Query Algorithms

« Assume a very large graph
* We can query the graph
— Minimize the query number
— Query complexity vs. time complexity

 Sublinear (g,0)-approximation

Counting Stars: Model

1 2

* We assume graphs are I TH4—-CT 1T 717
represented by the incidence i g N B N B
lists of the vertices, where
each list is accompanied b 12

P S e B e

its length.
» Allowed queries:

— what is the degree, d(v),
of any vertex v?

— who is the i'th neighbor of
v, for any vertex v and
index 1< 1 <d(v)?

[Gonen, Ron, Shavitt, SIDMA 2011]

Approximating Stars

Upper Bound:

* Given an approximation parameter 0 < ¢ < 1 and query
access to a graph G, the algorithm outputs an estimate v’
such that, with high constant probability,

(1-e)v(G)< V', < (1+8) v,(G),
where v (G) denotes the number of stars of size s+1 in the
graph.
* The expected query complexity and running time of the

algorithm are
1
n R
(@) —+minqn °, 1' - poly(logn,1/ &)
v,(G)*! v,(G) *

Upper Bound-Main ldea

» Consider a partition of the graph vertices into O(log n/e)
buckets where in each bucket all vertices have the same
degree (with respect to the entire graph) up to a multiplicative
factor of (1+O(¢)). The degree in bucket B, is ~(1+p)’,
p=0(e).

» If we could get a good estimate of the size of each bucket by
sampling, then we would have a good estimate of the number

of s-stars (since the vertices in each bucket
are the centers of approximately the same \Vk \Vk
number of stars).

* The difficulty is that some buckets may be very small and we

might not even hit them when sampling vertices. However,
these buckets can significantly contribute to the number of

stars in the graph.
S
'\/

Upper Bound

Solution: if we have an estimate € on the number of edges
incident to vertices in a certain bucket, and all vertices in
that bucket have degree roughly d, then the number of stars
whose center belongs to this bucket is approximately
e
s \s-1

* Consider an edge (u,v) that is incident to a vertex u that has
degree (roughly) d. Then the number of stars that include
this edge and are centered at u is (roughly) (* '] .

{s-1
+ If we sum this expression over all & edges that are incident
to vertices in the bucket of u, then each star (that is
centered at a vertex in the bucket) is counted s time, and
hence we divide the expression [dfllj by s.
\S—

N

u o o

Upper Bound

— we need to find such estimate €:

* We can easily estimate #edges between large
buckets.

» The difficulty is to estimate #edges between a
large bucket and a small bucket.

* We first define the notion of significant small
buckets. Such buckets have a non-negligible
contribution to the total number of s-stars (where
each vertex accounts for the number of stars that it
is a center of).

bucket —_,\ /.

Significant small
L= |

Upper Bound

* For each large bucket B, and (1+By
(significant) small bucket B; we L \‘\/ |
further consider partitioning the B, \

vertices in B, according to the
number of neighbors they have in B;.

* We encounter a tradeoff between the
. . (1+B)r
number of vertices in B, that need to \
\

be sampled in order to get

sufficiently many vertices that

belong to a particular sub-bucket and Bi’j‘r
the number of neighbors that should

be sampled o as to detect (1+B)

S SRR S SR
large r = |BI i 15 relatlvely small “ucket \\#

Need large sample of v to hit B;; Sampl ed/ \
BUT small sample of neighbors of veB; neighbors

Upper Bound —
Case of length-2 paths

Notations:

* {(G) = the number of length-2 paths (2-stars) in a graph G.

» I'(v) =the set of neighbors of a vertex v.

* d(v) = the degree of a vertex v.

» For two (not necessarily disjoint) subsets of vertices V,V,
of VIet E(V,,V,) = {(v|,v,)e E v,eV,, v,eV,}.

* E,;=E(B;B).

* P=e¢/c where ¢ > 1 is a constant.

* t=log,. gn(t=0(logn/g)).

* Fori=0,....t, the bucket B, = {v:d(v)e((1+ B)"!, (1+ B)}.

Upper Bound

Estimating the number of paths whose mid-point
belongs to “large” buckets:

 Obtain an estimate, b’,, such that
(I-B)IBy < b’ < (1+P)|By].

* Our estimate for the number of length-2 paths
whose midpoint is in a large bucket is

: b,i(mﬁ)ij
0 \2

Upper Bound

Estimating the number of length-2 paths whose mid-point is
in significant “small” buckets:

* For each “large” bucket B, and significant “small” bucket

B;, we obtain an estimate ¢;; to the number, [E, |, of edges
between the two buckets.

* The estimate is such that if [E; | is above some threshold,

then &;; = (1£B)[E; |, and otherwise, &;; is small.

> Vi

* Our estimate for the number of length-2 pa‘[hs1 whose _
midpoint is in a significant “small” bucket is E.ZL:ZEéi’j((l+ﬂ)] -D
where L denotes the set of indices of the “large”& buckets.

* We set our threshold of “largeness" so that the number
of length-2 paths in which all vertices on the path do not
belong to L is negligible.

Upper Bound

Estimating & & forielL and jeL:

» For each 1eL and jeL we consider partitioning the vertices
in B; that have neighbors in B; into sub-buckets:

forr=0,...,i, B;;, = {veB;: (I+B)"! <T(V)NB< (1+B)".
* By the definition of B ;, we have that
2./Bij | (1I+B)" = (1XP)[E, .

* — good estimate of [B;; | gives good estimate of |E; .

* ris large — [B;; | may be relatively small — we need to take
a relatively large sample of vertices in order to “hit" B
However, in order to determine whether a vertex (in B5
belongs to B;; for large r, it suffices to take a small sample
of its nelghbors

* ris relatively small — B, must be relatively big (if
|E(B,;,-B;)| 1s non- neghgfble) - it suffices to take a
relatlvely small sample so as to “hit" By;, and then we can
afford performing many neighbor queries from the selected
vertices.

. this assumption can be
The Alqorltm@

« We assume first that we have a rough estimate {" such that
VA(G) <0< 2UG).
» Estimating the number of length-2 paths for G =(V,E):
— Input: &,
— Let 3=¢/32, t=|_log1+ﬁ nl, 6,=6230°13/(32t43).
— Uniformly and independently select ©((n/0,)(log t/&?))

vertices from V, and let S denote the multi-set of the
selected vertices (that is, we allow repetitions).

— Fori1=0,...,t determine S, = S N B, by performing a degree
query on every vertex in S. .

_ Let L={i: [S,/[S[>26 /n}. If max,d{“)] }>4/ then
terminate.

— For each ieL run Algorithm 2 to get estimates {€;;};,; for
- Output /"_Zn~'~[2 j+222éiﬁj((1+ﬂ)l—1)

ieL ‘ S ‘ jeL < ielL

The Algorithm

Paths with mid-point Paths with mid-point in
in large buckets significant small buckets
- N
- R -~ ~
S. 1+ A) l — . ,
w:Zn-M- 1+5) +Y =Y 6. (1+p) -1
>
iel | S | 2 jel 2 ieL
Estimation of
B E;j o5
9 °© /\/ °
g/\o/
W L] Y
B. B, B.

i i j

Algorithm 2

Estimating {|E;;|} for a givenieL and all j¢L:
— Input: L, iel, &, U
— For each 0< p<i let 6,(p) = &¥2'V2/(c,t>2(1+B)P2, where ¢,
is a constant that will is set in the analysis. Let p, be the
smallest value of p satisfying (1/4)0,(p + 1)<n.

— For p =1 down to p, initialize S(P)i,j,p = ¢.
— For p=1down to p, do:
* Let s = O((n/0,(p))(t/B)*log t), and let
2P=0((1+B)*log(tn)/B?).
« Uniformly, independently at random select s vertices

from S®*D (where St*D = V) and let S© be the multiset
of vertices selected.

Algorithm 2

¢ Determine S,”) = S® N B, by performing a degree query on
every vertex in S®. If |S.®)|< (s®)/n) 6,(p)/(4(1+B)), then go
to . Else, if s».5”.__ 4" _ then terminate.

n [(Hﬁ)"‘]
2

¢ For each veS,® select (uniformly, independently at random)
g neighbors of v, and for each jgL let 7,?(v) be the number
of these neighbors that belong to B; . (If g®> d(v) then
consider all neighbors of v.)

* For each j¢L and for each veSP\U .. | S(P’)i’j,p,, if
(1+B)P/d(v)<y,®)(v)/g®(v)<(1+B)P/d(v) then add v to S®); .

~ For each jeL let &= IS0, 11+4).

P=po < ”

— Return {€..}. ;.
{ I,J}J@?L Estimation of

B

ij.p

Main Theorem

With probability at least 2/3, the output, £”, of Algorithm
satisfies {"=(1+&)l(G)

The query complexity and running time of the algorithm
are

3/2
O{(}(G—n)m + min{nl/z,(}(:;jﬂ - poly(logn,1/ &)

Lower Bounds for Approximating the
Number of Length-2 Paths

Theorem: any multiplicative approximation algorithm for the number of

length-2 paths must perform Q[L] queries.
G

Proof sketch:
Graph G,: empty graph {(G,)=0.
Graph G,:

B @ werf

Clique of size[/3] [ndependent set of
size n-| (173
In order to distinguish between G, and G, it is necessary to perform a
query on a vertex in the clique. The probability of hitting such a vertex
in of_" | queries is o(1).
°[i<e>”] a o

Lower Bounds for Approximating the
Number of Length-2 Paths

Theorem: any constant-factor approximation algorithm for
the number of length-2 paths must perform Q(Vn) queries
when the number of length-2 paths is O(n?).

Proof sketch: by previous theorem we may consider the case
that £(G) > n¥? > n. We show that every n, every constant

¢ and every n < £ < (n/2¢)? there exist two families of n
vertex graphs for which the following holds. In both families
the number of length-2 paths is 6(£), but in one family this
number is a factor c larger than in the other family.
However, it is not possible to distinguish with high constant
probability between a graph selected randomly in one family
and a graph selected randomly in the other family using
o(Vn) queries.

10

Lower Bounds for Approximating the
Number of Length-2 Paths

Graph G,: determined by d=1.2¢/n] matchings. — each vertex

has degree d, and

/G—nd 4
,(1)—-2<,

Graph G,: There is a small subset, S, of ¢ vertices, where each
vertex in S has degree d’ = V(20) [+1, and each vertex in V\ S
has degree d = 20/n .

z(Gz)>c-[g ']:c'[@+lJ>cﬁ

2

Lower Bounds for Approximating the
Number of Length-2 Paths

Theorem: any constant-factor approximation algorithm for the
number of length-2 paths must perform Q(n*?/0?) queries
when the number of length-2 paths is Q(n?).

Proof sketch: we show that every n, every constant ¢ and every
£=0(n?), L <nd/(16c?), there exist two families of n-vertex
graphs for which the following holds. In both families the
number of length-2 paths is 6(f), but in one family this number
is a factor c larger than in the other family. However, it is not
possible to distinguish with high constant probability between a
graph selected randomly in one family and a graph selected
randomly in the other family using o(n*?/£!2) queries.

11

Lower Bounds for Approximating the
Number of Length-2 Paths

Graph G : determined by d=| 20/n] matchings. — each vertex
has degree d, and (G))=n [:J </

Graph G,: There is subset, S, o = 4ct/n?]| vertices, and a
complete bipartite graph between S and V\S. In addition, there

are d-s perfect matchings between vertices in V\S. — each
vertex in V\S has degree d, and

n-s 3n/4 S
/{(Gz)ZS(2 j>s.[2 j (d“.

4c0] (3n/4
£<n®/(16¢?) e >cl
—s<n/4 n

L_ower Bounds for other small
motifs:

» For triangles a lower bound that is linear in n when the
number of edges is ®(n):

o Graph G, e Graph G,

A(G]):O A(G2)=n—3

To distinguish between G, and G, it is necessary:
* to either hit the isolated vertex, OR
* to hit the edge between the two high-degree vertices, OR
* to observe all neighbors of one of the high-degree vertices.
For all cases 2(n) queries are necessary.

12

L_ower Bounds for other small
motifs:

* For length-3 paths we show a lower bound that is linear in
the number of edges when the number of edges is O(n):

Graph G, % Graph G,
UG)=0 ®© UG=6() (©

In order to distinguish between G, and G, it is necessary
* to hit one of the isolated vertices, OR
* to hit the edge between the two centers, OR
* to observe all neighbors of one of the centers.
For all cases (2(m) queries are necessary.

Related Problems

* For bounded degree graphs:
If the graph 1s Q(1)-far from cycle-free
graph an algorithm can find a cycle of

polylog length is O (1/n)
* An é(poly(%)\/ﬁ) tester for cycle freeness

[Czumaj et al., RSA 2012]

13

Symmetry Compression Method

Node | W | Sy || Node | W | Sy

2 0|8 1

9

10

N

w

s}
o|lo|o

11

12

13

S| O G W= LA R =
=
S ololo|a ol o

—
w2

o|lo|o

G| R | =] = =

14

PPI of HIV-1

(a)

[Wang et al., IEEE/ACM Trans on Comp. Bio. 2012]

Network Graphlets

Future challenges

« Efficient 5-node graphlets algorithms
— There are 20 graphlets
— ... and 57 orbits

« Efficient algs for large important motifs
— Cycles, bi-partites, cliques, almost cliques

 Following motifs in evolving networks

