International Journal of Damage
Mechanics

http://ijJd.sagepub.com

Waiting Element Structures and Stability under Extension
Andrej Cherkaev and Leonid Slepyan
International Journal of Damage Mechanics 1995; 4; 58
DOI: 10.1177/105678959500400104

The online version of this article can be found at:
http://ijd.sagepub.com/cgi/content/abstract/4/1/58

Published by:
®SAGE

http://www.sagepublications.com

Additional services and information for International Journal of Damage Mechanics can be found
at:

Email Alerts: http://ijd.sagepub.com/cgi/alerts

Subscriptions: http://ijd.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav

Citations http://ijd.sagepub.com/cgi/content/refs/4/1/58

Downloaded from http://ijd.sagepub.com at Tel Aviv University on April 13, 2010


http://ijd.sagepub.com/cgi/alerts
http://ijd.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://ijd.sagepub.com/cgi/content/refs/4/1/58
http://ijd.sagepub.com

Waiting Element Structures and
Stability under Extension
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Ramat Aviv 69978 Tel Aviv, Israel

ABSTRACT : In this paper the following questions are considered: What are the pheno-
mena which limit the total fracture energy of a structure under the extension before it
breaks? When is the limiting energy level more important that the stress limit? What are
possible ways to increase the required fracture energy of a sample before it breaks? It is
shown that the required features of a material or of a construction can be achieved by using
special structures of ordinary elements. The possibilities are discussed for increasing the
fracture energy density in a sample, and increasing the total fracture energy in a construc-
tion. The dynamic process of damaging discussed as well.

KEY WORDS: fracture energy, extension, protective structure.

PRELIMINARIES

The Focus

HE TOTAL FRACTURE energy is the main factor in the resistance of a construc-
tion to a dynamic action such as a collision, an earthquake, or an explosion.
In these situations a designer is to build a construction that accumulate as much
energy as possible before it is broken. This is a well known fact, and many papers
have been devoted to investigation of the dynamic resistivity (see, for instance,
Chou, Tsu-Wei, 1992, and Jones, N. and Weirzbicki, T. (Ed.), 1993).
However, the main attention has been paid to the dynamic compression action,
as one can see in these books. Here we want to concentrate on the extension load-
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ing which often plays the main role in dynamic processes. Such loadings are
much more unstable than compression. Indeed, the extension of a sample leads
to the decreasing of its thickness and to decreasing of the ability to carry the load
which is the cause of instability.

The construction resistivity depends on its structure and on the materials it is
made of. The material features responsible for the resistivity include a stress and
strain limits and the limiting strain energy of the material. The limiting strain en-
ergy may be considered as the maximal energy stored in a sample before it breaks
down; roughtly it can be approximated by the product of the limiting stress and
the limiting strain. The stresses are limited by the so-called theoretical strength.
The theorectical strength decreases by defects of the material structure and by
plasticity of the material. On the other hand, the strain limit is much greater for
the plastic materials, especially for so-called superplastic ones (see, for instance,
Poluchin, Gorelik and Vorontsov, 1983). However, for these materials, the strain
limit strongly depends on conditions of the extension, in particular on the tem-
perature. For an adiabatic extension, the energy needed for melting down the
material may be considered as the strain energy limit.

These local characteristics of material give some natural bounds of the ability
of construction to resist the dynamic loading. However, in practice the destroying
of construction is observed long before the limits of material resistance is
achieved. A real limiting mechanism is the instability of the strains which mani-
fests as the localization of strains. Therefore the obvious way to significantly in-
crease the quality of construction is to stabilize, somehow, the process of damag-
ing. This means that one should increase the energy density consumed in the
material deformation and to distribute the damage (the large strains) throughout
the large part of the construction.

The process of localization (instability) of strains occurs in different levels.
These levels could be illustrated by comparing the process of the strain localiza-
tion in a small laboratory sample and in a large construction. In the first case, the
concentration is a consequence of the instability of the process of material exten-
sion under uniformly distributed stresses. The second case usually corresponds
to highly non-uniform distribution of stresses throughout the construction. As a
result of it, only a small part of the construction is involved in large deformations,
and the total fracture energy used before breaking of a construction turns out to
be very small in comparison with the energy limit of the construction. These two
instabilities could be improved by assigning different requirements to the material
and to the material distribution. However, as it is shown in this paper, the more
stable material is used the higher the limiting strain energy becomes in both the
sample and the real construction. The stabilization of strains can be achieved by
manufacturing of some non-traditional materials into a special structure, as it is
shown here.

The stabilization of the fracture energy distribution may be accomplished due
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to a proper improvement in the stress—strain response of the material or con-
struction. We discuss here two methods to achieve such an improvement. (1) The
first way is to use a special structure that contains the stabilizing non-active “wait-
ing” parallel elements. They are involved in the strain process only after the ini-
tial strain is large enough. Therefore the stiffness of the construction increases in
the range of large strains, which prevents the localization of these strains and
helps to distribute strains more uniformly. The action of such elements is de-
scribed in the paper. (2) The second way is to transform the extension strain on
the “macro-level” to more stable types of strains on the “micro-level.” The plastic
helix considered below is an example of an element which performs such trans-
formation.

The additional energy modes are involved in the process of damaging such as
energy of the micro-level (high frequence) oscillations which are generated under
the dynamic extension of a material of a special structure. In a sense, the phe-
nomenon is similar to the heat energy in a shock wave. This “dynamic” energy
(mainly, the kinetic energy) is especially important for materials with high-
strength brittle fibres which cannot absorb much energy in strain.

The effective surface energy creation by crack propagation is to be noted as an
important factor in the total energy of fracture formation. On the one hand, the
greater this energy is the less brittle is the material, and hence more limiting
strain energy may be expected. On the other hand, this energy is a significant part
of the total accumulated energy especially in the case of failure due to many
micro-cracks; it could be viewed then as a stabilizing factor. The condition can
be created to increase the influence of the process of stabilization by means of a
special material structure, but we do not discuss the details of those conditions
here.

In the next two sections we describe some examples that provide some insight
into the main concept.

What Is More Important, the Limiting Strain Energy or the Strength?

Here we will concentrate on the ability of a construction to resist an extension.
We want to show that the ability to consume a high level of energy in tension
turns out to be very important in many practical situations; such as a moving tank
with a fluid under collision with a stationary wall, or a protective structure under
a point impact.

Consider, as an example, a cylindrical tank with a liquid of density ¢ and sound
velocity ¢ under a longitudinal collision with a rigid unmoving plate (Figure 1).
Let v be the velocity of the impact. We assume that v < c. To answer the above
question let us make simple estimates of two limiting cases.

In the first one the tank is assumed to be rigid. Its role is only to prevent a
radial strain of the liquid, and the mass of the tank is neglected. In this case, the
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(a)

(b)

Figure 1. Two limiting types of the collision: (a) Purely elastic collision under velocity v; (b)
Inelastic collision without a rebound. All the kinetic energy is absorbed by plastic strain of the
tank.

liquid becomes the same as the simple elastic beam with zero Poisson’s ratio. Let
the velocity be v = v,. The collision time is 2L/c, where L be a length of the
tank. After the collision, the tank jumps back with the same speed. Under these
assumptions, during the collision time the pressure g in the pressure wave in the
liquid is equal to gvc, and the corresponding normal stresses in a longitudinal
section of the shell are equal to

o = %r_' _ewer

where h is the shell thickness.

In the second case, the tank is assumed to be extensible so that all the kinetic
energy of the liquid is absorbed as the strain energy of the shell of the tank.
Assume, for a rough estimation, that the strain is uniformly distributed over the
cylindrical shell of the tank. Assume also that the material is rigid-plastic, and the
radius of the tank increases under a constant stress 0 = 0,. Under the collision
velocity v = v,, one has the energy relation
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ZL 2
TTQVI = 2xrLhoe ?2)

Here and below ¢ = In(l/l,), / is the material element length, and [, is the initial
length.

Limiting velocities of the impact are determined by the limiting stresses. Let
us compare these velocities. One can find from (1) and (2) the ratio

2 - 4= 3)

V1 V2 0y

One can see that the ratio becomes very large for a moderate velocity of the im-
pact, v; <€ c, if the limiting strain e, and the ratio 0,/0, are not too small. It
means that the shell which can absorb the kinetic energy by an elongation under
an internal pressure has much better resistance than the rigid shell. The latter
cannot absorb energy, and, because of the purely elastic impact, it can bear an
impact of a comparatively low velocity. Thus, for a moderate velocity of the im-
pact, the level of the total fracture energy under extension is more important than
the strength as the limiting stress. It is important to emphasize that this conclu-
sion is based on the assumption that the strains are distributed uniformly, and the
problem remains how to prevent the localization of the strain.

What Are the Limits of the Energy Accumulation
in Quasi-Static and Dynamic Extension?

We consider first a sample under quasi-static extension. We assume that the
strain is distributed uniformly, the material is incompressible, and the tensile
stresses ¢, are constant. The incompressibility means that the length L and the
cross-section area F of the sample are connected by the relation LF = LyF,,
where L, and F, are the initial values, and the work of extension per unit volume
may be written as

oo oo

oFdL=a."d—L=oo )
oL

1
A=uns

However, this dynamic result cannot be achieved: the tension force decreases
from the very beginning of the extension, thanks to the decrease of the cross-
section area, and this means that the uniform extension of a sample is unstable.
As a result of this instability the process of necking begins immediately with the
extension of the sample.

The stress-strain diagram of a material normally satisfies the stability condition

Ly
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d(oF)/dL > 0 (Kachanov, 1974) only for small strains. It means that one may not
expect a reasonable hardening of the material, so we can presume for these esti-
mations that the stresses are constant. From this, a more realistic limit can be
found by assuming that the extension force is on the verge of instability, i.e., it
is a constant as well as the stress. These assumptions are reasonable when the
sample is under broaching (Figure 2). In this case, we face a deformation of the
system but not the strain throughout the full sample.

The accumulated energy is determined by the limiting stresses and by volume
of the material involved in the broaching. If the whole sample is under a broach-
ing then the energy density limit turns out to be equal to

A=o 5)

A dynamic system considered below shows similar behavior and gives similar
results. Let us assume that a body of mass m is exposed under flexible rigid bonds
as it is shown on Figure 3. Being exposed under horizontal forces P = const, the
body would acquire kinetic energy, which maximum value corresponds to the
horizontal position of the bonds. The maximum work of the bonds which goes
into the kinetic energy is

A=2(NI* ¥ u® - L)P 6)

where L is the length of the bond and u is the initial lateral coordinate of the mass
(Figure 3). Hence the energy of the bonds per unit volume is equal to

L u
4= ot - =) ~ i~ ) @

where ¢ is the above tension stress. It may be pointed that the needed mass for
such a process is actually the mass of the bonds and not the mass of an additional
material.

Figure 2. The sample is under broaching.
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Figure 3. A dynamic system

In this example, the limiting stress is important in the limiting strain energy
density. However, the strain energy limit is usually far below the stress limit that
is either the strength limit or the plastic limit. The problem of improving the con-
struction become the problem of making the limit of the averaged energy density
closer to the stress limit. This is again the problem of increasing stability of the
system.

STRESS-STRAIN DIAGRAM AND STABILITY CONDITIONS

The Less Resistance the More Limiting Strain Energy

Here we want to show how the weakening of a material can actually increase
its resistivity which is associated with the fracture energy consumed. Here and
below we use the definition of stresses o as the tension force per unit of the in-
itial cross-section area, and corresponding elongation ¢ = I — I,, as well as
the above introduced true stresses o as the force per unit cross-section area of the
deformed body, and logarithmic strain e as ¢ = In(/,). The first two definitions
give us an expression of the strain work per unit volume of the material:

1 (°. .
losloade

and the last two give us the strain work per unit volume for an inextensible
material as

i." ;.F;adg = 5 ode (Fl = Folp)
(1]

We assume that [, = 1.
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The stability condition can be written as

~

do >0 or doF)

& de >0

Let us consider a material with a piecewise linear stress-strain diagram
(Figure 4):
o(€) = Ee if € < ¢
where €, = Eg,, a(e) = 0 if (¢ = €,), E is the elastic modulus, —E, is the
tangent modulus for the region €, < € < €.
This diagram has two branches: the stable one (¢ < ¢,) and the unstable one

(€ > €). The real fracture energy density corresponds to the stable branch. It
is equal to

4, = - ®

Let us suppose that E, < E. Consider a new, more stable diagram which differs
from the first one by a decrease of the stresses in an initial portion of the strain

(Figure 4).
d=FEeée=<e¢e, E<E) (10)

where ¢, is defined by the intersection of this line with the unstable branch of
the former diagram:

|
l
|
z -

2 €, €

ol

1
Figure 4. The stress-strain diagram: (1) = E&; (2) & = 6, -E(é-&); 3. ¢ = E:€
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&1 - E,(EZ - gl) = Ezgz (11)

The stress-strain relation is assumed to be the same as above for € = ;.
The fracture energy density is again the strain energy in the stable branch. It
is equal to

Egeg Eg 51 + E‘EI 2
4= 2(E,+E,) (12)
The ratio between the energies of the two described materials is
A, EJ(E+E\?
4 - E(E, ¥ E) 3
it increases when E, decreases until £, = E,, and maximum ratio is
4\ _E+Ey
( ,)m =g, =! (14)

One can see that the statement in the title of this section is valid for the range
E, < E, < E. Thus, to increase the limiting strain energy density, it is useful to
decrease the resistance to an extention in an initial range of strain. Clearly, an
even greater effect can be achieved by increasing the resistance under a large
strain at the cost of a decrease of the resistance at the beginning of the extension.
This can be done by using “waiting elements” as it is shown in the next section.

Visco-Plastic Material

Above, we have discussed the behavior of elastic-plastic material. At the same
time, the known superplastic alloys are visco-plastic ones which are character-
ized by a stress-strain relation of the type

d
2 = feo (15)

(see Poluchin, Gorelik and Vorontsov, 1983; stability conditions for plastic and
visco-plastic materials are considered in the books by Kachanov, 1974, 1986).

Under a one-dimensional extension, the force P is found as P = oF, where F
is the cross-section area. An instability of a uniform distribution of visco-plastic
strain may manifest itself as a necking or as a slip line. Let us consider the neck-
ing condition under the one-dimensional extension. Roughly, this condition may
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be formulated as “The smaller the cross-section area, the bigger is its negative
rate, -dF/dt.” For the exact defintion, the relations are used:

3 dinF N 9 dinF ili
3F @ > 0 forinstability, and 52— = < 0, for stability (P = const)  (16)

The incompressibility of material is assumed, when one has
Fl = const, InF = —e + const
These relations lead to:

9 de ) . d de -
e dt > 0, for instability, and dedt < 0, for stability (P = const) a7

Now the stability condition can be written as
%€ + L <0 (18)

The second term of the above expression is positive for a positive stress. There-
fore the stability against a necking is provided by the first term which is to be
negative and have a large enough absolute value. One can see that this require-
ment looks similar to that discussed above for a plastic material: the stability is
provided by the strain hardening. But in the case of the visco-plastic material, the
hardening depends on the rate of strain. Of course, for stability it is enough to
have sufficient hardening in the total range of strain. The material is globally
stable in a given range of strain 0 < e < e, if the maximal stress o,... is at the

Table 1. Experimental results.

oy Ao r R | L R/r A A/A, k
MPa Nm sm sm sm sm — Nm — —
1050 17 0.08 0.27 46.5 6.7 34 382 23 1.3
0.48 3.2 6.0 213 13 1.3
0.59 2.7 7.4 170 10 1.3
890 130 0.1 0.3 7.2 3.0 390 3.0 0.9
0.5 3.6 5.0 200 1.5 0.8
0.6 3.0 6.0 150 1.2 0.7
730 26 0.1 0.3 7.2 3.0 200 7.7 0.6
0.5 3.8 5.0 130 5.0 0.6

0.6 3.0 6.0 98 3.8 0.6
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limiting strain e, which can be carried by the construction. Even if for some
stresses, smaller than the maximal one, the above inequality is violated and the
“local instability” occurs, this instability does not lead to the fracture of a speci-
men. Indeed, the stress increases due to that instability until it becomes big
enough to fit the stability condition again. It is important to note, that the unstable
stress cannot reach 0,..., and that the corresponding strain remains bounded.

Note also that the pure shear loading, in contrast to the extension loading, does
not lead to a decrease of the cross-section area. As a result, the second term in
the stability condition inequality vanishes. This means that the first term of this
inequality has to be only negative, aand its absolute value can be arbitrary. There-
fore the shear is a more stable type of strain than the extension. This conclusion
is confirmed by the test results shown in Table 1.

Let us come back to Equation (15). From this equation, one can obtain

d?e de af af

proie 2;,)\=a—e+aa—o 19
Assuming that A = const on a short time interval, and that the force P is constant
one obtains the rate of the strain as an exponentially decreasing function of time
if A < 0, and vice versa, an exponentially increasing function e(#) corresponds
to the instability (\ > 0). These considerations can be applied to the two-
dimensional extension as well.

Let us consider a plate of the thickness h under the tension forced P, , with

the constitutive equations

de
‘;t,z = f;,l(el »€2,01 902) (20)

where o0,,; are the normal stresses:

_ bk _ AL _h _BL
NEL TV TR T Y

and L, , be the sizes of the plate in its plane, and ¥ = const be its volume. For
the case of P, , = const, under a possible instability, one has

d’e d de, d* d d
R U VR W W @1
_3h, i _fi 34
xll - ael + alaoly le - aez azao,z

9 ad
)\;, = f; + o, af ,
1

_0h 8%
B¢, A2z +

= [ 73
862 60'1
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The power \ of the exponentially grown solution determines the stability. This
parameter can be found from the equation one has the Equation (21) series as

A + A2 A+ M)’
A= i 2 + ,\II( = -:_ z) + M2ha — Auda 22)

Now the stability conditions can be written as

xll + x22 < 09 xIIXZZ > xIZXZI (23)

THE WAITING ELEMENTS OF A CONSTRUCTION

The Model Statistics

Let us discuss again the typical stress-strain diagram (8) of a bar with the unit
cross-section. The material with this diagram is characterized with the interval of
stable deformation where the stress increases with the strain, and the unstable in-
terval, where the stress decreases when the strain grows.

Under monotonic loading the material resists until the process is stable, the
maximum stress is equal to E¢,, and the energy A, consumed by the stable
mode of the material is defined by (9).

It is shown in the previous section that the fracture energy can be increased by
the improvement of the stress-strain diagram [see Equation (10-14)]. Now let us
show how to obtain a similar result using a proper structure of the material. Let
us cut the bar lengthwise into two bars with equal length. The first one has cross-
section area A, and the second one has the cross-section area 1 — A. Now let us
join these bars parallel to each other. Suppose that we have made the second bar
a bit longer so that it does not resist the loading until the first bar is deformed by
an enlargement €,. Suppose also that we choose ¢, to be the limiting value of
strain in the stable branch of the stress-strain diagram.

When the strain is small € < 2¢, only the first bar resists the pulling, and
o = AEE. Then, when the strain becomes greater ¢ = 2¢,, the second bar
begins to resist as well and the total resistance of the system is equal to:

0 =AEé — [(E+ E)A — E(1 — A — &)HE — &) (24

where H is the Heaviside function. This curve also has an unstable zone, but this
time it is supported by a second “hump” of the curve. In the unstable zone, the
stress id redistributed between the first and second bars (which also leads to the
dynamic energy-consuming process we describe below).

It is expected that the system of two bars in the whole must satisfy the stability
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condition. Here we do not touch upon the design questions: how to connect these
elements together to prevent the instability of the first element of the range €, <
€ < 2.

This time the material resists the loading until the stress does not decrease with
the increasing of the strain. We calculate the derivative do/de as

0 .~ .. do - - ~
d—g = AE( < 51)4 =(—AE — AE(e; = <€ <2) 25)
de de

Let us calculate the maximum of the consumed energy. Assume that, in the
limiting case,

dol/de = O(e > €) (26)

That gives us
A= E A € — &)H(E — €)](€ < 2€ 27
—E_,_E',G—E_,_E‘[e—(e—en) (€ — e)l(e = 2e:) (27)

Definitely the second curve is weaker than the first one (Figure 5). However the
consumed energy in the modernized construction is bigger than in the original
project. Indeed, this energy is equal to

2€,

-~ 3 E* |

A, = ode = €1 (28)
: L 2E+E’

The ratio of two energies is:

i A 29

For example, as it is shown on Figure 5, this ratio is equal 2.4 if E/E = 1/4. On
the Figure 5 the first curve corresponds to the initial diagram, and the second one
corresponds to the waiting element system.

The essence of the suggested procedure is that we perform work on the first bar
even in its unstable mode, and it leads to consumption of additional energy.

The other feature of the suggested scheme of joining elements is that the rate
of resistance could increase with the increasing of the strain. The normal material
without interior structure never possesses this feature. In the opposite, increasing
the strain leads to decreasing of the cross-section of the sample, to the necking,
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Figure 5. The stress-strain diagram for the waiting element structure. (1) ¢ = E& (2)
& = 61—E(é-&); (3) ¢ = AEE (4)5 = AEd.

micro-cracking, and other effects that decrease the rate of resistance and, finally,
to instability of the extension. Therefore the suggested “waiting elements” coun-
teracts the instability.

Many Waiting Elements System

Surely one can continue the described process by dividing the initial bar into
more and more pieces. All of the pieces except one will work in both their stable
and unstable modes. The consumption of the energy in the system increases but
the limiting strength decreases. The energetic efficiency of the procedure is
higher the greater is the range of unstable deformation on the stress-strain curve,
i.e., the greater is the ratio E/E,.

Let us consider the same system of N parallel bars (N — 1 waiting elements).
Let the cross-section area of n-th element be A,,. We assume again that the total
cross-section is fixed:

YA =1 (30)

The stress-strain relation is given by the formula

N
5= Y AME — (n — D&)EH[E — (n — 1)é]

— (€ — n&,)E.H(E — ne,)}, 0 <€ =< Ne 31)

To obtain the upper limit of the energy increase, the system is assumed to be
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on the verge of instability until € = Ne, < €, (see Figure 5). This leads to the
following condition

‘;_‘2=0(g, < i< NO) (32)
€
We calculate now

%Z n=2...,N 33)

The last expression and the condition (30) give us:

E\+-¥ E, E\»~
A1=(1+-L:) , A,.—E(1+E) , n=2 (34)

The limit of the stable extension energy (see curve 3 on the Figure 5 which corre-
sponds to N = 5) is:

~

Ay = A.E%[l + 2N = 1) 35)

At last, the ratio of the consumed energy is

Ay E\*V
4 AN —-1) = (2N - l)(l + E) 36)

One can choose the parameter N which satisfies the condition Ne; < €,
Clearly, the equality (see Figure 5) holds: (¢, — € )E, = Ee,. Combining the
last two relations we came to the inequality

E, & 1

ET-a-N-1 @7

which expresses the improvement by waiting elements.
Let it be Equation (37). Then the consumed energy can be increased unlimited

i) o

€
However, the maximal strength goes to zero.

A = (2N - 1)(1 +

N

oo
tl*

1
A, N-1
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The Superplastic Rope Model

The same ideal of waiting elements can be realized in the following model with
elements acting under static and dynamic loading.

Consider the rope which consists of m threads, and has N knots fixing them
(see Figure 6a). Suppose that the diameters of threads are a little different and
their lengths between the neighboring knots is also different: the smallest thread
is the shortest and so on.

Upon being stretched, the structure resists as the weakest thread acts alone un-
til at some place it breaks (Figure 6b). In this moment all the energy stored in the
rope dissapears because the rope became longer and therefore unloaded: it can-
not produce mechanical work. Being tensioned again, it collects elastic energy
again until some other piece of the same weakest thread breaks and so on. After
each moment of a break all the stored energy is wasted.

Because of the differences in the thicknesses of threads the process of failure
is stable in the sense that the first weakest thread breaks N — 1 times, than the
second one begins to break, and so on. The total number of breaks is
(N — D(@m — 1) + 1, then the rope breaks down completely.

Let us consider the behavior of the described system under a given low rate of
elongation. Namely, it is assumed that oscillations caused by the sudden
unloading, by breaking one of the thread sections, are damped towards the next
step of the loading of the thread. In this case, where all the threads are expected
to be almost the same, the complete strain energy consumed by the system con-

1 2 3 m
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1 2 3 4 N-1 N
1 2 3 4 N-:@N

(b)

Figure 6. The superplastic rope model: (a) The system of m threads which are connected
by N knots; (b) The breaking process of the system: (1) One section of the first thread is
broken; (2) Two sections of the first thread are broken.
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sidered is equal to the energy stored in a one thread, A,, multiplied by the
number of breaks:

A = [(N - Dim — 1) + 1]4, (39)
Compare this expression with the energy consumed by a normal rope. The
rope made in the usual way of m threads with equal lengths is m times stronger
than one thread and it collects m times more energy
Al = on (40)
before breaking.

Clearly, the postulated modern rope stores more energy than the usual one.
The ratio R between energies is

_N-Dm -1 +1
- m

R N (Nm 3 1) (41)

Note that the model uses the combination of elasticity and breaks to approx-
imate the stable plastic tension and stable plastic strain of the rope. The rope be-
haves as plastic material although it consists of elastic breaking elements. Note
also that as a two-dimensional system the model appears like fabrics (see Hearle,
Grosberg and Backer, 1969).

Energy Dissipation in Dynamics

In the above considerations we have concentrated our attention on the strain en-
ergy of elements of a structure that carry static or quasi-static loadings. In this
section we consider the dynamic loading. We show that in dynamic situation the
strain energy may be neglected in comparison with the kinetic energy of
nonlinear oscillations that plays the main role in fracture energy consumption.

Consider a material with a “rigid-nonlinear” static stress-strain diagram (it
means that the diagram is convex in the strain axis direction). Here, a shock wave
propagates in the material under a dynamic extension. As the shock wave propa-
gates a part of the strain energy occurs on a “micro-level” that involves the excita-
tion of high-frequency oscillations.

We could mention, as an example, the compressive heating that occurs in
shock waves that propagate in a gas (see, for instance, Zel'dovich and Raizer,
1966) or the energy dissipation in viscous fluids. Other example is given by a
compression wave in a porous material. Here, a large portion of strain energy
goes into a heat thanks to the great difference between the static and dynamic
paths on the stress-strain diagram. The point is that in the case of “rigid
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nonlinear” stress-strain diagram, the dynamic path corresponds to the straight

line through the initial and final points on the so-called Hugoniot diagram, in

contrast to the Poisson’s diagram for the static curve. The first one corresponds
to a higher uniaxial stress under the same strain, and the difference is especially

high for porous materials.(see Zel'dovich and Raizer, 1966, 1967).

It is important to mention, that the same phenomenon may take place under ex-
tension processes, as it is shown below. Namely, the structure of the waiting ele-
ment type provides the energy flow into the “micro-level” thanks to the loading-
unloading oscillations. The greater the time of “waiting” between breaks, the
greater the difference between stable and unstable modes of stress transmission,
and the more the energy is dissipated on the macro-level by high-frequence oscil-
lations.

Consider now some examples to make these speculations clearer.

The simplest system is a wavy, inextensible fibre without any bending stiffness.
In this case, the initial point on the static diagram (Figure 7) is ¢ = € = 0.
Then, we have ¢ = 0 for a range of the “macro-strain” 0 < € < ¢, . Finally,
we have € = ¢, for the range 0 < ¢ < g,, where g, be the stress limit. This
diagram is very “rigid,” and, on the macro-level, the dynamic extension of this
fibre causes the shock wave. This wave corresponds to the Hugoniot diagram
which differs from the static one.

T
Gl — — — — — — — — - — — = -
Al — — — — — — — —
7
3 7
7
7
s 2 1
7
7
7
Ve
€xs & €

Figure 7. The stress-strain diagram for the inextesible wavy fibre devoid of any bending
stiffness: 1. Poisson’s adiabate, 2. Hugoniot adiabate, 3. & = (5:/&++ )&, where &, is the ap-
plied stress.
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Figure 8. The wedge is under extension.

In the dynamic case, the static strain limit €, is replaced by €.y, Where €,
< €. The macro-level dynamic path on the diagram is a straight interval sup-
ported by the points ¢ = € = 0 and (0:,€44), Where o, is the stress in the
shock wave. This problem is investigating now by Krilov, Parnes, and Slepyan;
the theoretical considerations and numerical simulations have demonstrated that
€xx = 2/3€,.

In the combined case of inextensible fibre, all the work produced by the tension
force goes to the kinetic energy on the “micro-level.” It manifests itself by lateral
oscillations of the fibre that form a solitary wave. Thus the system cannot accu-
mulate any energy in static deformation and at the same time it is a good energy
absorber in dynamic loading. The limiting level of the energy depends on the
stress limit but not on limiting elongation of the material. The absence of the de-
pendence on the elongation is an important factor for the consideration of an
almost inextensible fibre of a high strength.

The use of wavy fibres opens the way of increasing of the total fracture energy
of such a type of material under dynamic extension. The point is that the wavy
fibres can accumulate a lot of kinetic energy by lateral oscillations in addition to
the energy of dynamic extension of the material. Composites with wavy fibres are
considered in the book by Chou (1992).

The next example shows that, in some situations, the lower the limiting strain
energy density in static conditions the greater is the total fracture energy under
dynamic conditions.

This observation is based on the fact that the lower the resistance a material
shows under the same stress limit, the greater amount of the material is involved
into a large deformation, and the more energy goes to the high-frequence oscilla-
tions (to the micro-level). In the following example the linear analysis is used;
under this assumption there is no difference between ¢ and ¢ as well as between
€ and e.

Consider a wedge (Figure 8)

r=ro, OSOSOO (42)

made of the material that is characterized by the stress-strain diagram shown on
the Figure 9, namely:
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=00 <e<e), €e=¢€ldo=<0=<o0,), 0<0¢, @43

Suppose that initially this wedge was unloaded and immobile. Suppose also
that a dynamic loading is applied at the boundary r = r, so that a constant radial
velocity of the displacement arises as v, = —v, < 0 at that boundary. The prob-
lem can be described as a dynamic problem for a plastic plate placed under a
concentrated, lateral, dynamic loading. We want to find what is the value of the
material parameter o, that maximizes the total fracture energy.

Note, that maximal energy density in statics corresponds to the maximum pos-
sible value o, = o, . This density is equal to

AQy = 046, 44)

Consider now the dynamical case; a shock wave propagates along the wedge.
Let us estimate parameters of this wave. We simplify the problem a bit. First, we
neglect a tangent velocity, i.e., we consider the axisymmetric problem. Secondly,
the stress field is assumed to be one-dimensional:

O = 0,9 = 0 (45)

The equation of motion can be derived from the following consideration.
Before the shock wave comes to a point, the material is motionless, and after the
shock wave has past this point the material moves with the constant velocity
Vv, = v = —V,. From these equilibrium conditions we derive the stresses in the
body.

We calculate the stress first in the domain lying in front of the shock wave,
where r > I(t). Under the considered piece-constant diagram, this domain is
under stress field

)
o, =0 =0 (46)

immediately after the extension is applied (z > 0).

e |

€

Figure 9. The stress-strain diagram for the wedge material.
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After the shock wave passes the interval 7, < r < I we have

To
g = aor (47)

where o, is an unknown stress at r = ro (¢ > 0). The stress distributions (46)
and (47) follow from the equilibrium equations which are valid for both domains
r < l as well as r > [ because the first one moves with the constant velocity.

Now the usual conditions are used for the jump at r = [ (see Zel'dovich and
Raizer, 1966). The puls-equation is

Qv‘,z%f = (0'7 - ao)l 48)

where @ be the mass density. The continuity follows from the mass conservation
equation that looks in our case as

Yol
=1 = & (49)
From this we can to the representations:
—p et d_n dl
l = ro + €x . ar = €x , O+l = lO’o + QVo a (50)

Then, one has the limiting relation (0. < 0,0, = g, whent = ¢,)

Oylo

Vo
gelo = l(ty)oo + QVol(t*)'e':, Iity,) = o0 ¥ ovile, o1
and the limiting time can be found from the equation (o, = o,)
Vol v
Oxlro = |ro + — {00 + —— 52
€x €x

Now one has all data for calculation the total dynamic fracture energy

te 2\ -1
AQu = j 04 Vodt = 5—2"5 r%di(do + %’3) - ro(ao + &)] 53)

0 *
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It is easy to see that the maximum of the total energy corresponds to the strain
energy density at zero point, g, = 0:

r2 6262
A8 = —0(*—3* - QV%) (54

In this case, the length of the part of the structure which is involved into the
dynamic process, as it follows from Equation (51), is

04€4T0

l(t*) = QV%

(55

One really can conclude from this example that “the lower the energy density
the greater the total energy.” It is true because the lower the energy density the
greater the amount of material that is involved into the deformation before the
failure of the construction. Finally, the integral value of the consumed energy is
greater for the material with smaller energy density.

We note that several mechanisms have been neglected in our consideration.
Namely, oscillations in the shock wave were not taken into account when the
problem on the macro-level was considered. Therefore we neglected their in-
fluence on the stress-strain diagram and on the strength of the material. In this
connective, it may be noted that the scale of the micro-oscillation does not in-
fluence the diagram but influences the strength, which is sensitive to the scale. It
is the well known scale effect in strength. From this, one may conclude that the
smaller the scale of vibration are, the lower their influence. To improve the
material properties, the best design is that which provides conditions for the
direct transformation the macro energy into heat. Then the energy of melting and
of heating to the melting temperature determines the limiting fracture energy.

PLASTIC HELIX EXTENSION

Here we discuss a way to make a deformation under loading more stable. We
want to transform the extension mode on the macro-level to a more stable mode
of deformation on the “micro-level.”

A good example of this method of stabilization is given in Figure 11. Here one
can compare the stress-strain diagrams for a straight wire (curve-1), and for a
helix fabricated from the same piece of wire (curve-2). In this test, as it is shown
below, the total fracture energy of the helix may be many times greater.

Note that the elastic strain energy of the helix is lower than that for the straight
wire due to the non-uniform distribution of the strains in the helix. Note also that
a helix can be considered as the waiting elements type structure. Here, the high-
est failure resistance corresponded to the extension of the wire that “waits” its
time to carry the load during the main part of the helix elongation.
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Consider a helix (Figure 10) of radius R and length L which is made from a
wire of radius r and length [. Let the spring be under tension; «, x, w and ¢ be
the angle between the wire axis and the cross-section of the spring, the curvature,
the second curvature and the torsion angle of the spring, correspondingly. In this
notation Ry, Lo, at, %0, wo and ¢, are corresponding initial values.

Assuming that the wire is inextensible, one can base on it geometrical relations

. cos? a sin 2« cosa  COS o
L =lIsina,x = , w="p s (] I(R - Ro)(56)

R
We assume that the torsion of the helix (but not of the wire!) is excluded by the
tension conditions, and hence

R =R, 7

COS g

If the angle ay is small enough, the wire is mainly under torsion meanwhile the
spring is under extension. Then, when this angle becomes large enough, the wire
is mainly under bending. Really, the torsion and bending moments (lets call them
M, and M, respectively) can be approximately expressed as

M, = PRcosa, M, = PRsina (58)

In this approximation, a possible torsion moment is neglected which acts in
direction of the helix axis. This accuracy is enough for rough estimation.

~ To simplify the problem, assume the material of the wire is rigid-plastic and
that the stresses in a cross-section of the wire are connected each other by the
relation (see Kachanov, 1971)

a? + 372 = 0% = const 49

where ¢ and 7 are the normal and the shear stresses, gy is the yielding limit. The
last relation is valid under an assumption of the increasing strain. For the estima-

p 2 e
—— ——
LI

Figure 10. The wire and the helix.
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Figure 11. The plastic helix extension: 1. R = r = 0.08cm, 2. R = 0.25¢cm, 3. R = 0.48
cm, 4. R = 0.59 cm.
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tion of the energy, let us consider the strain energy due to the torsion and the bend
separately, and let us neglect the energy of the wire elongation. The absolute
values of the torsion and bending moments are equal to:

4
Mb = gdyrs (60)

At the same time, the limiting change in w is

Aw = Z2%in oy — Sin o) ©1)

R,

the variation in the curvature is

Ax = 2220008 ot — COS Ctmar) (62)

R,

In this way, assuming that o, = 0, amx = 7/2 one can obtain the upper es-
timations for the works per unit volume as following:

2 4= 63
3\/§R07, b Oy (63)

A4, =
3xR
Finally, the estimation of the total work is:

A= VATT A = kgoy, k=06 (64)
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In fact, the limiting strain energy can exceed this value, mainly thanks to the
strain hardening of the material. The tests worked out at the St. Petersburg
Marine Technical University by V. F. Tscherbinn under the supervision by Sle-
pyan show different results concerning the increase of the limiting strain energy
density for different materials (Figure 11). The results are also shown in Table 1,
where A, is the strain energy of the straight wire.

One can see that the strongest effect of the strain energy increase corresponds
to the wire of the greatest yielding limit. Also, the experimental dependence of
the energy on the ratio R/r and, what is more, the least values of the coefficient
k turn out rather close with the theoretical estimations.

This example shows us that the above discussed enhancements of fracture en-
ergy increases are not only theoretically possible. They can be achieved in an ex-
periment as well.
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