Gossip Simulation instructions
Index
1. Introduction
2. Requirements

3. Installation guide
4. Running the simulation
5. General Settings
6. Configuration files
7. Output files
8. Code
1. Introduction
The following document contains information regarding the gossip simulation. The gossip simulation was written by Roni Parshani as a part of his Master thesis in Bar-Ilen University in Israel. The simulation has already been used for several studies in the Computer science department in Bar-Ilan University. This simulation only describes the technical aspects of the simulation. Anyone interested in using the simulation should use Roni’s thesis paper “Routing in Gossip Networks” (can be downloaded from the same site as this simulation) as an additional reference for better understanding the functionality.
2. Requirements
This simulation can only be run on windows. It also requires at least 1GB of memory in order to run properly. No additional installations are needed except for the “gossipLearning.zip” file.
3. Installation guide
The installation of this package is very easy and includes only two steps:

· Unzip the downloaded file.
· Change the base_directory parameters in the generalParameters.txt file to the path of the directory you have just unzipped.

A Gossip simulation folder will be created containing all the data needed in order to run the simulation. This includes a set of default settings and configuration files (see the following sections for more details) in order for the program to work. This is just to get you going after reading the following sections you should be able to add or modify any of the information or files needed for running the simulation. Since this is open source you can add code to meet your own needs (see code section for more details).

4. Running the simulation

Steps for running the simulation:

1. Run the executable file named gossipSimulation.exe

2. The following windows will appear:

[image: image1.png]ed e =
File Edit View Help Draw Tools.
DEM 4B o

Smate
Satrsimote
Gererate s
Gonrate vaffc s

| o

3. Select BatchSimulate and a browse window will open.
4. Select a batch file to run the simulation.
The batch files should contain a list of paths to files that should be run. The paths are relative to the configuration path specified in the generalParameters file (see general settings). Each file should have the structure of a scenario file (see configuration files section). An example of a batch file:

session0/traffic0/gossip.txt

session0/traffic1/gossip.txt

session0/traffic2/gossip.txt

session0/traffic3/gossip.txt

session0/traffic4/gossip.txt
5. After running the simulation you can monitor the progress of the program using the console window that is automatically opened.

[image: image2.png]reating Sinulation # @ L00:41.47]
[Loading C:\Raz\sessiond/trafficO/gossip. txt [08:42.121
Loading Shapes [08:42.201
InitSinulation [B0:42.411
Disposing Sinulationtt 0 1089:42.421
reating Sinulation # 1 [08:42.42]
Logs\gossiplogFile.txt [88:42.421
LoadSinulation [00:42 421
Loading Car File. Total Cars: 408 [00:42.431
Loaded Car # @ [00:42.431
Pinished reading file [08i42.451
CalcOppositeRoads [00:42.451
CreateMatrix [00:42.45]
CreateNetuorkInfo [08:42.451
StartStatistics [00:43.20]
[Pinished loading, starting simulating [89:43.241
Sinulating... [80:43.34]
Tteration #0 [60:43.341
SinulationCount = @ [00:43.34]

5. General settings
The general settings needed to run the simulation are configured through the file generalParameters which is optional but if exists must be located in the directory of the executable in order for the application to be able to read it. The file consists of a set of parameters that are optional since the application has internal default settings.

Configuration:

the base path to the configuration files;

LogPath:

 the default log path
DebugLevel

debug level
RunOutsideGui

False -run in GUI mode TRUE-run without GUI
6. Configuration files

The configuration files consist of the basic settings for the simulation and the input data needed for the simulation to run. The tree structure containing the configuration data is as follows:

Base_directory/sessionX/Cars.txt

 trafficX/scenario1.txt

 scenario2.txt

 scenario3.txt

 scenario4.txt
For example:

Gossip_learning/session0/Cars.txt

 Traffic0/gossip.txt

regular.txt

public.txt

realPublic

 Traffic1/gossip.txt

regular.txt

public.txt

realPublic

session1/Cars.txt

 traffic0/gossip.txt

regular.txt

public.txt

realPublic

 traffic1/gossip.txt

regular.txt

public.txt

realPublic

Cars.txt

This file contains a snapshot of the network state after the warm up stage []. In other words, the file contains all the information recorded by every car going through the network.

For each car the following information is presented:

Structure
<Car id>
type: //not in use
nodeNum: [value]
source: [value]
destination: [value]
weights: node_1 node_2 weight node_1 node_2 weight …

<Car>

Explaination
Id:

 the car id

Type:

 not in use

nodeNum:
 the number of nodes in the network

source:

 the source node in the cars path

destination:
 the destination node in the cars path

weights:
 a list of the weights of all links in the network as recorded in the cars memory. The list structure is as follows: a link is represented by the set [node_1 node_2 weight] where node_1 node_2 represent the the link and weigth the links weight.

Example

<Car 1>
type: 1
nodeNum: 49
source: 49
destination: 14
weights: 43 33 5.00 42 15 5.00 6 5 4.00 9 10 5.00 33 43 5.00 28 12 5.00 45 33 5.00 …

 <Car>
<Car 2>
type: 1
nodeNum: 49
source: 30
destination: 41
weights: 34 32 4.00 20 30 5.00 35 36 3.00 25 24 3.00 8 7 5.00 31 28 3.00 28 31 3.00 … <Car>
…

…

…

Scenario.txt

This file represents a scenario and contains all the information needed for a specific simulation run. There are 4 possible scenario’s therefore the file is usaly named accordingly (gossip.txt/regular.txt/publix.txt/realPublic). The file contains the following sections:

1. Basic settings

2. TrafficRules

3. CarRules

4. Network structure

5. GUI information

Basic settings
The basic settings include the following information:

Structure

<Configuration>
Simulation Length: [value]
Cars per step: [value]
Simulation iterations: [value]
Sleep interval: [value]
Debug level: [value]
Gossip percent: [value]
Gossip car percent: [value]
Gossip queue size: [value]
CarsPerLengthUnit: [value]
PublicInfo: [value]
CalculatingPercent: [value]
QueueSize: [value]
SaveCarInfo: //not in use
</Configuration>
Explanation

Simulation Length:
the length of the simulation in simulation_steps []
Cars per step:

the default number of cars allowed to pass a traffic light. (can be

overridden by the configuration of every junction)
Simulation iterations:
the number of iterations in the simulation (usually

one for single or 7 for week).
Sleep interval:

time between refresh (used only in GUI mode)
Debug level:

the level of debug used to write logging information
Gossip percent:
should always be 100
Gossip car percent:
the percent of special cars (gossip or public or real public)
Gossip queue size:
the queue size (at the junction) for in which cars are allowed to swap information in junctions
CarsPerLengthUnit:
the number of car that can fit in a segment/section of a road
PublicInfo:
type of public information used. The value can be 0-regular/gossip 1-public 2-realPublic (see)
CalculatingPercent:
the percent of steps each car is updated with network status
QueueSize:

the size of the queue at each road junction
SaveCarInfo:

not in use
Example

<Configuration>
Simulation Length: 500
Cars per step: 6
Simulation iterations: 7
Sleep interval: 10
Debug level: 60
Gossip percent: 100
Gossip car percent: 40
Gossip queue size: 10
CarsPerLengthUnit: 10
PublicInfo: 0
CalculatingPercent: 20
QueueSize: 150
SaveCarInfo:
</Configuration>
TrafficRules

A Traffic rule creates an incident which limits the number of cars that can enter a road

at every step (junction_pass_size). A traffic rule contains the following information:
structure

>TrafficRules>
TrafficRule: road_ID start_time end_time incident_intensity
<\TrafficRules<
Explanation
road_ID:

the ID of the road where the incident will occur

start_time:

the starting time of the incident

end_time:

the end time of the incident

incident_intensity:
indicatation to what degree the junction_pass_size

should be limited (-1 means no limitation)
Example
<TrafficRules>

TrafficRule: 3733 1 1 -1

TrafficRule: 3031 1 1 -1

</TrafficRules>

CarRules

Every car inserted into the network is associated with a source and destination point

(see chapter 4 above for more details). Each Car rule determines how many cars with

the same source and destination pair, will be inserted into the network in every

simulation step in the specified range.

A Car rule contains the following information:
Structure
<CarRules<
CarRule: number_of_cars source_node destination_node [optional]start_time [optional]end_time
<\CarRules<
Explanation

number_of_cars;
number of cars to insert per step

source_node:

the node in which the car is inserted to start its journey

destination_node:
the end node for the car’s journey

start_time:

[optional] the start time in the simulation when this rule is relevant

end_time:

[optional] the end time in the simulation when this rule is relevant
Example
<CarRules>

CarRule: 1 6 33

CarRule: 1 33 27

CarRule: 1 31 5
</CarRules>

Network Structure

Contains information regarding the nodes and junctions composing the network:.
Structure
<Junction>

JunctionId:
</Junction>
<Road>

RoadId: 102

StartJuncId: 1

EndJuncId: 2

Velocity: 1

Length: 5

CarsPerStep: 30

</Road>
Explanation
JunctionId:

the id of the junction.

RoadId:

the road identifier

StartJunctionId:
Each road has a direction of flow which is specified through the start and end junction

EndJunctionId:
Each road has a direction of flow which is specified through the start and end junction

Velocity:
The velocity in which a car traversing this road is advancing

Length:
The road length in segments

CarsPerStep:
The number of cars allowed to enter each segment.

Example

<Junction>

JunctionId 49

</Junction>
<Road>

RoadId: 102

StartJuncId: 1

EndJuncId: 2

Velocity: 1

Length: 5

CarsPerStep: 30

</Road>
GUI information
The GUI information keeps information needed for displaying the network. Only used if visualization mode is on.

structure

<Shape TYPE=>

Id
StartPoint
EndPoint
</Shape>

<Shape TYPE=>

Id
StartPoint
EndPoint
StartJunctionId
EndJunctionId
</Shape>
Explanation

TYPE:

the type of shape 1-junction 2-road

Id:

the shape id

StartPoint:
The x location on the screen

EndPoint:
The y location on the screen

StartJunctionId: A junction id to which the road is connected
EndJunctionId: A junction id to which the road is connected
<Shape TYPE='1'>

Id 23

StartPoint 508 66

EndPoint 508 66

</Shape>

<Shape TYPE='2'>

Id 102

StartPoint 8 235

EndPoint 53 284

StartJunctionId 1

EndJunctionId 2

</Shape>
7. Output Files
Except for the console windows that monitors the progress of the program a log file with detailed information is written according to the location specified in the generalParameters file.

8. Code
The code is written in c++ and uses the MFC library therefore currently it can only run on windows. The code is divided into two modules: one contains the treatment for the GUI while the other contains the core. The two modules communicate through a well defined interface so that in the future the GUI module can be re implemented using any other library.
The code also contains additional code that is out of the scope of this project and is he bases for future development.
