The Internet Network layer

Host, router network layer functions:

IP datagram format

IP Fragmentation & Reassembly

- network links have MTU (max.transfer size) - largest possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP Fragmentation and Reassembly

length	ID	fragflag	offset
=4000	=x	=0	=0

One large datagram becomes several smaller datagrams

g offset =0

length	ID	fragflag	offset	
=1500			=1480	

length	ID	fragflag	offset	
=1040			=2960	

ICMP: Internet Control Message Protocol

- used by hosts, routers, gateways to communication network-level information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Routing in the Internet

- The Global Internet consists of Autonomous Systems
 (AS) interconnected with each other:
 - □ Stub AS: small corporation
 - Multihomed AS: large corporation (no transit)
 - **Transit AS**: provider
- Two-level routing:
 - **Intra-AS:** administrator is responsible for choice
 - Inter-AS: unique standard

Intra-AS border (exterior gateway) routers

Inter-AS interior (gateway) routers

Intra-AS Routing

- Also known as Interior Gateway Protocols (IGP)
 Most common IGPs:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco propr.)

RIP (Routing Information Protocol)

- Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- Distance metric: # of hops (max = 15 hops)
 - □ Can you guess why?
- Distance vectors: exchanged every 30 sec via Response Message (also called advertisement)
 Each advertisement: route to up to 25 destination
 - nets

RIP (Routing Information Protocol)

Routing table in D

RIP: Link Failure and Recovery

- If no advertisement heard after 180 sec --> neighbor/link declared dead
 - routes via neighbor invalidated
 - new advertisements sent to neighbors
 - neighbors in turn send out new advertisements (if tables changed)
 - link failure info quickly propagates to entire net
 - poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP Table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

RIP Table example (continued)

Router: *giroflee.eurocom.fr*

Destination	Gateway	Flags	Ref	Use	Interface
127.0.0.1	127.0.0.1	UH	0	26492	100
192.168.2.	192.168.2.5	υ	2	13	fa0
193.55.114.	193.55.114.6	U	3	58503	le0
192.168.3.	192.168.3.5	U	2	25	qaa0
224.0.0.0	193.55.114.6	U	3	0	le0
default	193.55.114.129	UG	0	143454	

- Three attached class C networks (LANs)
- Router only knows routes to attached LANs
- Default router used to "go up"
- Route multicast address: 224.0.0.0
- Loopback interface (for debugging)

OSPF (Open Shortest Path First)

- open": publicly available
- Uses Link State algorithm
 - LS packet dissemination
 - Topology map at each node
 - Route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor router
- Advertisements disseminated to entire AS (via flooding)

OSPF "advanced" features (not in RIP)

- Security: all OSPF messages authenticated (to prevent malicious intrusion); TCP connections used
- Multiple same-cost paths allowed (only one path in RIP)
- For each link, multiple cost metrics for different TOS (eg, satellite link cost set "low" for best effort; high for real time)
- Integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- Hierarchical OSPF in large domains.

Hierarchical OSPF

- **Two-level hierarchy:** local area, backbone.
 - Link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- Area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- Backbone routers: run OSPF routing limited to backbone.
- **Boundary routers:** connect to other ASs.

IGRP (Interior Gateway Routing Protocol)

- CISCO proprietary; successor of RIP (mid 80s)
- Distance Vector, like RIP
- several cost metrics (delay, bandwidth, reliability, load etc)
- uses TCP to exchange routing updates
- Loop-free routing via Distributed Updating Alg.
 (DUAL) based on *diffused computation*

Inter-AS routing

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto standard
- Path Vector protocol:
 - similar to Distance Vector protocol
 - each Border Gateway broadcast to neighbors (peers) *entire path* (I.e, sequence of ASs) to destination
 - E.g., Gateway X may send its path to dest. Z:

Internet inter-AS routing: BGP

Suppose: gateway X send its path to peer gateway W

- W may or may not select path offered by X
 - cost, policy (don't route via competitors AS), loop prevention reasons.
- If W selects path advertised by X, then: Path (W,Z) = w, Path (X,Z)
- Note: X can control incoming traffic by controling it route advertisements to peers:
 - e.g., don't want to route traffic to Z -> don't advertise any routes to Z

Internet inter-AS routing: BGP

- BGP messages exchanged using TCP.
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

<u>Why different Intra- and Inter-AS routing?</u>

Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed Scale:
- hierarchical routing saves table size, reduced update traffic

Performance:

- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

BGP Policy Example

Router Architecture Overview

Two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)
- *switching* datagrams from incoming to outgoing link

Input Port Functions lookup, data link forwarding switch line processing termination (protocol, fabric queueing decapsulation) Physical layer: it-level reception Decentralized switching: Data link layer: e.g., Ethernet given datagram dest., lookup output port П using routing table in input port memory

- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input Port Queuing

- Fabric slower than input ports combined -> queueing may occur at input queues
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward
- queueing delay and loss due to input buffer overflow!

output port contention at time t - only one red packet can be transferred green packet experiences HOL blocking

Three types of switching fabrics

Switching Via Memory

First generation routers:

packet copied by system's (single) CPU

speed limited by memory bandwidth (2 bus crossings per datagram)

Modern routers:

input port processor performs lookup, copy into memory

Cisco Catalyst 8500

- datagram from input port memory
 to output port memory via a shared
 bus
- bus contention: switching speed limited by bus bandwidth
- 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)

Switching Via An Interconnection Network

- overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- Advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches Gbps through the interconnection network

Output Ports

- Buffering required when datagrams arrive from fabric faster than the transmission rate
- Scheduling discipline chooses among queued datagrams for transmission

Output port queueing

buffering when arrival rate via switch exceeds ouput line speed

queueing (delay) and loss due to output port buffer overflow!

- Initial motivation: 32-bit address space completely allocated by 2008.
- Additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS
 - new "anycast" address: route to "best" of several replicated servers
- IPv6 datagram format:
 - fixed-length 40 byte header
 - no fragmentation allowed

IPv6 Header (Cont)

Priority: identify priority among datagrams in flow *Flow Label:* identify datagrams in same "flow." (concept of "flow" not well defined).

Next header: identify upper layer protocol for data

Other Changes from IPv4

- Checksum: removed entirely to reduce processing time at each hop
- Options: allowed, but outside of header, indicated by "Next Header" field
- □ *ICMPv6:* new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
 - 🛭 no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- Two proposed approaches:
 - Dual Stack: some routers with dual stack (v6, v4) can "translate" between formats
 - Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Dual Stack Approach

Tunneling

Logical view

