
1

Scheduling

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

Scheduling

Sharing always results in contention
A scheduling discipline resolves contention:

who’s next?
Key to fairly sharing resources and providing performance
guarantees

Components

A scheduling discipline does two things:
decides service order
manages queue of service requests

Example:
consider queries awaiting web server
scheduling discipline decides service order
and also if some query should be ignored

Where?

Anywhere where contention may occur
At every layer of protocol stack
Usually studied at network layer, at output queues of switches

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

2

Why do we need one?

Because future applications need it
We expect two types of future applications

best-effort (adaptive, non-real time)
e.g. email, some types of file transfer

guaranteed service (non-adaptive, real time)
e.g. packet voice, interactive video, stock quotes

What can scheduling disciplines do?

Give different users different qualities of service
Example of passengers waiting to board a plane

early boarders spend less time waiting
bumped off passengers are ‘lost’!

Scheduling disciplines can allocate
bandwidth
delay
loss

They also determine how fair the network is

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

Requirements

An ideal scheduling discipline
is easy to implement
is fair
provides performance bounds
allows easy admission control decisions

to decide whether a new flow can be allowed

Requirements: 1. Ease of implementation

Scheduling discipline has to make a decision once every few
microseconds!
Should be implementable in a few instructions or hardware

for hardware: critical constraint is VLSI space
Work per packet should scale less than linearly with number of
active connections

At OC-192 rate (10Gbps):

Min packet size 40 bytes.

Trans time: 40*8 / 10*109 = 32nSec

Requirements: 2. Fairness

Scheduling discipline allocates a resource
An allocation is fair if it satisfies min-max fairness
Intuitively

each connection gets no more than what it wants
the excess, if any, is equally shared

A B C A B C

Transfer half of excess

Unsatisfied demand

3

Fairness (contd.)

Fairness is intuitively a good idea
But it also provides protection

traffic hogs cannot overrun others
automatically builds firewalls around heavy users

Fairness is a global objective, but scheduling is local
Each endpoint must restrict its flow to the smallest fair allocation
Dynamics + delay => global fairness may never be achieved

Max-Min Fairness

Every connection can increase its rate until it hurts the rate of a
connection with less or equal rate

{2/3,1/3,1/3,1/3}

Requirements: 3. Performance bounds

What is it?
A way to obtain a desired level of service

Can be deterministic or statistical
Common parameters are

bandwidth
delay
delay-jitter
loss

Bandwidth

Specified as minimum bandwidth measured over a prespecified
interval
E.g. > 5Mbps over intervals of > 1 sec
Meaningless without an interval!
Can be a bound on average (sustained) rate or peak rate
Peak is measured over a ‘small’ inteval
Average is asymptote as intervals increase without bound

Delay and delay-jitter

Bound on some parameter of the delay distribution curve

Req’ments: 4. Ease of admission control

Admission control needed to provide QoS
Overloaded resource cannot guarantee performance
Choice of scheduling discipline affects ease of admission control
algorithm

4

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

Fundamental choices

1. Number of priority levels
2. Work-conserving vs. non-work-conserving
3. Degree of aggregation
4. Service order within a level

Choices: 1. Priority

Packet is served from a given priority level only if no packets
exist at higher levels (multilevel priority with exhaustive service)
Highest level gets lowest delay
Watch out for starvation!
Usually map priority levels to delay classes

Low bandwidth urgent messages

Realtime

Non-realtime

Priority

Choices: 2. Work conserving vs. non-
work-conserving

Work conserving discipline is never idle when packets await
service
Why bother with non-work conserving?

Non-work-conserving disciplines

Key conceptual idea: delay packet till eligible
Reduces delay-jitter => fewer buffers in network
How to choose eligibility time?

rate-jitter regulator
bounds maximum outgoing rate

delay-jitter regulator
compensates for variable delay at previous hop

Do we need non-work-conservation?

Can remove delay-jitter at an endpoint instead
but also reduces size of switch buffers…

Increases mean delay
not a problem for playback applications

Wastes bandwidth
can serve best-effort packets instead

Always punishes a misbehaving source
can’t have it both ways

Bottom line: not too bad, implementation cost may be the
biggest problem

5

Choices: 3. Degree of aggregation

More aggregation
less state
cheaper

smaller VLSI
less to advertise

BUT: less individualization
Solution

aggregate to a class, members of class have same
performance requirement
no protection within class

Choices: 4. Service within a priority level

In order of arrival (FCFS) or in order of a service tag
Service tags => can arbitrarily reorder queue

Need to sort queue, which can be expensive
FCFS

bandwidth hogs win (no protection)
no guarantee on delays

Service tags
with appropriate choice, both protection and delay bounds
possible

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

Scheduling best-effort connections

Main requirement is fairness
Achievable using Generalized processor sharing (GPS)

Visit each non-empty queue in turn
Serve infinitesimal from each
Why is this fair?
How can we give weights to connections?

More on GPS

GPS is unimplementable!
we cannot serve infinitesimals, only packets

No packet discipline can be as fair as GPS
while a packet is being served, we are unfair to others

Degree of unfairness can be bounded
Define: work(I,a,b) = # bits transmitted for connection I in time
[a,b]
Absolute fairness bound for discipline S

Max (work_GPS(I,a,b) - work_S(I, a,b))
Relative fairness bound for discipline S

Max (work_S(I,a,b) - work_S(J,a,b))

What next?

We can’t implement GPS
So, lets see how to emulate it
We want to be as fair as possible
But also have an efficient implementation

6

Weighted round robin

Serve a packet from each non-empty queue in turn
Unfair if packets are of different length or weights are not equal
Different weights, fixed packet size

serve more than one packet per visit, after normalizing to
obtain integer weights

Different weights, variable size packets
normalize weights by mean packet size

e.g. weights {0.5, 0.75, 1.0}, mean packet sizes {50, 500,
1500}
normalize weights: {0.5/50, 0.75/500, 1.0/1500} = { 0.01,
0.0015, 0.000666}, normalize again {60, 9, 4}

Problems with Weighted Round Robin

With variable size packets and different weights, need to know
mean packet size in advance
Can be unfair for long periods of time
E.g.

T3 trunk with 500 connections, each connection has mean
packet length 500 bytes, 250 with weight 1, 250 with weight
10
Each packet takes 500 * 8/45 Mbps = 88.8 microseconds
Round time =2750 * 88.8 = 244.2 ms

Weighted Fair Queueing (WFQ)

Deals better with variable size packets and weights
GPS is fairest discipline
Find the finish time of a packet, had we been doing GPS
Then serve packets in order of their finish times

WFQ: first cut

Suppose, in each round, the server served one bit from each
active connection
Round number is the number of rounds already completed

can be fractional
If a packet of length p arrives to an empty queue when the round
number is R, it will complete service when the round number is
R + p => finish number is R + p

independent of the number of other connections!
If a packet arrives to a non-empty queue, and the previous
packet has a finish number of f, then the packet’s finish number
is f+p
Serve packets in order of finish numbers

A catch

A queue may need to be considered non-empty even if it has no
packets in it

e.g. packets of length 1 from connections A and B, on a link
of speed 1 bit/sec

at time 1, packet from A served, round number = 0.5
A has no packets in its queue, yet should be considered
non-empty, because a packet arriving to it at time 1
should have finish number 1+ p

A connection is active if the last packet served from it, or in its
queue, has a finish number greater than the current round
number

WFQ continued

To sum up, assuming we know the current round number R
Finish number of packet of length p

if arriving to active connection = previous finish number + p
if arriving to an inactive connection = R + p

(How should we deal with weights?)
To implement, we need to know two things:

is connection active?
if not, what is the current round number?

Answer to both questions depends on computing the current
round number (why?)

7

WFQ: computing the round number

Naively: round number = number of rounds of service completed
so far

what if a server has not served all connections in a round?
what if new conversations join in halfway through a round?

Redefine round number as a real-valued variable that increases
at a rate inversely proportional to the number of currently active
connections

this takes care of both problems (why?)
With this change, WFQ emulates GPS instead of bit-by-bit RR

Problem: iterated deletion

A sever recomputes round number on each packet arrival
At any recomputation, the number of conversations can go up at
most by one, but can go down to zero
=> overestimation
Trick

use previous count to compute round number
if this makes some conversation inactive, recompute
repeat until no conversations become inactive

Round number # active conversations

WFQ implementation

On packet arrival:
use source + destination address (or VCI) to classify it and
look up finish number of last packet served (or waiting to be
served)
recompute round number
compute finish number
insert in priority queue sorted by finish numbers
if no space, drop the packet with largest finish number

On service completion
select the packet with the lowest finish number

Analysis

Unweighted case:
if GPS has served x bits from connection A by time t
WFQ would have served at least x - P bits, where P is the
largest possible packet in the network

WFQ could send more than GPS would => absolute fairness
bound > P
To reduce bound, choose smallest finish number only among
packets that have started service in the corresponding GPS
system (WF2Q)

requires a regulator to determine eligible packets

Evaluation

Pros
like GPS, it provides protection
can obtain worst-case end-to-end delay bound
gives users incentive to use intelligent flow control (and also
provides rate information implicitly)

Cons
needs per-connection state
iterated deletion is complicated
requires a priority queue

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

8

Scheduling guaranteed-service
connections

With best-effort connections, goal is fairness
With guaranteed-service connections

what performance guarantees are achievable?
how easy is admission control?

We now study some scheduling disciplines that provide
performance guarantees

WFQ

Turns out that WFQ also provides performance guarantees
Bandwidth bound

ratio of weights * link capacity
e.g. connections with weights 1, 2, 7; link capacity 10
connections get at least 1, 2, 7 units of b/w each

End-to-end delay bound
assumes that the connection doesn’t send ‘too much’
(otherwise its packets will be stuck in queues)
more precisely, connection should be leaky-bucket regulated
bits sent in time [t1, t2] <= σ (t2 - t1) + ρ

Leaky Bucket

x(t) is the instantaneous sending rate,

() ∫
+

>=
ut

t
0t dt)t(xmaxub Max bits b(u)

Interval size u

Max
burst
rate

Slope=
average rate

b(u)=ρ +σu

Parekh-Gallager theorem

Let a connection be allocated weights at each WFQ scheduler
along its path, so that the least bandwidth it is allocated is g
Let it be leaky-bucket regulated such that # bits sent in time [t1,
t2] <= σ (t2 - t1) + ρ
Let the connection pass through K schedulers, where the kth
scheduler has a rate r(k)
Let the largest packet allowed in the network be P

∑ ∑
−

= =

++≤
1

1 1
)(///___

K

k

K

k
krPgPgdelayendtoend σ

Significance

Theorem shows that WFQ can provide end-to-end delay bounds
So WFQ provides both fairness and performance guarantees
Bound holds regardless of cross traffic behavior
Can be generalized for networks where schedulers are variants
of WFQ, and the link service rate changes over time

Problems

To get a delay bound, need to pick g
the lower the delay bounds, the larger g needs to be
large g => exclusion of more competitors from link
g can be very large, in some cases 80 times the peak rate!

Sources must be leaky-bucket regulated
but choosing leaky-bucket parameters is problematic

WFQ couples delay and bandwidth allocations
low delay requires allocating more bandwidth
wastes bandwidth for low-bandwidth low-delay sources

9

Delay-Earliest Due Date

Earliest-due-date: packet with earliest deadline selected
Delay-EDD prescribes how to assign deadlines to packets
A source is required to send slower than its peak rate
Bandwidth at scheduler reserved at peak rate
Deadline = expected arrival time + delay bound

If a source sends faster than contract, delay bound will not
apply

Each packet gets a hard delay bound
Delay bound is independent of bandwidth requirement

but reservation is at a connection’s peak rate
Implementation requires per-connection state and a priority
queue

Rate-controlled scheduling

A class of disciplines
two components: regulator and scheduler
incoming packets are placed in regulator where they wait to
become eligible
then they are put in the scheduler

Regulator shapes the traffic, scheduler provides performance
guarantees

Examples

Recall
rate-jitter regulator

bounds maximum outgoing rate
delay-jitter regulator

compensates for variable delay at previous hop
Rate-jitter regulator + FIFO

similar to Delay-EDD (what is the difference?)
Rate-jitter regulator + multi-priority FIFO

gives both bandwidth and delay guarantees (RCSP)
Delay-jitter regulator + EDD

gives bandwidth, delay,and delay-jitter bounds (Jitter-EDD)

Analysis

First regulator on path monitors and regulates traffic =>
bandwidth bound
End-to-end delay bound

delay-jitter regulator
reconstructs traffic => end-to-end delay is fixed (= worst-
case delay at each hop)

rate-jitter regulator
partially reconstructs traffic
can show that end-to-end delay bound is smaller than
(sum of delay bound at each hop + delay at first hop)

Decoupling

Can give a low-bandwidth connection a low delay without
overbooking
E.g consider connection A with rate 64 Kbps sent to a router
with rate-jitter regulation and multipriority FCFS scheduling

After sending a packet of length l, next packet is eligible at time
(now + l/64 Kbps)
If placed at highest-priority queue, all packets from A get low
delay
Can decouple delay and bandwidth bounds, unlike WFQ

Evaluation

Pros
flexibility: ability to emulate other disciplines
can decouple bandwidth and delay assignments
end-to-end delay bounds are easily computed
do not require complicated schedulers to guarantee
protection
can provide delay-jitter bounds

Cons
require an additional regulator at each output port
delay-jitter bounds at the expense of increasing mean delay
delay-jitter regulation is expensive (clock synch, timestamps)

10

Summary

Two sorts of applications: best effort and guaranteed service
Best effort connections require fair service

provided by GPS, which is unimplementable
emulated by WFQ and its variants

Guaranteed service connections require performance
guarantees

provided by WFQ, but this is expensive
may be better to use rate-controlled schedulers

Outline

What is scheduling
Why we need it
Requirements of a scheduling discipline
Fundamental choices
Scheduling best effort connections
Scheduling guaranteed-service connections
Packet drop strategies

Packet dropping

Packets that cannot be served immediately are buffered
Full buffers => packet drop strategy
Packet losses happen almost always from best-effort
connections (why?)
Shouldn’t drop packets unless imperative

packet drop wastes resources (why?)

Classification of drop strategies

1. Degree of aggregation
2. Drop priorities
3. Early or late
4. Drop position

1. Degree of aggregation

Degree of discrimination in selecting a packet to drop
E.g. in vanilla FIFO, all packets are in the same class
Instead, can classify packets and drop packets selectively
The finer the classification the better the protection
Max-min fair allocation of buffers to classes

drop packet from class with the longest queue (why?)

2. Drop priorities

Drop lower-priority packets first
How to choose?

endpoint marks packets
regulator marks packets
congestion loss priority (CLP) bit in packet header

11

CLP bit: pros and cons

Pros
if network has spare capacity, all traffic is carried
during congestion, load is automatically shed

Cons
separating priorities within a single connection is hard
what prevents all packets being marked as high priority?

2. Drop priority (contd.)

Special case of AAL5
want to drop an entire frame, not individual cells
cells belonging to the selected frame are preferentially
dropped

Drop packets from ‘nearby’ hosts first
because they have used the least network resources
can’t do it on Internet because hop count (TTL) decreases

3. Early vs. late drop

Early drop => drop even if space is available
signals endpoints to reduce rate
cooperative sources get lower overall delays, uncooperative
sources get severe packet loss

Early random drop
drop arriving packet with fixed drop probability if queue
length exceeds threshold
intuition: misbehaving sources more likely to send packets
and see packet losses
doesn’t work!

3. Early vs. late drop: RED

Random early detection (RED) makes three improvements
Metric is moving average of queue lengths

small bursts pass through unharmed
only affects sustained overloads

Packet drop probability is a function of mean queue length
prevents severe reaction to mild overload

Can mark packets instead of dropping them
allows sources to detect network state without losses

RED improves performance of a network of cooperating TCP
sources
No bias against bursty sources
Controls queue length regardless of endpoint cooperation

4. Drop position

Can drop a packet from head, tail, or random position in the
queue
Tail

easy
default approach

Head
harder
lets source detect loss earlier

4. Drop position (contd.)

Random
hardest
if no aggregation, hurts hogs most
unlikely to make it to real routers

Drop entire longest queue
easy
almost as effective as drop tail from longest queue

