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Abstract 
 

The work presented in the paper is one of the outcomes of a general   
research called Multidisciplinary Combinatorial Approach (MCA) aimed to assist in 
obtaining a general perspective over engineering systems. The approach is focused 
on developing general discrete mathematical models, called Combinatorial 
Representations and associating them with different engineering systems. Once the 
engineering system is associated with a specific combinatorial representation, 
analysis and other forms of engineering reasoning can be computerized and 
conducted solely upon the combinatorial representation. 

The work introduced in this paper enables to transfer knowledge from 
various domains of engineering to structural mechanics and vice versa. The paper is 
concentrated on transferring knowledge by means of a new duality relation between 
statical and kinematical systems that has been established in 2001. 

 
Keywords: graph theory, combinatorial representations, duality, beams, trusses, gear 
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1 Introduction 
 
The duality relations between statical and kinematical systems are 

established in the paper through systematic mathematical processes based on 
relations between generalized discrete mathematical models, called Combinatorial 
Representations.  The first duality presented in the paper is between determinate 
trusses and mechanisms [1]. It is shown that a combinatorial representation of a 
mechanism is a potential graph representation (PGR), whereas the representation of 
a truss is the flow graph representation (FGR). It is then proved that the potential 
and flow graph representations are mutually dual, thus making the trusses and 
mechanisms dual as well, as is depicted in the example of Figure 1a. Another duality 
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relation that has been recently established is the duality between  statical column 
systems and mechanisms, and its special case - the duality between statical beams 
and gear systems (Figure. 1b). 

Establishing the duality between statics and kinematics provides a channel for 
knowledge and information transfer, yielding immediate practical and theoretical 
implications, some of which are  described  in this paper.  

One of the significant theoretical implications is proving the correspondence 
between theorems and methods in the two fields. In the paper this issue is 
demonstrated by showing that Maxwell-Cremona diagram for forces in trusses and 
velocity polygon of mechanisms are actually dual methods.  
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Figure  1: Example of dual systems from static and kinematical domains. 
(a) Truss and its dual mechanism, (b) Beam and its dual planetary gear 

system. 
 

Further application of the duality relation is demonstrated by developing rules 
for validity checking. It is shown that through the duality relation, methods for 
checking the mobility of mechanisms become applicable to checking the stability of 
trusses and vice versa. 
One of the most promising practical applications of the approach is opening a new 
avenue of research for facilitating the process of design of engineering systems. 
Employing the dualism, civil engineer faces an opportunity to search for a solution 
to his problem also among known mechanisms. Once a mechanism performing the 
desired task is found, the designer is just left to transform it to  the corresponding 
dual static system.  
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2 Combinatorial Representations and their Duality  
 
The results reported in this paper are based on four Combinatorial Representations - 
Potential Graph Representations (PGR), Potential Line Graph Representations 
(PLGR), Flow Graph Representations (FGR) and Flow Line Graph Representations 
(PLGR). Tables 1 and 2 summarize the properties of these representations, 
accompanied with their relations to relevant engineering fields.  Further information 
appears in detail in ([1], [2] and [3]).  
 
 
Tables 1 and 2 employ some basic terms of graph theory, thus following are few 
necessary definitions: Network graph – is a directed graph G = <V, E>,  where V is 
the vertex set and E is the edge set. The vertex upon which the arrow is directed is 
called the ”head vertex” and the other is called the  “tail vertex”. Each edge e is 
assigned a vector called ‘flow’ )e(F

r
 and each vertex v is assigned a vector called 

‘potential’ )v(πr . Subtraction of the potential of the tail vertex from the potential of 
the head vertex for a specific edge is called the ‘potential difference’ - )e(∆

r
 of that 

edge.  
 
 
 
 
 
 
 
Combinatorial 
Representations (CR) 

Flow Graph Representation - GF 
                   (FGR) 
 

Potential Graph 
Representation- G∆ 

                                      (PGR) 
Main property Flow law - The vector sum of the 

flows in every cutset of GF is equal 
to zero.    

0FQ =⋅ )G()G( FF

rr
 

Potential law – The vector 
sum of the potential 
differences in every circuit of 
G∆ is equal to zero.     

0B =⋅ ∆∆ )G()G( ∆
rr

 
Represented engineering 
system 

Determinate truss. Mechanism.  

Edge  Truss element: rod, reaction, 
external force in the truss.  
The flow in the edge is interpreted 
as the force in the corresponding 
truss element.  

Link in the mechanism. The 
potential difference is  
interpreted as the relative 
velocity  between the end 
joints of the link. 

 Engineering 
interpretation of 
the graph 
elements 

Vertex Pinned joint of the truss Joint in the mechanism. The 
potential is interpreted as  the 
linear velocity of the joint. 

 

Table 1. Flow and Potential Graph Representations and their usage. 



4 

Combinatorial 
Representations (CR) 

Flow Line Graph Representation – 
GLF 
                   (FLGR) 
 

Potential Line Graph 
Representation- GL∆ 

                                      (PLGR) 

Main property Terminal equation - Flows in all 
edges of GLF  have two orthogonal 
components: rotational and linear, 
related as follows: 

LiiRi FrF
rrr

×= , where ir
r

 is some 
constant vector associated with the 
edge. 
 
Flow law - The vector sum of the 
flows in every cutset of GF is equal 
to zero.    

0FQ =⋅ )G()G( LFLF

rr
 

Terminal equation – Potential 
Differences in all edges of GL∆ 
 have two orthogonal 
components: rotational and 
linear, related as follows: 

RiiLi r ∆×=∆
rrr

, where ir
r

 is 
some constant vector 
associated with the edge. 
 
Potential law – The vector 
sum of the potential 
differences in every circuit of 
G∆ is equal to zero.     

0B =⋅ ∆∆ )G()G( LL ∆
rr

 
Represented engineering 
system 

Pillar structure Mechanism 

Edge  A pillar, reaction or external force 
applied to the horizontal plate. 
The linear flow in the edge is 
interpreted as the force in the 
corresponding  element. The 
rotational flow is the moment 
exerted by the element upon the 
plates to which it is connected. The 
constant vector ir

r
 thus defines the 

location of pillar in relation to the 
plate. 

Kinematical couple of 
mechanism links. The 
rotational potential difference 
is  interpreted as the relative 
angular velocity  between the 
end joints of the link. The 
linear potential difference is 
the torsor of the kinematical 
pair. The constant vector ir

r
 is 

thus equal to the radius vector 
from the corresponding 
junction to some common 
reference point. 

 Engineering 
interpretation of 
the graph 
elements 

Vertex A plate supported by the pillars Link in the mechanism. The 
potential is interpreted as the 
angular velocity of the link. 

Table 2. Flow and Potential Line Graph Representations and their usage. 
 
 
Separation of the CR to two tables is not arbitrary. It can be seen from these Tables that 
there is a certain correspondence between the properties described in their left and right 
sides. Indeed it can be proved that the corresponding CR are actually dual:  
 
Duality between flow and potential graphs [1]. Given a flow graph GF execute the following 
steps: build its dual graph *

FG , equate the potential differences in the edges of *
FG  to the 

flows in the corresponding edges of GF. It then follows from the properties of dual graphs 
[4] that these potential differences satisfy the potential law in *

FG . Thus, *
FG can be 

considered as a valid potential graph G∆.  Finally, it can be postulated that for each flow 
graph GF there exists a dual potential graph G∆ and vice versa.  
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From the duality between the flow and potential graph representations one can 
deduce the duality relation between trusses and mechanisms, as is outlined in the  
diagram in Figure 2. 
 
 
 

 
Flow Graph 

Representation 
FGR 

Potential  
Graph 

Representation 
PGR 

Mechanisms Determinate 
trusses 

mutual dualism 
*)G()G( BQ

rr
=  

mutual dualism 

Represents Represents 

 
 
 

Figure 2: Diagram explaining the mutual dualism between trusses and mechanisms. 
 
 
 

Similar procedure can be performed to prove the duality between Potential and Flow 
Line Graph Representations [3]. 
 
 
 
 
 
 

3 Duality between statical and kinematical engineering 
systems. 

 
 

From the duality between PGR and FGR, one can conclude that the engineering 
systems they represent, namely mechanisms and trusses are also dual.  This duality 
relation is defined as follows: 
 

- there is a link in the mechanism for each rod, mobile support reaction or 
external force in the truss.  

 
- the vector of the relative velocity  of  each mechanism link is equal to the 

vector of the force acting in the corresponding element in the truss.  
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Figure 3: Duality between mechanisms and trusses - (a) Mechanism, (b) Dual Truss, 

(c) Potential Graph Representation of the Mechanism, (d) Flow Graph 
Representation of the truss.  

 
 
Figure 3 shows an example of a mechanism and its corresponding dual truss, 
obtained through building the corresponding graph representations. 
 
In the same way as it was done for mechanisms and trusses, one may conclude the 
duality between mechanisms and pillar structures from the duality between PLGR 
and FLGR. 
This duality implies that for each mechanism there is a corresponding dual pillar 
structure and vice versa. Table 3, summarized the relations between the two 
engineering systems. 
 
 
 

Properties of a pillar structure Properties of the dual mechanism 
Plate / set of forces acting on the plate. Face / set of links limiting the face. 
Force i. Relative angular velocity of the 

kinematical pair i*
. 

Plane parallel to the plates of the system. Plane of the mechanism links. 
=j,ir

r radius vector between two adjacent 
joints upon which internal/external  
forces are acting. 

Li,j – vector parallel to a link in the 
mechanism whose end kinematic 
joints are i and j. 

ir
r  - radius vector to the point of action of 
force i. 

*i
rr  - radius vector of the 
kinematical pair i*. 

 
Table 3. Correspondence between the properties of pillar structure and  

its dual mechanism. 

OEV /

r
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Figure 4  shows an example of a mechanism and its dual pillar structure.  
 
 
Interesting result emerges, when the duality relation is applied to a one-dimensional 
case of  engineering systems. The one-dimensional plate acted upon by a number of 
vertical forces is actually a beam acted upon external forces and reactions. The one 
dimensional mechanism on the other hand has all links parallel to one another, 
combining it to the fact that it also satisfies torsor circuit rule, leads us to conclude 
that it is actually a gear system. Consequently, one-dimensional determinate beams 
are dual to the gear mechanisms, as is shown in the Figure 1 above.  
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Figure 4: (a) Pillar structure, (b) Flow Graph Representation of the Pillar structure,  
(d) Potential Graph Representation of the Mechanism, (c) Dual Mechanism. 
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4 Practical aspects of the duality relations.  
 
4.1 The mutual dualism between Maxwell-Cremona and image 

velocity diagrams  
 

Image velocity diagram is a known graphical method for velocity analysis of 
mechanisms [5].  Once the image velocity diagram of a mechanism is constructed, 
the relative velocities of every mechanism link can be measured directly from it.   
Knowing that the relative velocities in the mechanism links are equal to the internal 
forces in the rods of the dual truss, it can be concluded that the image velocity can 
be used to perform the static analysis of a truss.  Furthermore, one can build the 
diagram directly from the truss, without even considering its dual mechanism as is 
explained in the current subsection.  This process becomes clear when summarizing 
all the properties of the image velocity diagram while simultaneously rewriting them 
in the terminology of structural analysis, as is done in Table 4. 
 
From Table 4, it follows   that the image velocity method completely coincides with 
the known Maxwell-Cremona diagram algorithm for static analysis of determinate 
structures [6]. Consequently, Maxwell-Cremona and Image velocity methods are 
mutually dual methods.  
 

 
 
 

Image velocity properties 

In mechanism terminology In  terminology of the  dual  truss 
Each point corresponds to a joint in a mechanism. Each point corresponds to a non-bisected 

area in the truss closed by truss elements.  
The driving link is represented by a line in its 
velocity direction and length proportional to  its 
velocity value.  The line connects the points 
corresponding to the end joints of the link.

The external force is represented by a line 
in  its direction  with length  proportional 
to its  magnitude. The line connects the 
points corresponding to the areas 
separated by the external force. 

The relative velocity of  a link  is represented by a 
line parallel to the link relative velocity, which 
connects the points corresponding to the end 
joints of the link.

The axial force in a rod is represented by a 
line parallel to the rod, connecting  the 
points corresponding to the areas 
separated by it. 

 
Table 4. Properties of the image velocity diagram in the terminology of both 

mechanisms and the dual trusses. 
 
 
 
Figure 5 presents a four bar chain, its dual truss and the image velocity diagram. 
One can verify that this diagram also presents the static analysis diagram of the dual 
truss, namely its Maxwell-Cremona diagram. 
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Figure 5: The correspondence between image velocity and Maxwell-Cremona 
diagrams. (a)  The four bar chain. (b) Its dual truss. (c)  The image velocity (d) 

Maxwell-Cremona diagram. 
 

 
 
 
4.2 Checking stability through dual mechanisms 
 
Sometimes the problem of checking stability of statical system requires its thorough 
numerical investigation. Employing the duality relations may in some cases assist in 
avoiding such a procedure.   
Consider, for example, two determinate trusses of Figure 6a and 6b. Only the first 
one of these two is stable.  Reaching this conclusion without performing 
calculations, is not easy even for experts in mechanical engineering. On the other 
hand, considering the mechanisms dual to these trusses makes the task easier.  
Figure 6c shows the mechanism dual to truss of Figure 6a, whereas Figure 6d shows 
the mechanism dual to truss of Figure 6b.  In the mechanism of Figure 6d, links 1 
and 9 are co-linear, in contrast to the mechanism of Figure 6c. Therefore, it is easy 
to derive that the dual mechanism of the first truss on Figure 6d is locked while the 
dual mechanism of the second truss is not. This makes it possible to postulate that 
the truss of Figure 6a is not stable, whereas the truss of Figure 6b is stable. This 
example strengthens the claim that there are properties which are hard to detect in 
the primal representation, whereas they are transparent in the dual.  
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Figure 6: Example of stable and non-stable trusses and their dual mechanisms. 
 (a) A stable truss (b) A non-stable truss (c, d) Corresponding dual mechanisms. 

 

 
4.3  Employing duality for designing engineering systems 

 
The duality connection between mechanisms and structures can be applied for 
synthesis of new engineering systems. The main idea behind this approach lies in the 
fact that if a mechanism possesses some special engineering properties, then its dual 
truss or pillar structure possess the exact same properties. In the following example 
the idea is employed to solve a static design problem. 
Suppose one needs to design a static system, such that when a small force is applied 
to one of its joints, a much greater force is produced in one of its rods. Such a static 
system can be obtained immediately by using the duality between trusses and 
mechanisms. This is done by first finding a known mechanism having similar 
velocity characteristics, namely, a mechanism that for a small relative velocity in its 
driving link produces in its other link a much greater relative velocity. One of many 
known mechanisms satisfying this requirement is presented on Figure 7a. The 
velocity of link 1 of this mechanism is considerably larger than that of the link 5. 
The truss dual to this mechanism is presented in Figure 7d. According to the duality 
property, the truss possesses the same force characteristics as the velocity 
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characteristics of the mechanism, i.e. a small external force P causes a much greater 
force in rod 1. 
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Figure 7: Truss design. (a) Original mechanism, (b) Corresponding potential graph 
representation. (c) Dual flow graph representation and (d) the resulting truss.  

 
 
 
 
 
 

5 Further research. 
The general vector formulation of the graph representations involved should not 
limit us to two-dimensional systems. The variables of FLGR and PLGR both may 
acquire arbitrary spatial orientations without contradicting the embedded rules and 
properties of these representations. Consider for example a spatial structure 
presented in Figure 8:   
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Figure 8. Stewart platform and its dual. (a) Stewart platform, (b) Corresponding 
FLGR, (c) Dual PLGR and (d) the corresponding dual spatial mechanism. 

 
 
 
 
 
 
 

The structure shown in Figure. 8 presents a statical aspect of the known Stewart 
platform. The PLGR dual to the graph appearing in Figure 8b appears in Figure 8c. 
The graph is built of 6 serially connected edges and thus corresponds to a 
mechanism with 6 serially connected links, also known as a serial manipulator 
mechanism. By means of this relation one can now convert all the reasoning 
processes upon the Stewart platform to processes upon the dual mechanism, thus 
gaining new abilities that were not previously available. This result resonates with a 
research done in robotics for establishing duality between serial and parallel 
manipulators [7,8] that was mainly based on the screw theory. 
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6   Conclusions 
 

The paper has introduced some of the theoretical and practical contributions of two 
duality relations: between mechanisms and determinate trusses, and between 
mechanisms and pillar structures. It should be noted that although the highlight of 
the paper was the contribution to the field of civil engineering, the general approach 
introduced is applicable to many other engineering fields as well. Up until today the 
approach has been employed in statics, kinematics, electronics and hydraulics. In 
additional to theoretical contribution of the approach it may have implications in 
design, analysis, optimization, checking validity and other aspects of engineering 
research. 
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