
1

Query Algorithms

• Assume a very large graph

• We can query the graph
– Minimize the query number

– Query complexity vs. time complexity

• Sublinear (,)-approximation

1    2   …    

1    2   …    

d(2)

1

n

d(1)

d(n)

Counting Stars: Model
• We assume graphs are 

represented by the incidence 
lists of the vertices, where 
each list is accompanied by 
its length. 

• Allowed queries:

– what is the degree, d(v), 
of any vertex v?

– who is the i’th neighbor of 
v, for any vertex v and 
index 1 i  d(v)?

[Gonen, Ron, Shavitt, SIDMA 2011]



2

Approximating Stars

Upper Bound:
• Given an approximation parameter 0 <  < 1 and query 

access to a graph G, the algorithm outputs an estimate ’s
such that, with high constant probability, 

(1-)s(G) ’s  (1+) s(G),
where s(G) denotes the number of stars of size s+1 in the 
graph.

• The  expected query complexity and running time of the 
algorithm are

1
1

1

1 1
1

1

min , (log ,1/ )

( ) ( )

s
s

s

s s
s s

n n
O n poly n

G G


 







  
     
    

Main Idea-Upper Bound
• Consider a partition of the graph vertices into O(log n/)

buckets where in each bucket all vertices have the same 
degree (with respect to the entire graph) up to a multiplicative 
factor of (1O()). The degree in bucket Bi is ~(1+)i, 
=O().

• If we could get a good estimate of the size of each bucket by 
sampling, then we would have a good estimate of the number 
of s-stars (since the vertices in each bucket
are the centers of approximately the same 
number of stars).

• The difficulty is that some buckets may be very small and we
might not even hit them when sampling vertices. However, 
these buckets can significantly contribute to the number of 
stars in the graph. …



3

Upper Bound
Solution: if we have an estimate ê on the number of edges 
incident to vertices in a certain bucket, and all vertices in 
that bucket have degree roughly d, then the number of stars 
whose center belongs to this bucket is approximately

:                                                   
• Consider an edge (u,v) that is incident to a vertex u that has 

degree (roughly) d. Then the number of stars that include 
this edge and are centered at u is (roughly)        . 

• If we sum this expression over all ê edges that are incident 
to vertices in the bucket of u, then each star (that is 
centered at a vertex in the bucket) is counted s time, and 
hence we divide the expression           by s.

11
ˆ

1

d
e

ss

 
  

1

1

d

s

 
  

1
ˆ

1

d
e

s

 
  

u
vd

Upper Bound
 we need to find such estimate ê:

• We can easily estimate #edges between large 
buckets.

• The difficulty is to estimate #edges between a 
large bucket and a small bucket.

• We first define the notion of significant small 
buckets. Such buckets have a non-negligible 
contribution to the total number of s-stars (where 
each vertex accounts for the number of stars that it 
is a center of). 

…

Significant small 
bucket



4

Upper Bound
• For each large bucket Bi and 

(significant) small bucket Bj we 
further consider partitioning the 
vertices in Bi according to the 
number of neighbors they have in Bj. 

• We encounter a tradeoff between the 
number of vertices in Bi that need to 
be sampled in order to get 
sufficiently many vertices that 
belong to a particular sub-bucket and 
the number of neighbors that should 
be sampled so as to detect 
(approximately) to which sub-bucket 
a vertex belongs to.

…

Bi
Bj

(1+)r

Bi,j,r

…

Bi
Bj

(1+)r

Bi,j,r

…

Bi
Bj

(1+)r

Bi,j,r

Si
Si,j,r

Sampled 
neighbors

large r  |Bi,j,r| is relatively small


Need large sample of v to hit Bi,j,r

BUT small sample of neighbors of vBi

–Upper Bound 
paths2 -Case of length

Notations:     
• ℓ(G) = the number of length-2 paths (2-stars) in a graph G.
• (v) = the set of neighbors of a vertex v.
• d(v) = the degree of a vertex v.
• For two (not necessarily disjoint) subsets of vertices V1,V2

of V let E(V1,V2) = {(v1,v2) E :v1V1, v2V2}.
• Ei,j = E(Bi,Bj).
• =/c where c > 1 is a constant.
• t = log1+  n (t = O(log n/ )). 
• For i = 0,…,t, the bucket Bi = {v:d(v)((1+ )i-1, (1+ )i]}.



5

Upper Bound

Estimating the number of paths whose mid-point  
belongs to “large” buckets:

• Obtain an estimate, b’i, such that 

(1-)|Bi|  b’i  (1+)|Bi|.

• Our estimate for the number of length-2 paths 
whose midpoint is in a large bucket is  

0

(1 )
'

2

it

i
i

b




 
 
 



Upper Bound
Estimating the number of length-2 paths whose mid-point is 

in significant “small” buckets:

• For each “large” bucket Bi and significant “small” bucket 
Bj, we obtain an estimate êi,j to the number, |Ei,j|, of edges 
between the two buckets.

• The estimate is such that if |Ei,j| is above some threshold, 
then êi,j = (1)|Ei,j|, and otherwise, êi,j is small.

• Our estimate for the number of length-2 paths whose 
midpoint is in a significant “small” bucket is                                
where L denotes the set of indices of the “large” buckets. 

• We set our threshold of  “largeness" so that the number 
of length-2 paths in which all vertices on the path do not 
belong to L is negligible.

,

1
ˆ ((1 ) 1)

2
j

i j
i L j L

e 
 

 



6

Upper Bound
Estimating êi,j for iL and jL:
• For each iL and jL we consider partitioning the vertices 

in Bi that have neighbors in Bj into sub-buckets: 
for r = 0,…,i, Bi,j,r = {vBi: (1+)r-1 < (v)Bj (1+)r. 

• By the definition of Bi,j,r we have that 
∑r|Bi,j,r| (1+)r = (1)|Ei,j|.

•  good estimate of |Bi,j,r| gives good estimate of |Ei,j|.
• r is large  |Bi,j,r| may be relatively small  we need to take 

a relatively large sample of vertices in order to “hit" Bi,j,r. 
However, in order to determine whether a vertex (in Bi) 
belongs to Bi,j,r for large r, it suffices to take a small sample 
of its neighbors.

• r is relatively small  Bi,j,r must be relatively big (if 
|E(Bi,j,r,Bj)| is non-negligible)  it suffices to take a 
relatively small sample so as to “hit" Bi,j,r and then we can 
afford performing many neighbor queries from the selected 
vertices.

The Algorithm
• We assume first that we have a rough estimate ℓ’ such that        

½ℓ(G)  ℓ’ 2ℓ(G).
• Estimating the number of length-2 paths for G =(V,E):

– Input: ,ℓ’
– Let =/32, t=log1+ n, 1=2/3ℓ’1/3/(32t4/3).
– Uniformly and independently select ((n/1)(log t/2))

vertices from V, and let S denote the multi-set of the 
selected vertices (that is, we allow repetitions).

– For i = 0,…,t determine Si = S  Bi by performing a degree 
query on every vertex in S.

– Let L={i: |Si|/|S|21/n}. If                                     then 
terminate.

– For each iL run Algorithm 2 to get estimates {êi,j}jL for 
{|Ei,j|}jL.

– Output

1

1

(1 )
max 4 '

2

i

i L








      
   



,

(1 )| | 1
ˆ'' ((1 ) 1)

| | 22

i
ji

i j
i L j L i L

S
n e

S




  

 
      

 
  

this assumption can be 
removed



7

The Algorithm

,

(1 )| | 1
ˆ'' ((1 ) 1)

| | 22

i
ji

i j
i L j L i L

S
n e

S




  

 
      

 
  

Estimation of 
|Bi|

Paths with mid-point 
in large buckets

Paths with mid-point in 
significant small buckets

Bi Bj

Ei,j

Bi

2Algorithm 
Estimating {|Ei,j|} for a given iL and all jL:

– Input: L, iL, , ℓ’
– For each 0 p i let 2(p) = 3/2ℓ’1/2/(c2t5/2(1+)p/2, where c2

is a constant that will is set in the analysis. Let p0 be the 
smallest value of p satisfying (1/4)2(p + 1)n.

– For p = i down to p0 initialize Ŝ(p)
i,j,p = .

– For p = i down to p0 do:
• Let s(p) = ((n/2(p))(t/)2log t), and let   

g(p)=((1+)i-plog(tn)/2).
• Uniformly, independently at random select s(p) vertices 

from S(p+1) (where S(i+1) = V) and let S(p) be the multiset 
of vertices selected.



8

2Algorithm 
• Determine Si

(p) = S(p)  Bi by performing a degree query on 
every vertex in S(p). If |Si

(p)|< (s(p)/n) 2(p)/(4(1+)), then go 
to       . Else, if                             then terminate.

• For each vSi
(p) select (uniformly, independently at random) 

g(p) neighbors of v, and for each jL let j
(p)(v) be the number 

of these neighbors that belong to Bj . (If g(p) d(v) then 
consider all neighbors of v.)

• For each jL and for each vSi
(p)\p’>p Ŝ(p’)

i,j,p’, if 

(1+)p-1/d(v)<j
(p)(v)/g(p)(v)(1+)p/d(v) then add v to Ŝ(p)

i,j,p.

− For each jL let                                    .

− Return {êi,j}jL.
0

( )
, , ,( )

ˆˆ | | (1 )
i

p p
i j i j pp

p p

n
e S

s




  

( )
( )

1

4 '
| |

(1 )

2

P
p

i i

s
S

n  
 

 
 
 



Estimation of
Bi,j,p

Main Theorem

With probability at least 2/3, the output, ℓ’’, of Algorithm 
satisfies ℓ’’=(1)ℓ(G)

The query complexity and running time of the algorithm 
are 

3/2
1/2

1/3 1/2
min , (log ,1/ )

( ) ( )

n n
O n poly n

G G


  
   

   



9

Theorem: any multiplicative approximation algorithm for the number of
length-2 paths must perform                 queries.

Proof sketch:
Graph G1: empty graph ℓ(G1)=0.
Graph G2:

In order to distinguish between G1 and G2 it is necessary to perform a
query on a vertex in the clique. The probability of hitting such a vertex 
in              queries is o(1).

Lower Bounds for Approximating the
Paths2 -Number of Length

1/3( )

n

G

 
 
 

Clique of size ℓ1/3 Independent set of 
size n- ℓ1/3

1/3
1/3

2

1
( ) ( )

2
G 

           
 


  

1/3( )

n
o

G

 
 
 

Theorem: any constant-factor approximation algorithm for
the number of length-2 paths must perform (n) queries
when the number of length-2 paths is O(n2). 
Proof sketch: by previous theorem we may consider the case
that ℓ(G) > n3/2 > n. We show that every n, every constant
c and every n < ℓ < (n/2c)2 there exist two families of n
vertex graphs for which the following holds. In both families
the number of length-2 paths is (ℓ), but in one family this
number is a factor c larger than in the other family.
However, it is not possible to distinguish with high constant
probability between a graph selected randomly in one family
and a graph selected randomly in the other family using
o(n) queries.

Lower Bounds for Approximating the
Paths2 -Number of Length



10

Graph G1: determined by d=2ℓ/n matchings.  each vertex

has degree d, and 

Graph G2: There is a small subset, S, of c vertices, where each

vertex in S has degree d’ =(2ℓ)+1, and each vertex in V\ S

has degree d = 2ℓ/n.

Lower Bounds for Approximating the
Paths2 -Number of Length

1( )
2

d
G n

 
   

 
 

2

' 2 1
( )

2 2

d
G c c c

   
      

   


 

d

d’

S

Theorem: any constant-factor approximation algorithm for the
number of length-2 paths must perform (n3/2/ℓ1/2) queries
when the number of length-2 paths is (n2).
Proof sketch: we show that every n, every constant c and every
ℓ = (n2), ℓ < n3/(16c2), there exist two families of n-vertex
graphs for which the following holds. In both families the
number of length-2 paths is (ℓ), but in one family this number
is a factor c larger than in the other family. However, it is not
possible to distinguish with high constant probability between a
graph selected randomly in one family and a graph selected
randomly in the other family using o(n3/2/ℓ1/2) queries.

Lower Bounds for Approximating the
Paths2 -Number of Length



11

Graph G1: determined by d=2ℓ/n matchings.  each vertex

has degree d, and 

Graph G2: There is subset, S, of s =4cℓ/n2 vertices, and a 

complete bipartite graph between S and V\S. In addition, there

are d-s perfect matchings between vertices in V\S.  each

vertex in V\S has degree d, and

Lower Bounds for Approximating the
Paths2 -Number of Length

1( )
2

d
G n

 
   

 
 

2

2

3 / 4
( )

2 2

3 / 44
        

2

n s n
G s s

nc
c

n

   
      

   
         






d-s

s S

ℓ<n3/(16c2)
s<n/4

• For triangles a lower bound that is linear in n when the 
number of edges is (n):

To distinguish between G1 and G2 it is necessary: 
• to either hit the isolated vertex, OR
• to hit the edge between the two high-degree vertices, OR 
• to observe all neighbors of one of the high-degree vertices.
For all cases (n) queries are necessary.

Lower Bounds for other small 
motifs:

. . .

. . .

(G1)=0 (G2)=n-3

Graph G1 Graph G2



12

Lower Bounds for other small 
motifs:

• For length-3 paths we show a lower bound that is linear in 
the number of edges when the number of edges is (n):

In order to distinguish between G1 and G2 it is necessary 
• to hit one of the isolated vertices, OR
• to hit the edge between the two centers, OR
• to observe all neighbors of one of the centers. 
For all cases (m) queries are necessary.

… …

Graph G1 Graph G2

……
ℓ(G1)=0 ℓ(G2)=(n2)

Related Problems

• For bounded degree graphs:
If the graph is (1)-far from cycle-free 
graph an algorithm can find a cycle of 
polylog length is 

• An  tester for cycle freeness

[Czumaj et al., RSA 2012]



13

Symmetry Compression Method

PPI of HIV-1

[Wang et al., IEEE/ACM Trans on Comp. Bio. 2012]

Network Graphlets

Future challenges
• Efficient 5-node graphlets algorithms

– There are 20 graphlets

– … and 57 orbits

• Efficient algs for large important motifs
– Cycles, bi-partites, cliques, almost cliques

• Following motifs in evolving networks


