Introduction to Computer Communications Yuval Shavitt

Mon: 10:00 – 12:00 Wed: 16:00 – 18:00 option 18:00 – 20:00 Office hours: Mon. 12:00 – 13:00 @ room 303 S/W Eng. Bldg. T.A.s: Eli Brosh, room 310 S/W Eng. Bldg. Zvi Lotker Final Exam: Mon, June 16th. Moed Bet: Mon, Aug. 18th.

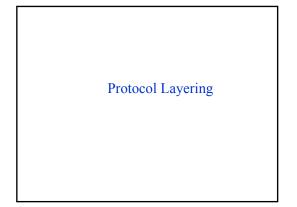
What is the course about?

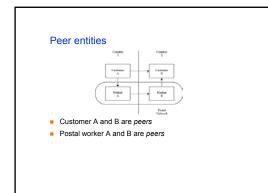
Data Networks

- How information is transferred between terminals.
- Issues, Principles, Protocols, Tools

Covered topics:

- Queueing Systems
- Multiple Access Protocols and their performance
- Routing
- Flow Control
- ARQ protocols
- Traffic Management/Engineering


Final Mark structure


- Final exam: 70-90%
- Home assignments 10-30%

Sources

General

- D. Bertsekas and R. Gallager. Data Networks, 2nd Ed., 1992. P-H.
- S. Keshav. An Engineering Approach to Computer Networking. 1997. E-W
- + J.F. Kurose and K.W. Ross. Computer Networking. 2000, E-W.
- Multiple Access
 - R. Rom and M. Sidi. Multiple Access Protocols. 1990. Springer-Verlag
- Queueing Systems
- L. Kleinrock. Queueing Systems, Vol. 1. 1975. Wiley

Protocols

- A protocol is a set of rules and formats that govern the communication between communicating peers
 - set of valid messages
 - meaning of each message
- A protocol is necessary for any function that requires cooperation between peers

Example

- Exchange a file over a network that corrupts packets
 - but doesn't lose or reorder them
- A simple protocol
 - send file as a series of packets
 - send a checksum
 - receiver sends OK or not-OK message
 - sender waits for OK message
 - if no response, resends entire file

Problems

- single bit corruption requires retransmission of entire file what if link goes down?
- what if not-OK message itself is corrupted?

What does a protocol tell us?

- Syntax of a message
 - what fields does it contain?
 - in what format?
- Semantics of a message
 - what does a message mean?
 - for example, not-OK message means receiver got a corrupted file
- Actions to take on receipt of a message
 - for example, on receiving not-OK message, retransmit the entire file

Another way to view a protocol

- As providing a service
- The example protocol provides reliable file transfer service
- Peer entities use a protocol to provide a service to a higher-level peer entity
 - for example, postal workers use a protocol to present customers with the abstraction of an unreliable letter transfer service

Protocol layering

- A network that provides many services needs many protocols
- Turns out that some services are independent
- But others depend on each other
- Protocol A may use protocol B as a step in its execution
 - for example, packet transfer is one step in the execution of the example reliable file transfer protocol
- This form of dependency is called *layering*
 - reliable file transfer is layered above packet transfer protocol like a subroutine

Some terminology

- Service access point (SAP)
- interface between an upper layer and a lower layer
 Protocol data units (PDUs)
- packets exchanged between peer entities
 Service data units (SDUs)
- Service data tanks (SDOS)
 packets handed to a layer by an upper layer
 PDU = SDU + optional header or trailer
- PDU = SDU + optional ne
- Example
 - letter transfer service
 - protocol data unit between customers = letter
 - service data unit for postal service = letter
 - protocol data unit = mailbag (aggregation of letters)
 - (what is the SDU header?)

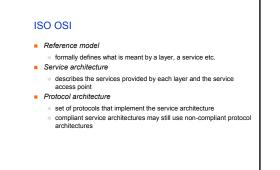
Protocol stack

- A set of protocol layers
- Each layer uses the layer below and provides a service to the layer above
- Key idea
 - once we define a service provided by a layer, we need know nothing more about the details of how the layer actually implements the service
 - the service
 - information hiding
 decouples changes

The importance of being layered

- Breaks up a complex problem into smaller manageable pieces
- can compose simple service to provide complex ones
- Abstraction of implementation details
 - separation of implementation and specification
 - can change implementation as long as service interface is maintained
- Can reuse functionality
 - upper layers can share lower layer functionality
 - example: DNS

Problems with layering


- Layering hides information
 - if it didn't then changes to one layer could require changes everywhere
 - layering violation
- But sometimes hidden information can be used to improve performance
 - for example, flow control protocol may think packet loss is always because of network congestion
 - + if it is, instead, due to a lossy link, the flow control breaks
 - this is because we hid information about reason of packet loss from flow control protocol

Layering

- There is a tension between information-hiding (abstraction) and achieving good performance
- Art of protocol design is to leak enough information to allow good performance
 - but not so much that small changes in one layer need changes to other layers

ISO OSI reference model

- A set of protocols is open if
- protocol details are publicly available
 - changes are managed by an organization whose membership and transactions are open to the public
- A system that implements open protocols is called an open system
- International Organization for Standards (ISO) prescribes a standard to connect open systems
 - open system interconnect (OSI)
- Has greatly influenced thinking on protocol stacks

The seven Layers

Application	•		•••••	Application
Presentation	┫		•	Presentation
Session	- •		•••••	Session
Transport	┫•		•••••	Transport
Network	•	Network	` ⊷⊷⊷⊷	Network
Data Link		Data Link	 	Data Link
Physical] ∙−−−•	Physical	1•	Physical
End system		Intermediate system	_	End system

The seven Layers - protocol stack

Presentation			PH	ć	lata	Presentation
Session		SH		data		Session
Transport	ТН		d	ata		Transport
Network	Network		NH data			Network
Data Link	Data Link		DH+data+DT			Data Link
Physical	Physical		bits			Physical

Physical layer

- Moves bits between physically connected end-systems
- Standard prescribes
 - coding scheme to represent a bit
 - shapes and sizes of connectors
 - bit-level synchronization
- Postal network
 - technology for moving letters from one point to another (trains, planes, vans, bicycles, ships...)
- Internet
 - technology to move bits on a wire, wireless link, satellite channel etc.

Datalink layer

- Reliable communication over a single link.
- Introduces the notion of a frame
- set of bits that belong together
- Idle markers tell us that a link is not carrying a frame
- Begin and end markers delimit a frame
- On a broadcast link (such as Ethernet)
- end-system must receive only bits meant for it
- need datalink-layer address
- also need to decide who gets to speak next
- these functions are provided by Medium Access sublayer (MAC)

Datalink layer (contd.)

- Datalink layer protocols are the first layer of software
- Very dependent on underlying physical link properties
- Usually bundle both physical and datalink layer on host adaptor card
 - example: Ethernet
- Postal service
 - mail bag 'frames' letters
- Internet
 - a variety of datalink layer protocols
 - most common is Ethernet
 - others are FDDI, SONET, HDLC

Network layer

- Carrying data from source to destination.
- Logically concatenates a set of links to form the abstraction of an end-to-end link
- Allows an end-system to communicate with any other endsystem by computing a route between them
- Hides idiosyncrasies of datalink layer
- Provides unique network-wide addresses
- Found both in end-systems and in intermediate systems
- At end-systems primarily hides details of datalink layer
 - segmentation and reassembly error detection

Network layer (contd.)

At intermediate systems

- participates in routing protocol to create routing tables
- responsible for forwarding packets
- scheduling the transmission order of packets
- choosing which packets to drop

Two types of network layers

- In datagram networks
 - provides both routing and data forwarding
- In connection-oriented network
 - we distinguish between data plane and control plane
 - data plane only forwards and schedules data (touches every byte) control plane responsible for routing, call-establishment, call-
 - teardown (doesn't touch data bytes)

Network layer

- Postal network
 - set up internal routing tables
 - forward letters from source to destination
 - static routing
 - multiple qualities of service
- Internet
 - network layer is provided by Internet Protocol
 - found in all end-systems and intermediate systems
 - provides abstraction of end-to-end link
 - segmentation and reassembly
 - packet-forwarding, routing, scheduling
 - unique IP addresses
 - · can be layered over anything, but only best-effort service

Transport layer

- Reliable end-to-end communication.
- Network provides a 'raw' end-to-end service
- Transport laver creates the abstraction of an error-controlled. flow-controlled and multiplexed end-to-end link
- Error control
 - message will reach destination despite packet loss, corruption and duplication
 - retransmit lost packets; detect, discard, and retransmit corrupted packets; detect and discard duplicated packets
- Flow control
- match transmission rate to rate currently sustainable on the path to

Transport layer (contd.)

- Multiplexes multiple applications to the same end-to-end connection
 - adds an application-specific identifier (port number) so that receiving end-system can hand in incoming packet to the correct application
- Some transport layers provide fewer services
 - e.g. simple error detection, no flow control, and no retransmission lightweight transport layer

- - destination, and at the destination itself

Transport layer (contd.)

Postal system

- doesn't have a transport layer
- implemented, if at all, by customers
- detect lost letters (how?) and retransmit them

Internet

- two popular protocols are TCP and UDP
- TCP provides error control, flow control, multiplexing
- UDP provides only multiplexing

Session layer

Not common

- Provides full-duplex service, expedited data delivery, and session synchronization
- Token management.
- Duplex
- if transport layer is simplex, concatenates two transport endpoints together

Expedited data delivery

- allows some messages to skip ahead in end-system queues, by using a separate low-delay transport layer endpoint
- Synchronization
 - allows users to place marks in data stream and to roll back to a prespecified mark

Example

Postal network

- suppose a company has separate shipping and receiving clerks
 chief clerk can manage both to provide abstraction of a duplex
- service
- chief clerk may also send some messages using a courier (expedited service)
- chief clerk can arrange to have a set of messages either delivered all at once, or not at all

Internet

doesn't have a standard session layer

Presentation layer

- Unlike other layers which deal with *headers* presentation layer touches the application data
- Hides data representation differences between applications
 e.g. endian-ness
 - characters (ASCII, unicode, EBCDIC.)
- Can also encrypt data
- Usually ad hoc
- Postal network
- translator translates contents before giving it to chief clerk
- Internet
 - no standard presentation layer
 - only defines network byte order for 2- and 4-byte integers

Application layer

- The set of applications that use the network
- Doesn't provide services to any other layer
- Postal network
 - the person who uses the postal system
 - suppose manager wants to send a set of recall letters
 - translator translates letters going abroad
 - chief clerk sends some priority mail, and some by regular mail
 - mail clerk sends a message, retransmits if not acked
 - postal system computes a route and forwards the letters
 - datalink layer: letters carried by planes, trains, automobiles
 - hysical layer: the letter itself

Layering

- We have broken a complex problem into smaller, simpler pieces
- Provides the application with sophisticated services
- Each layer provides a clean abstraction to the layer above

Why seven layers?

- Need a top and a bottom -- 2
- Need to hide physical link, so need datalink -- 3
- Need both end-to-end and hop-by-hop actions; so need at least the network and transport layers -- 5
- Session and presentation layers are not so important, and are often ignored
- So, we need at least 5, and 7 seems to be excessive
- Note that we can place functions in different layers

TCP/IP Protocols

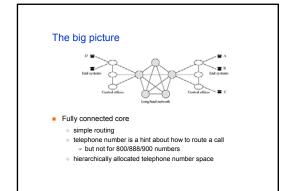
TELNET FTP SMTP DNS Application TCP UDP Transport IP Network LAN wireless WAN Physical+ Data link

Remarks on Layering

- Layer mixing (TCP/IP)
- Functionality duplications: checksums, encryption,...
- What is a layer x function?
- the end-to-end principle:
 - the network is fast and dumb, the intelligence is in the edges
 - thus, inside the networks we only have layers 1-3,
 and, every function that can be done end-to-end will not be done
 - inside the network.

The End-to-End Principle - Reality Check

- L4-7 switching
- Computation is done in the network:
 - firewalls,
 - proxies,
 - gateways (multimedia/wireless),
 - NAT,
 - etc.
- Maybe making the network smart is OK?
 - we do it anyway
 - it can optimize operation
- it give us flexibility and tailorability
- Is it time for Active Networks?


The Telephone Network

The Good Old Ubiquitous Network

ls	it a computer network?
	Specialized to carry voice
	Also carries
	 telemetry
	 video
	♦ fax
	 modem calls
	Internally, uses digital samples
-	Switches and switch controllers are special purpose compute
•	Principles in its design apply to more general computer networks

- Single basic service: two-way voice
 - Iow end-to-end delay
 - guarantee that an accepted call will run to completion
- Endpoints connected by a circuit
 - like an electrical circuit
 - signals flow both ways (full duplex)
 - associated with bandwidth and buffer resources

The pieces

- 1. End systems: telephones, faxes, ...
- 2. Transmission
- 3. Switching
- 4. Signaling

Problem: each user can potentially call any other user can't have direct lines! Switches establish temporary *circuits* Switching systems come in two parts: switch and switch controller

Switching

Signaling

- Recall that a switching system has a switch and a switch controller
- Switch controller is in the control plane
 - does not touch voice samples
- Manages the network
 - call routing (collect *dialstring* and forward call)
 alarms (ring bell at receiver)
 - billing
 - directory lookup (for 800/888 calls)

Signaling network

- Switch controllers are special purpose computers
- Linked by their own internal computer network
 Common Channel Interoffice Signaling (CCIS) network
- Earlier design used in-band tones, but was severely hacked
- Also was very rigid (why?)
- Messages on CCIS conform to Signaling System 7 (SS7) spec.

Challenges for the telephone network

- Multimedia
 - simultaneously transmit voice/data/video over the network
 - people seem to want it
 - existing network can't handle it
 - bandwidth requirements
 - burstiness in traffic (TSI can't skip input)
 - change in statistical behavior
- Backward compatibility of new services
 - huge existing infrastructure
 - idiosyncrasies
- Regulation
 - stifles innovation

Challenges

Competition

- future telephone networks will no longer be monopolies
 how to manage the transition?
- Inefficiencies in the system
- an accumulation of cruft
- special-purpose systems of the past
- 'legacy' systems
- need to change them without breaking the network

The Internet

The network of networks

My how you've grown!

- The Internet has doubled in size every year since 1969
- In July 2000: 93,000,000 hosts
- Currently about 79 new hosts join every minute.
- Soon, everyone who has a phone is likely to also have an email account
 - Pacific Bell telephone directories are planning to include email addresses in white pages

What does it look like?

- Loose collection of networks organized into a multilevel hierarchy
 - 10-100 machines connected to a hub or a router
 - · service providers also provide direct dialup access
 - or over a wireless link
 - 10s of routers on a department backbone
 - 10s of department backbones connected to campus backbone
 - 10s of campus backbones connected to regional service providers
 - 100s of regional service providers connected by national backbone
 - 10s of national backbones connected by international trunks

Intranet, Internet, and Extranet

- Intranets are administered by a single entity
 - e.g. Cornell campus network
- Internet is administered by a coalition of entities
 - name services, backbone services, routing services etc.
- Extranet is a marketing term
 - refers to exterior customers who can access privileged Intranet services
 - · e.g. Cornell could provide 'extranet' services to Ithaca college

What holds the Internet together?

- Addressing
- how to refer to a machine on the Internet
- Routing
- how to get there
- Internet Protocol (IP)
- what to speak to be understood

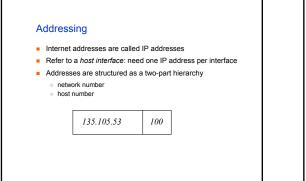
Example: joining the Internet

- How can people talk to you?
- get an IP address from your administrator
- How do you know where to send your data?
 - if you only have a single external connection, then no problem
 - otherwise, need to speak a routing protocol to decide next hop
- How to format data?
 - use the IP format so that intermediate routers can understand the destination address
- If you meet these criteria--you're on the Internet!
- Decentralized, distributed, and chaotic
 but it scales (why?)

What lies at the heart?

- Two key technical innovations
 - packets
 - store and forward

Packets


- Self-descriptive data
- packet = data + metadata (header)
- Packet vs. sample
 - samples are not self descriptive
 - to forward a sample, we have to know where it came from and when
 - can't store it!
 - hard to handle bursts of data

Store and forward

- Metadata allows us to forward packets when we want
- E.g. letters at a post office headed for main post office
 address labels allow us to forward them in batches
- Efficient use of critical resources
- Three problems
 - hard to control delay within network
 - switches need memory for buffers
 - convergence of flows can lead to congestion

Key features of the Internet

- Addressing
- Routing
- Endpoint control

An interesting problem

- How many bits to assign to host number and how many to network number?
- If many networks, each with a few hosts, then more bits to network number
- And vice versa
- But designer's couldn't predict the future
- Decided three sets of partitions of bits
 - class A: 8 bits network, 24 bits host
 - class B: 16 bits each
 - class C: 24 bits network, 8 bits host

Addressing (contd.)

- To distinguish among them
 - use leading bit
 - first bit 0 => class A
 - first bits 10 => class B
 - first bits 110 => class C
 (what class address is 132.66.48.1?)
 - (what class address is 132.6
- Problem
 - if you want more than 256 hosts in your network, need to get a class B, which allows 64K hosts => wasted address space
- Solution
 - associate every address with a mask that indicates partition point
 - CIDR

Routing

- How to get to a destination given its IP address?
- We need to know the next hop to reach a particular network number
 - this is called a routing table
- computing routing tables is non-trivial

Simplified example

Default routes

- Strictly speaking, need next hop information for every network in the Internet
 - > 100,000 now
- Instead, keep detailed routes only for local neighborhood
- For unknown destinations, use a *default* router
- Reduces size of routing tables at the expense of non-optimal paths

Endpoint control

- Key design philosophy: "the end-to-end principle"
 - do as much as possible at the endpoint
 dumb network

 - exactly the opposite philosophy of telephone network
- Layer above IP compensates for network defects
 - Transmission Control Protocol (TCP)
- Can run over any available link technology
 - $\ensuremath{\scriptstyle \checkmark}$ but no quality of service
 - $\ensuremath{\scriptstyle \ensuremath{\scriptstyle \ensuremath{\scriptstyle$
 - $\ensuremath{\scriptstyle \ensuremath{\scriptstyle \ensuremath{\scriptstyle$

Challenges

- IP address space shortage
 - because of free distribution of inefficient Class B addresses
 decentralized control => hard to recover addresses, once handed out
- Decentralization
 - allows scaling, but makes *reliability* next to impossible
 cannot guarantee that a route exists, much less bandwidth or buffer
 - resources
 single points of failure can cause a major disaster
 - and there is no control over who can join!
 - hard to guarantee security
 - end-to-end encryption is a partial solution
 - ✓ who manages keys?

Challenges (contd.)

- Decentralization (contd.)
 - no uniform solution for accounting and billing

 - no equivalent of white or yellow pages
 hard to reliably discover a user's email address
 - nonoptimal routing
 - · each administrative makes a locally optimal decision

Challenges (contd).

- Multimedia
 - requires network to support quality of service of some sort
 - hard to integrate into current architecture
 store-and-forward => shared buffers => traffic interaction =>
 - hard to provide service quality
 - requires endpoint to signal to the network what it wants
 but Internet does not have a simple way to identify streams of
 - packets
 - $\ensuremath{\scriptstyle \ensuremath{\scriptstyle \sim}}$ nor are routers required to cooperate in providing quality
 - and what about pricing!