e. q; <y < --- < (2,41. For each value of the
contrast parameter r

V< U,
V> Vg,

v=0, if v>uv(r),

where vy (r) is a monotonically increasing function of r. As an ex-
ample vo(r) ~ 1.0519 when r = 2. Also note if r > 2

D2n < Q1.
The preceding inequality does not hold if r < 2. For

(i) j=0,....v, at k=qyj1,
(i) j=1,....v atk=qy;

V> Vg,
V< Vg.

Here, those points corresponding to the inequality v < vg, (Vv > vg)
are located in the lower (upper) half of the complex plane after
introduction of the small parameter ¢ in the above problem (with
& — +0).

In the next section we derive the general solution for the
Wiener-Hopf equation for any speed v.

4. General solution of the Wiener-Hopf equation (22)

We discussed the waves propagating internally through two dif-
ferent parts of the structure, but these waves should be generated
by an external action. Clearly, the collection of dynamic features
inside the structure will depend on such an action. As an external
load, here, we will define the remote force that produces waves
propagating from infinity to the right inside the broken part of the
structure (feeding waves), that will move the transition front to
the right with a constant speed. This movement will initiate other
waves (reflected waves that move from the right to the left and
transmitted waves that move from the left to right of the transi-
tion front, see Slepyan, 2002).

We begin by rewriting the homogeneous equation (22) as

w, (k) + L*(k)yw_(k) =0, (28)

with L*(k) = g,(k)/g1(k), that has zeros and singular points lo-
cated in both the upper and lower half of the complex plane and
L(k) — 1 as k — =zo0. It is possible to construct L* in the form

v, (k)

L*(k) = (k)

L(k). (29)




M.J. Nieves et al./International Journal of Solids and Structures 97-98 (2016) 699-713 705

where according to Section 3.2.3
(1 —ik)>"" T (0 — ik = p2j-1))(0 — ik + p2j-1))

v, = - - s
i [T (0 —i(k — g5))) (0 — i(k + g27))

(30)

3 M=o (0 +i(k — q2j41)) (0 +i(k + G2j11))
T (k)20 (0 + k)2 [T (0 + i(k—p2j)) (0 + i(k+p2j))

(31)
The meromorphic functions V. admit the asymptotes
2i(v —n) 1
A o(kfz), k — +oo. (32)

Note L(k), has neither zeros nor singular points on the real axis.
In addition, L(k) > 0 (—oo <k < o0) and L(k) — 1(k — Zo0), with

Re(L(§)) =Re(L(-§)) and Im(L(§)) =-Im(L(=§)). (33)
Thus, we may factorize it using the Cauchy type integral

L(k) = L (k)L (k).

1 ~ InL(§) N
Li(k) = exp |:i2ni [m E & d$i| (£3k > 0) (34)

with Ly (£ico) = 1. The asymptotes for L+ for k — 400 are

ily 1

L. (k) =1:|:?+O<k—2>, for k — 400, (35)
with

1 = 1 [
b= [ inL@ds = [“iniL)ids. (36)

Then (28) and (29) imply

1 L_(k)

mer (k) + r(k)w, (k) = ®(k), (37)

where ®(k) represents the loading from the left of the transition
front and appears as a result of the division through Eq. (28) by
factors corresponding to zeros at k = +p,;_1 —i0, j=1,...,n. The
functions with the supports at k = +p,;_1, 1 <j < n, reflect the re-
mote actions at the left. If this action has frequency w = p,v, then
this allows us to introduce in the right-hand side delta functions
of k at £py. Thus ®(k) can take the form

Cei® Cel®
o (k) = . -
®) = oFi—pn T 0=ik=py)
Ce-it Ceit

+ + . 38
0+ ikt py) T 0—ik+ py) ©8)
where C is a complex constant to be determined and ¢ is the
phase shift of the considered load.

The solution of the Wiener-Hopf equation (37) then follows

as
Cel¢ Ce-it
w, (k) = \I!+(k)L+(k)|:0 _ i(i — 5= i(ek+ pv)] (39)
and
w_ (k) Cel¢ Ce 1
W= = T I:O—i-i(k—pv) +o+i(k+pu)]' (40

4.1. Far-field behaviour of the structure

The poles of the functions w. reveal information about the dy-
namic features within the structure to the far left and right of the
transition front. We now trace the expressions which determine
the behaviour of the structure far away from the transition front.

For n — —oo, the behaviour of the original function w can be
identified in the form
n
w(n) ~wp+ws+ Y w,
j=1

n — —oo. (41)

Here the term wy corresponds to the feeding wave generated
inside the structure which propagates to the transition front, that
is determined by the poles k = +p, of w_. Note the points k = +p,
are removable singularities of w, defined by (39) and (30).

We assume that this feeding wave takes the form

we(n) = Acos(pvn) — ). (42)

where A is the amplitude and ¢ is phase of this wave (already
introduced in (37)-(40)). This feeding wave is produced from the
load applied at n = —oc. The phase shift, ¢ in (42) defines the po-
sition of the transition front, n = 0, relative to the wave (see (38)).

The functions wﬁ”, 1 < j < n, represent reflected waves prop-
agating away from the transition front, associated with the poles
k=+pyj, 1 <j < n. The term ws is a linear function of » that rep-
resents the slope of the beam for 7 — —oo, which arises owing to
the pole k =0 of w_ in (40).

It is worth noting that no wave will propagate inside the intact
structure if w, has no poles along the real axis (see (30) and (39),
for the case when v = 0). On the other hand, if v > 1, we can ex-
pect the transmission of feeding wave energy into the intact region
and we find

v
w(n) ~ > w,

j=1

17— 00, (43)

where w/), 1 < j < v, represent waves transmitted into the intact
part of the structure. These transmitted waves correspond to the
poles k = +q,;, 1 < j < v of the function w,.

Through an appropriate choice of C in (39) and (40), a relation
connecting we, A and ¢ can be determined which governs the ex-
istence of the steady-state propagation of the transition front. The
form of remaining functions Wﬁ’), 1<i<n, wff), 1 <j<vand ws
for n — —oo can be determined explicitly using a similar approach.

In order to trace the expression for the feeding wave (42) from
the asymptotes of w_ in the vicinity of k = 4p, it is necessary to
choose C in the right-hand side of (38) as:

C= L (pv) i

V_(py) 2a’

and the detailed derivation of (44) can be found in Appendix A.
It also follows from (39) and (40) that

M = Jim (ilow, = lim (ilow. = 2Re(Ce?), (42)
K——100

k—ioco

(44)

and equating this to the critical displacement, w., we receive the
first equation with respect to the unknown constants

2Re(Cel?) = % (46)

Here the division by a appears as a result of the normalisation
of displacement by the beam length in Section 3. Thus, w, is com-
pletely determined if the feeding wave amplitude and phase are
supplied. Alternatively, (46) takes the form:

Yo (po)| we

cos(¢p + V) = T A (47)
L_(py)

Yo = arg(C) = arg(w(pv)) (48)

It can then be established from (46) that the feeding wave am-
plitude A and critical displacement w. must be chosen to satisfy

Ao 1Y (p)l

- >

we = 5= )] (49)
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in order for the transition front to propagate steadily through the
structure.

Owing to (32)-(36) the asymptote for w, in (39) as k — +oo
is

w, (k) = %{ela&)l—Z[Re(Cei‘f’){ll +2(v-n)} + pylm(Ce“l’)]%
+o( k3) (50)

Upon using the identity:

xlli—r}}ro_/ e vdn (g ()\1;):31 ’

we obtain from (50) that

w(n) = w(+0) + nw (+0) + 0(n?), for n — +0,

where

w(+0) = 2aRe(Ce'?)

and

W' (+0) = 2a[Re(Ce'){l; + 2(v — n)} + p,Im(Ce'?)]. (51)

Therefore, in accordance with (17), with (51) we prescribe that

Re(Ce){l; + 2(v — n)} + p,Im(Ce'?) < 0, (52)

where C is determined by (44). The two conditions (46) and
(52) are then necessary and sufficient for the transition front to
propagate steadily through the structure.

4.1.1. Minimum value of the feeding wave amplitude to steadily
propagate the front with a given speed v

The function Z in (49) defines the minimum value of the feed-
ing wave amplitude that generates steady-state fracture at a given
speed v. The function E and its dependence on v for v; < v <1, is
presented in Fig. 6(a), for various values of the contrast parameter
r. The function is monotonically increasing for fixed v and increas-
ing r. Note that the dashed part of the curves correspond to those
speeds v € Vj;. The function E is continuous as we move between
the sets V; and Vj; for increasing v, and shows a singular behaviour
as UV — sy, (in this case p; and p, are approaching one another to
form a resonance point and where this occurs v = vg). The function
E can change rapidly as we pass from v € V; to v € V}; as shown for
r=2in Fig. 6(a) near v =0.8.

Fig. 6 (a) also shows the behaviour of the set Vj. The position
of set Vj; shifts along the interval v; < v < v, and can redistribute
into several discrete sets inside this interval, for increasing r. From
r=1 up to r=>5.5 one can identify an interval that forms part of
the set Vj; that shrinks with increase of r, reducing the possibili-
ties for transmission of waves into the intact structure. Further, for
r=5.5 we can see the appearance of another range of speeds for
which transmitted waves can occur in the intact structure. Here,
we refer to the representation of Vj in terms of discrete intervals
(mentioned in Section 3.2.2) in Fig. 6(a) that form the set V.. The
set V; also appears in Fig. 6(a) as the union of discrete intervals for
r> 1.

A plot of the ratio A/w¢ as a function of the feeding wave speed
is provided in Fig. 6(b) for the case r=1 and various speeds v.
Note that condition (49) indicates the range of values for ¢ for
which (46) is valid and this range also depends on the speed of the
transition front. In addition, the right-hand side in (47) is positive
and only values of ¢ for which this condition is valid should be ac-
cepted if the feeding wave amplitude and the critical displacement
are known.

In Fig. 6(b), we see that the range of ¢ for which (47) is valid
shifts in the positive direction along the horizontal axis for increas-
ing v. For a given value of v, the curve will approach two verti-
cal asymptotes for values that coincide with the upper and lower
bounds of the range of admissible ¢ values.
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Fig. 6. (a) The dependence of E on the dimensionless speed v for r=

0.5,1,2,3,5.5 and 6. Dashed parts of each curve correspond to speeds v e Vj; for
that particular r value. (b) The ratio A/w, plotted as a function of the phase ¢, for
r=1 and several values of the dimensionless speed. Dashed lines indicate the re-
sults for those speeds in the set Vj. The minimum for each curve is marked with
a cross, which correspond to the points (¢, A/w.) = (4.033,3.161), (3.884, 4.471),
(3.656, 11.589) and (3.634, 13.836). These points coincide with the value of E for
the given values of v. In addition, circles have been added to curve to indicate com-
binations of ¢ and A/w, for which (52) is invalid.

For every value of the transition front speed v, there is a value
of ¢ for which the ratio A/w, takes its minimum value. Physically,
for a given w¢, these points can be linked to the minimum am-
plitude A of the feeding wave required to propagate the transition
front with a constant speed. It also implies that the energy gen-
erated by feeding wave to create the latter scenario is also at a
minimum (see Section 5). For every value of A/w. above this min-
imum value, we see there corresponds two values of ¢ satisfying
condition (46).

We indicate on the curves in Fig. 6(b) those values of A/w, and
¢ for which condition (52) is not satisfied. For all speeds we show
that the choice of ¢ is unique, and this is taken from the left of
the minimum point of each curve.

4.2. Other dynamic features to the left of the transition front

4.2.1. The reflected waves

The terms wﬁj), 1 <j < n, correspond to the reflected waves
(produced by poles at k = £p;,; +1i0 of w_ in (40)). They can also
be derived through application of the residue theorem and the in-
verse Fourier transform. The function Wﬁj), 1 < j < n, takes the
form

w () = AP cos(pajn — ¥ o). for 1<j<n. (53)
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where the reflected wave amplitude is given as

AD = 4a| VT (p2))||C|
|p3; = PilIL-(P2))]

%/ (P2; €0S(@ + Ve))? + (pysin( + Yre))2, (54)

and
W (pyj) = klif;} 0+ ik — p2))W_(k).

The terms in this wave’s phase shift are

) _ wr (pZ‘)
rJ — arg(iiL, (sz)) (55)
and
af) = arg(zlz{pz,- cos(¢ + Vre) + ipy sin(¢ + wc)}),
pzj — Dy
Ve = arg(0). (56)

For a detailed discussion of the derivation of the functions Wﬁj), 1
<j < n, see Appendix A.

4.2.2. The inclination of the beam to the far left of the transition
front

The remaining second order pole of w_, at k = 0i, in (40) gives
us the expression for the slope of the beam when n — —co. The
inclination of the beam to the far left of the transition front takes
the form

ws (1) = Asn + Bs (57)
where the coefficient of the linear term in 7 is

_ 2alm(Ce?) ¥ (0)

WA () (58)
and the constant
B — 2ailm(Ce'?) (W3l (0)
T pyL_(0)
2a¥*(0) [ Re(Ce) Im(L' (0)) "
P (0) [ Py Lo M| (59
Here, C is defined in (44) and
Wity = D 0t~ ) (60)

(1 +ik)20-m T (k2 = p3;)
4.3. Dynamic features to the right of the transition front

4.3.1. The transmitted waves wgf)

In addition to the reflected waves propagating inside the struc-
ture to the left of the transition front (see Section 4.2.1), for v >
0 there exist transmitted waves inside the intact structure. The
form of these waves can be traced by considering the poles at
k=4g,; —i0, 1 < j < v, in the function w, (see (39)). Therefore,
when v is chosen so that v > 0 and n — oo, one will see a linear
combination of the waves wg), 1 <j < v, in accordance with (43),
where

wi (7)) = AD cos(@zjn — ¥ —al), 1<j<v. (61)
Here
AD — 4a| W (q2)[ICI 1L+ (q2)]
' lg3; — Pil
x v/ (42 €0S(p + Yc))? + (pusin(¢ + ¥c))? (62)

where
Wi (gz)) = klirgj(O —i(k = q2)) W (k).
and terms in the phase of these waves are
i = arg((W (g2))L+ (42))).
aff = arg((ﬁj]_p%{qzj cos(¢ + Ye) + ipysin(p + wa}), (63)

with ¥, defined in (48). Note that the functions wt(j) =0,1<j<
v if v € V; (this case corresponds to v = 0).

4.4. The rotation of each mass inside the structure

Having established the behaviour of the structure far from the
transition front we now use the results of the previous sections to
address the behaviour of the rotations by using (19).

4.4.1. Rotations of the masses to the left of the transition front
produced by the waves and the inclination

Using the (42) and results of Section 4.2.1, the forms of the
waves that exist inside the damaged part of structure are

we(n) = Acos(pyn — @), (64)

w () = A cos(pan — ¥ — ). (65)

with 1 < j < n. We will concentrate on the feeding wave w¢(n) as
in what follows results for the reflected (and transmitted waves in
the next section) can be derived in a similar way.

The Fourier transform of wy(n) is then

wi = = wA[e?8(k — py) +e 98 (k+ py)]. (66)

Insertion of this in (19) gives an expression for the Fourier
transform of rotations 9}‘ generated by the feeding wave:

3misink

QXF — _
f a(2 + cosk)

Ale?S(k — py) +e 98 (k + py)]. (67)

Applying the inverse Fourier transform yields

3Ai sinpy —i(py— i(por—
X - _ i(pn—¢) _ pl(pun—9)
Oy (n) 2a (2+cospv)[e ¢ k (68)
Therefore,
X(n) = —34—SMPv___ _
OF(n) = 3Aa(2+cosm sin(pyn — @). (69)

In a similar way to (64) and (66)—(68), we can derive expres-
sions for the rotations 6,/ associated with reflected waves w, in
(65), as

Sin py;

X.j _ _3A0)
Or () = =3A; a(2 + cos py;j)

sin(pyjn — ¥ — o),
forl1 <j<n.

In addition to the feeding and reflected waves existing to the
left of the transition front, in Section 4.2.2, we also showed there
exists a slope behind the transition front. To calculate the rotations
produced by the slope, we take the Fourier transform of (57) to
obtain
wh = 27 [—iAs8" (k) + BsS (k). (70)

Then, in a similar way to the previous section, using (70) we
can write

A
AOES (71)
where 6¢ are the rotations produced by the linear function ws.
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Fig. 7. Displacements along the central axis of the beam-made strip based on the inverse Fourier transform of (39), (40) and (19). Masses in the structure are shown by
black dots and those masses which are supported by transverse links are also provided with red-crosses (n > 0). In (a), we show the displacements both ahead and behind
the transition front, where one can observe the slope inside the structure and the feeding and reflected waves. The gradient of the slope (also predicted by the theory) is
represented by the red dashed line, with gradient equal to As(= —6.287) of (57). In (b), we show computations in the vicinity of the transition front, that shows no wave is
transmitted to the intact structure. Parameters used in the computations where M =1, a=1, E; =1I; =1, E;[, = 0.5, (r = 0.5), and w, = 2.51. The feeding wave amplitude is
A =5.002 and this profile occurs as the front steadily propagates with speed v = 1.7214 € V;. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

4.4.2. Rotations of the masses produced by the transmitted waves
ahead of the front

In similar way to the derivation of (69), we can assert that the
rotations 6;;/ produced by the waves wt({), 1 <j<v, (see (61)),
are given by the formula

. . sin Qi . N .
o — _3AY J sin(gr:n — w9 — Wy,
tr (77) tr a(2+cosq2j) 1 (QZﬂ? wtr Oy )
4.5. Illustration: beam profiles during the steady-state fracture
process

One can compute the inverse Fourier transform of (39) and
(40) to retrieve the analytical solution for the displacements. In
addition, the solution presented in (39) and (40) needs to be com-
bined with (19), and then the inverse Fourier transform is taken
to receive the rotations of each mass. The inverse Fourier trans-
forms can be computed numerically to obtain values of the mass
rotations and displacements and we can use these to construct the
beam displacements between each node along the central axis of
the structure with (4).

The results are shown for two cases, when v € V; and v € Vj; in
Figs. 7 and 8, respectively. In Fig. 7(a), we show the normalised
displacements w/w, along the central beam of the structure as a
function of n ahead and behind the transition front. In this case,
nodes have mass M = 1 and the beams have the properties a =1,
Ey =1 =1, E;l, =0.5, (r =0.5), and w, = 2.51. The feeding wave
amplitude is A =5.002. For these parameters, the speed of the
transition front is v=1.7214 € V;. Masses are represented in this
figure by the black dots and those which are supported by the
transverse beams are supplied with red crosses (n > 0). We also
represent the critical displacement condition w/w, = 1 by the hori-
zontal dashed line. In Fig. 7(b), we present the same displacements
in the vicinity of the transition front (n = 0).

During the steady-state fracture process, one can clearly iden-
tify the slope behind the transition front (in Fig. 7(a)), along which
the feeding and reflected waves propagate along. The gradient of
this slope is predicted using As of (57), we also supply a red dashed
line having gradient A; = —6.287 demonstrating the slope behind
the transition front has exactly this inclination. On the other hand,
as veV,, according to the theory presented here, no wave is

transmitted to the intact structure and this is precisely what is ob-
served in both Fig. 7(a) and (b).

On the contrary, when v €V}, one may expect the transmis-
sion of a wave into the intact structure. In Fig. 8(a), a view of
the profile of the structure is given, for the same material param-
eters as in Fig. 7. Here, the feeding wave amplitude is A = 8.077,
the inclination of the slope A; = —5.435, the critical displacement
we = 0.5468 and v = 0.7745 € V};. Again for v € Vj; we see the slope
following the propagation of the transition front. In Fig. 8, we
demonstrate there is a wave transmitted into the intact structure
with amplitude A; = 0.07672 when v € Vj; (clearly observed for n
> 2 in Fig. 8(b), indicated by the red dashed line A;/w.), whereas
near 1 = 0 there is also some local deformation near the transition
front.

5. Energy redistribution within the structure

In this section we investigate how the energy carried by the
feeding wave is distributed within in the structure during the frac-
ture process. In particular, we identify how the slope occurring be-
hind the transition front influences the wave radiation properties
observed in the fracture process.

5.1. Energy balance

The energy Gy carried by the feeding wave can be written as the
sum of energies carried by the other waves inside the structure, in
addition to the kinetic energy given to the masses by the linear de-
formation (57) and the strain energy required to break transverse
links at n = 0. Thus, we can write

n v
Gr=Go+Y GV +Y 6P +G (72)
j=1 j=1

where

(i) Gg is the energy spent on breaking the transverse links,

(ii) Gﬁj), 1 <j < n, is the energy carried by the reflected waves,
(iii) Gg), 1 <j < v, is that carried by the transmitted waves, and
(iv) Gy is the kinetic energy of the masses generated by (57).
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Fig. 8. Displacements along the central axis of the beam-made strip based on the inverse Fourier transform of (39), (40) and (19). Description of both diagrams is given in
Fig. 7. In (a), again we show the slope inside the structure and the feeding and reflected waves during the fracture process. The gradient of the slope (also predicted by
the theory) is represented by the red dashed line, with gradient equal to A;(= —5.435) in (57). In (b), we show computations in the vicinity of the transition front, where a
wave is transmitted to the intact structure with amplitude A; = 0.07672 (a red dashed line corresponding to A;/w. is shown). Parameters used in the computations where
M=1,a=1,E =1 =1, B, =0.5, (r=0.5), and w. = 0.5468. The feeding wave amplitude is A = 8.077 and this profile occurs as the front steadily propagates with speed
v = 0.7745 € V. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

5.1.1. The strain energy G
The energy released due to the breakage of the two transverse
links at n = 0 can be computed as

a 2W (y, t 12E,L,
Go = —/0 M(y.t) ay(f  dy = W
where it is noted that the quantity W is defined by (7) for n =0
(under the assumption wp(t) =w(n), 6% (t) =6%(n)) and M is
given in (5) with E = E, and I = I,. Here, if the feeding wave am-
plitude A and the phase ¢ are supplied, then Gy can be calculated
using (46) and (73).

dy (73)

5.1.2. The energy carried by the feeding and dissipative waves
The energy Gy carried by the feeding wave takes the form

lvg — |

Gf :aNfT, (74)

whereas the energies Gﬁj) and Gg) carried by the reflected and
transmitted waves, respectively, can be calculated through
lvg — v

) _ ()
GJ = aNj Ug

J=rtr. (75)

Here N; is the time-averaged energy flux density produced by the

feeding wave and this is given by

_ 3A%EiLipyV sin(py) (cos(py) +5) (1 — cos(py))

N a*(2 + cos(py))?

and for the reflected and transmitted waves

3(AYV2EhkV sin(k?) (cos (k") +5) (1 — cos (k"))
a*(2 + cos (k1))> ’

Ny (76)

()
N] =

J=r tr, (77)
where
k) =py, 1<j<n and k) =gy 1<j<v

Also, vg is the group velocity for the wave considered (vg = d—,“(’).

5.1.3. Kinetic energy of the masses along the inclination of the beam
The kinetic energy for the masses along the inclination ob-
served for n — —oo is

G _M M Z_M‘LZAZ
) at S 2a

which follows from (57).

(78)

5.2. Illustration: energy ratios

5.2.1. Dependence of the energy ratios on ¢

In this section, we present numerical computations for the
speed range v; <V < U, showing how the energy from the feed-
ing wave is distributed within the structure during the fracture
process. For this speed range, there exists a single reflected wave
(n=1), Gﬁ” = Gr) in the structure and the existence of transmit-
ted waves depends on the speed v and the contrast parameter r.
Also, as discussed in Section 3.2.2, this speed range may be par-
titioned into the two sets V; and Vj. For v eV}, v=1 and there
is a single transmitted wave in the intact structure. The energy
this wave carries is denoted by Gt(ﬁ) = G If v €V}, then there exist
no _transmitted waves in the intact structure and in (72) the terms
G =0, 1 <j < v (in fact in this case v = 0).

In Fig. 9(a) and (b), we show the dependence of the energy ra-
tios Go/Gy, Gr/Gy, Gir/Gy and Gy /Gy (using (73)—(78)) on the phase
shift ¢ for the contrast parameter r = 1. In this figure, it can be
seen that in accordance with (72), the energy ratios sum to unity.

This figure shows some main features of the energy ratios as
functions of ¢, which can be observed for any value of r. In partic-
ular, there exists an optimal value of ¢ = ¢* = 2w — . for which
the energy carried by the waves G, Gy inside the structure and
the energy released due to fracture G, take their maximum value,
e.g. in Fig. 9(a), this occurs for approximately ¢ = 3.6.

At this optimal value of ¢, the kinetic energy G, within the
structure is zero. Consulting (78), this implies the inclination As
of the structure to the far-left of the transition front is zero and
therefore the feeding wave energy is distributed only amongst the
waves. According to (71), it also means the rotations produced by
(57) to the far-left of the front are equal to zero. Thus, in the case
¢* =2 — ¥, masses will rotate as a result of the influence of the
waves inside the structure and no contribution to this rotation oc-
curs as a consequence of the deformation (57) (which is constant).

The phase ¢* = 2w — ¢ gives rise to the extremum in the en-
ergy ratios and corresponds to the minimum feeding wave energy
required to propagate the transition front with a constant speed
(see Section 4.1.1).

Fig. 9 also shows how the feeding wave energy is distributed
for v € V; and v € V. For v € V};, we see the presence of a transmit-
ted wave in the intact structure and thus some of the feeding wave
energy is given to this wave in Fig. 9(a). Note that when v € V|, we
no longer expect any transmission of waves into the intact struc-
ture (since v = 0), therefore the energy in this case goes to the
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reflected waves and the slope of the broken part of the structure
as in Fig. 9(b).

We also consider different values of the contrast parameter r
and its effect on the energy ratios. In particular, taking r > 1 we
observe in Figs. 10 and 11 that the intact structure allows for less
energy to be carried by the transmitted wave (and this part of the
structure begins to act like a rigid interface with increase of r).
In this case, more energy is spent on the reflection of the waves.
In particular for increasing r, if v € Vj;, the energy carried by the
transmitted wave in the intact structure is clearly seen to decrease
quite rapidly for all ¢ (see Figs. 10(a) and 11(a)). For example, in
the cases r =3 and r = 6 in Figs. 10(a) and 11(a), respectively, the
effect generated by the transmitted waves is very small. As a re-

sult, in these figures, the values of G¢/Gf have been appropriately
scaled to demonstrate their effect on the partition of feeding wave
energy. Here, large r corresponds to the intact structure having
stiffer transverse supports or a larger rotational inertia, due to ei-
ther Young's modulus or the second moment of area being larger,
in comparison to those properties for the horizontal links. Such a
contrast in these material properties could influence the vibrations
within the intact structure, making them smaller, and hence we
see the decrease in the magnitude of Gtr/Gf as we increase r.

For r < 1, we can expect much more energy of the feeding
wave to be transmitted into the intact structure for v eV (see
Fig. 12(a)). Note that the energy given to the transmitted waves in
Figs. 10-12 is always less than the energy carried by the reflected
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waves. The energy spent on fracture is also seen to decrease as we
increase r in Figs. 10-12.

The way the energy is partitioned inside the structure is de-
pendent on the feeding wave phase ¢. Focusing on Fig. 12(a), we
observe for approximately ¢ € [2.25, 3.1], most of the feeding
wave energy is given to the slope behind the transition front, with
the rest being distributed to the waves and the fracture energy.
When ¢ increases inside the interval [3.1, 3.7] (Y = 3.7), the en-
ergy along the slope tends to zero at ¥ = v{/., whereas the energy
distributed to the fracture process and the waves increases. Simi-
lar competition between the energy consumption of the dynamic
features of the structure can be found in Figs. 10-12.

6. Conclusions

Here we have considered dynamic fracture inside a discrete
structure composed of periodically placed masses connected by
beams. This problem has been solved using the Wiener-Hopf tech-
nique (Noble, 1958) for any given speed v of the transition front.
Two distinct regimes of the structure have been identified during
the steady-state fracture process for a specific range of the speed
v. In one of these regimes, there exists a sinusoidal wave transmit-
ted to the intact part of the structure. In the other regime, only the
evanescent waves exists there.

We have also identified the magnitude of the feeding wave am-
plitude required to propagate the transition front with a constant
speed v. One may also observe a rapid transition of the feeding
wave energy associated with this amplitude as the structure moves
between the regimes discussed above.

Note that the displacement criterion at the transition front is
insufficient in guaranteeing the steady-state regime. In addition,
it is necessary to prescribe that the displacement of nodes ahead
of the transition front remain below this critical displacement
(Marder and Gross, 1995). This admissibility criterion is violated
when the feeding wave amplitude (at a given frequency) is high
enough. In such cases, alternative ordered regimes arise (Mishuris
et al,, 2009a; Slepyan et al., 2015). Alternative regimes arising in
the considered structure are examined separately.

In the analysis of the structural dynamics during fracture, we
have identified that behind the transition front, waves reflected
from and incident on the front will propagate along a slope. Ahead
of the front, one may find waves transmitted to the intact struc-
ture. Rotations of the masses also accompany the displacements
produced by these effects.

The distribution of energy amongst these dynamic effects has
also been obtained. The minimum energy required to propagate
the front steadily with a certain speed has been shown to coin-
cide with the case when the gradient of the slope behind the front

vanishes. Consequently, it occurs that the rotations for the masses
associated with this inclination are zero, and there only one can
expect the rotations of these masses to be produced by the feed-
ing and reflected waves.
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Appendix A

First, we provide the details of the derivations of (44) and
(49) in Section A.1, where the latter determines the lower bound
for the feeding wave energy required to propagate the transition
front with constant speed. Then in Section A.2, we determine the
dynamic features of the structure during the fracture process.

A.1. Derivation of (44)

For a large distance from the transition point, the feeding wave
is also defined by the residue at k = £p,, + i0 in the inverse Fourier
transform. From (40), the leading order term in the function defin-
ing w_ at k= py is
W_(py)  Ce?

L (py) O+i(k—py)’

and for k — —p, it is

(A1)

W (py) Ce ™
L_(p,) O+i(k+py)
Here W_(py) of (31) is simplified to

Vo2 a2
Y (p) = (—1)”“1}12)“1%"1(?;{_‘1;5) (14ipy)?),
and owing to (30), (31) and (33),

L (—k) = L-(k),

W (—k) = Wy (k).

Therefore, choosing C as in (44) and applying the residue the-
orem at the poles k= +p, +0i of w_, for n - —co0 we receive
(42) as the expression for the feeding wave (here a again ap-
pears because of the normalisation of w by the beam length in
Section 3).
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A.2. Derivation of dynamic features of the beam structure

A.2.1. Derivation of the expressions for the reflected waves wﬁf ). Now
we show how to obtain the representation for the reflected waves
wﬁ]), 1 <j < n in Section 4.2.1. The function wﬁ” arises in the
consideration of the residues of k = #p,; 4 0i in the expression for
w_ in (40). The leading order term in asymptotics of the function
defining w_ in (40), for k — =£p,; is

W (£py)) Celd N Ce™i¢ 1
iL_(£pyj) | (£p2j — Pv)  (EP2j+pv) |0+i(kF paj)°
where

Wiy = | “i“,, (0 +i(k + p2j))W- (k)
—£Daj

1 H;):O(p%] - q%H])

=F(-D" "=
ZIP%]' H%}(Pé, _p%l)

(1 £ipyy)*="),

(see (31)) and

W (—pyj) =V (p2j)

for j=1,...,n. Since the poles of w_ reside in the upper half of
the complex plane, by application of the inverse Fourier transform
and the residue theorem it is possible to determine the asymptotes
for n — —oo of the original function wff)(n) in the form

w () ~ai ) Res(w_(k)e ™ k), n— —oo (A2)
kv
where k* = £p,;+0i, j=1,...,n, are the simple poles of w_ (k)
x e~ikn_Therefore,
. : ] Ce— ¢ )
w0 () = a'klll(pzj) Cel Ce P
iL_(p2j) | (P2j —pv)  (P2j + Pv)
_aVi(py) [ Ce? N Ce ¢ eipasn
iL_(paj) L(P2j+Dv)  (P2j—Dv)
U (py))[  Cel? Cei® Zip,,
= 2aRe{ - + e Pl §
{ iL_(p2j) | (p2j —Dpv)  (P2j+ Pv)
(A3)

Thus from this we obtain (53)-(56).

A.2.2. Derivation of the transmitted waves w(. The transmitted
waves appear from the residues of the poles of the function w,
in (39) at k=+q,; - 0i, 1 <j < v, provided v > 0 (otherwise no
transmitted waves exist).

Consider the asymptotes of w; near k= +q,; —0i. Then the
leading order term in these asymptotes of w, is

Celd Ce i 1
W (£qy) Ly (£G2; + . ,
+ (@)L qu)[iqszu iqzj+pv]o,(k¢qzj)
(A4)
for k — +q,; — 0i, with
Wi (£q5) = 1lim (0 — ik q2;)) W4 (k)
k—=+qy;
ey [T (@3 - p3,y) 1
2ig2; TIC, (@3, = a) (17120
J
(A.5)

Next performing the inverse Fourier transform and the residue
theorem, together with (A.4) and applying similar steps used in the
previous section allows one to derive expressions (61)-(63).

A.2.3. Derivation of the inclination behind the transition front. The
second order pole at k=0 of the function w_ produces a lin-
ear displacement behind the transition front as discussed in
Section 4.2.2. To obtain the expressions for the slope shown there,
consider the function

mk) = w_(k)(0 + ik)?
(k) Cel?
T L.(k) | 0+i(k—py)

Ce 1o
0+i(k+py) ]
which is obtained from (40). The function W% in (60) has the fol-
lowing asymptote near k = 0:
Wl (k) = W (0) + k(W) (0) + O(k?)
for k — 0 with

v 2 v 2
[Tj—0 931 [Tj—0 931

v (0) = e (W) (0) = ~2i(v - VLR
Also note
1 Cel¢ Ce ¢
L (k) [0 Fitk—py) T O0+ilk+ pu)}
_ _Zlm(Cei¢) N 2i
pyL_(0) pyL_(0)
v [Re(lff'¢) ImL(_L/Eé?)) Im(Ce'® )i|k +0(K2).

Thus, computing the Taylor expansion of (k) near k=0 we
have to first order:

om(k) = 9m(0) + kon' (0) + O(k?), for k— 0,
where
_ 2Im(Ce'?) W (0)
M(O0) = - = (A6)
and
fen _Zlm(Cei¢)(‘I’i’)’(0)

o) = Pl (0)

2ivs(0) [ Re(Cel?)  Im(L’(0)) i

Pl (0) [ P, [ mcD] A

This then provides the asymptote of w_ near k=0 in the
form:

w_ (k) = [92(0) + ko' (0)] + O(1).

1
(0 +ik)?
Application of the inverse Fourier transform and the residue
theorem, for n — —oo, then yields

ws(17) = —19'(0) — Mm(0)n,
and this with (A.6) and (A.7) gives (57)-(60).
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