

Median Calculation

Yuval Shavitt
School of Electrical Engineering

Median Estimation

Algorithm	Calculation Complexity	Storage Complexity
Classical Blum, Floyd, Pratt, Rivest, and Tarjan [1974]	$O(N)$	$O(N)$
Improvements [1975-2001]	Improves by a factor	$O(N)$
Munro and Patterson [1980]	p passes	$O(N^{-1/p})$
Batttato et al. [2000]	$O(N)$	in-place $O(N)$
Rousseeuw et al. [1990] <i>Remedian</i> ¹	$O(N \log(N))$	$O(\log(N))$
Additional works in article [1997-2002] ¹	$O(N)$	$O(N^{1/2}) ; O(\log^2(N))$
Greenwald & Khanna [2001]	$O(N)$	$O(\log(\epsilon N)/\epsilon)$
FAME	$O(N)$	2

¹ Requires a-priori knowledge of number of samples.

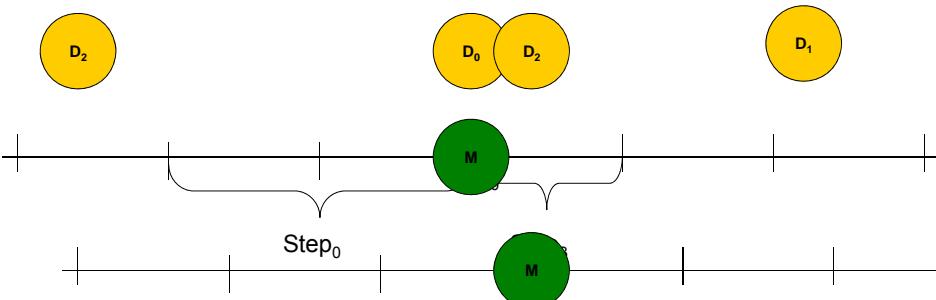
FAME:

Fast Algorithm for Median Estimation

- Linear execution time
- Constant Memory (2 doubles)
- Works on dataset of any size
- Convergence rate adopts to data variance
- Can be easily integrated in hardware, SQL, Java
- Variations
 - Windowed
 - No overshoots

FAME Flow

$$M_3 = M_2 - Step_2 \\ Step_3 = Step_2/2$$



Fame Formal Description

Algorithm 1 : Fast Algorithm for Median Estimation

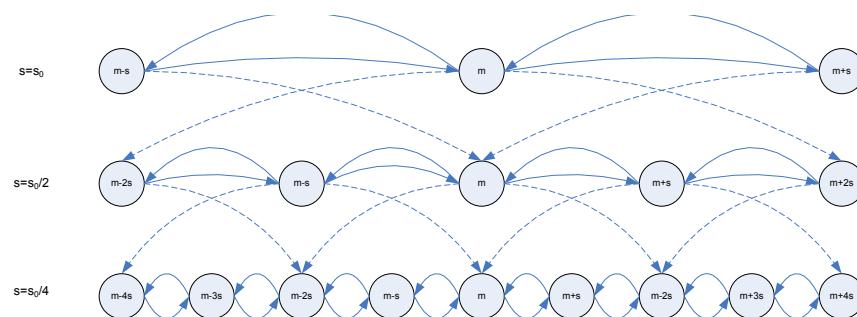
```

1: Initialization:
2:  $M = data(1)$ 
3:  $Step = \max(|data(1)/2|, b)$  // b is a minimal initial step

4: For each new item i:
5: if  $M > data(i)$  then
6:    $M = M - step$ 
7: else if  $M < data(i)$  then
8:    $M = M + step$ 
9: end if
10: if  $|data(i) - M| < step$  then
11:    $step = step/2$ 
12: end if

```

Proof: 1-D Markov to FAME

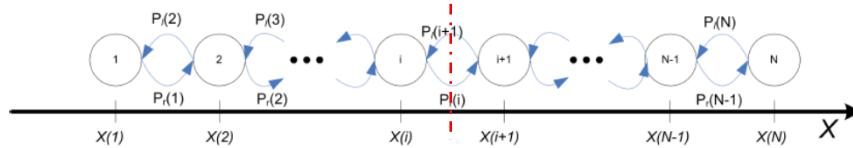


Proof of correctness

- We define a random process

$$X_{n+1} = X_n + \text{step} \cdot \text{sign}(x - X_n)$$

- $x \sim P(x < X)$



$$P_l(i) = P(x < X(i))$$

$$P_r(i) = 1 - P(x < X(i))$$

$$\pi(i) \cdot P_r(i) = \pi(i+1) \cdot P_l(i+1)$$

Note: We assume i.i.d. input and differentiable $P(x < X)$

Proof of correctness

- Lemma 1

Let C be a Markov chain as defined above, then for $\Delta \rightarrow 0$, the steady state probability distribution in the median surrounding behaves as:

$$\pi_x(x) \sim \exp(-2P'(x_m)/\Delta \cdot (x - x_m)^2)$$

Assumption: i.i.d. input, $P(x < X)$ is differentiable
Other cases can be treated as well

Proof: Lemma I

We recall that $\pi_x(x)$ is defined as

$$\pi_x(x)(1 - P(x)) = \pi_x(x + \Delta)P(x + \Delta)$$

For $\Delta \rightarrow 0$ it can be approximated as:

$$\pi_x(x)(1 - P(x)) = [\pi_x(x) + \Delta\pi'(x)][P(x) + \Delta P'(x)]$$

And then rearranged:

$$\pi'_x(x) - \left[\frac{1 - 2P(x) - \Delta P'(x)}{\Delta P(x) + \Delta^2 P'(x)} \right] \pi_x(x) = 0$$

$\underline{\hspace{10em}}$

$g(x)$

Proof: Lemma I

We define:

$$g(x) \equiv - \left[\frac{1 - 2P(x) - \Delta P'(x)}{\Delta P(x) + \Delta^2 P'(x)} \right]$$

In surrounding of x_m , i.e. $P(x_m) = 0.5$, for $\Delta \rightarrow 0$

$$g(x) \approx \left[\frac{2P'(x_m)}{\Delta} (-2x + 2x_m) \right] \quad P'(x_m)$$

$$g'(x_m) \approx \frac{2P''(x_m)}{\Delta}$$

$\underline{\hspace{10em}}$

Proof: Lemma I

The solution of the differential equation

$$\pi'_x(x) - \left[\frac{1 - 2P(x) - \Delta P'(x)}{\Delta P(x) + \Delta^2 P'(x)} \right] \pi_x(x) = 0$$

In the surrounding of x_m and for $\Delta \rightarrow 0$ is:

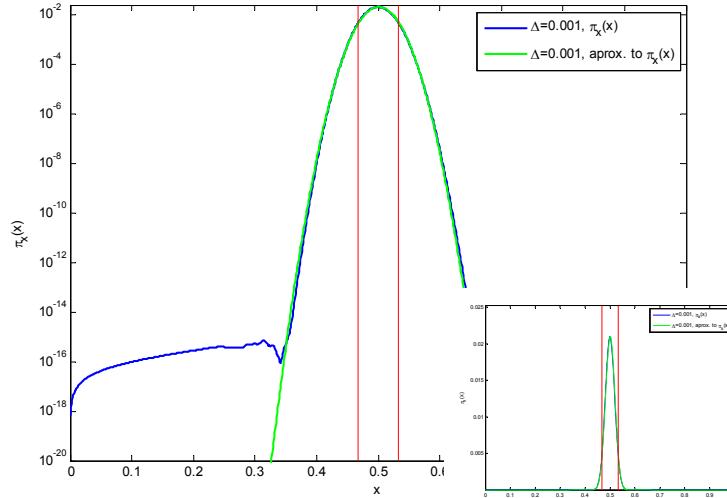
$$\pi_x(x) \sim \exp \left(-\frac{2P'(x_m)}{\Delta} (x - x_m)^2 \right)$$

Proof: Corollary

According to Lemma I, all the probability mass of $\pi_x(x)$ is concentrated in the peak that behaves as $\sqrt{\frac{\Delta}{P'(x)}}$

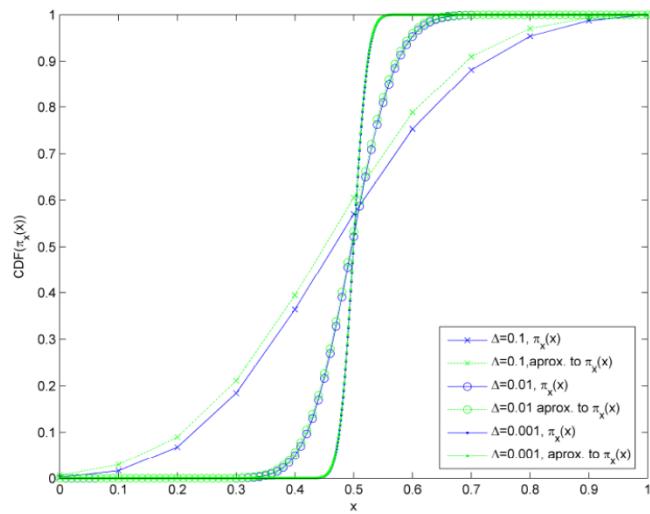
i.e., approaches zero as $\Delta^{1/2}$

Proof: Approximation quality

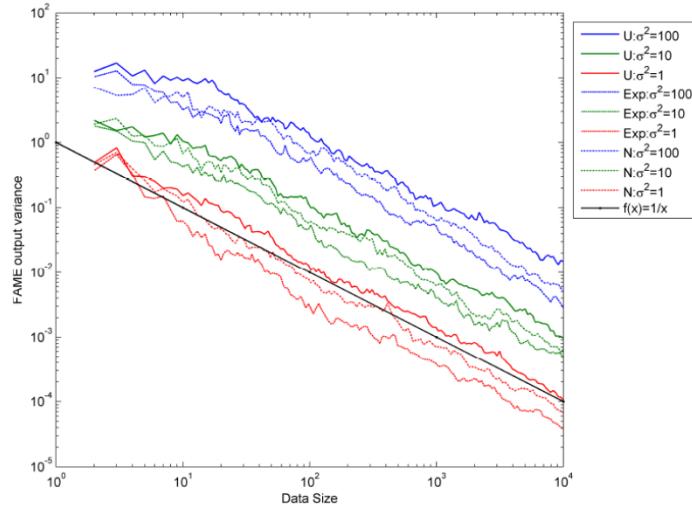


$\sim \exp(\ln(2)/2)$

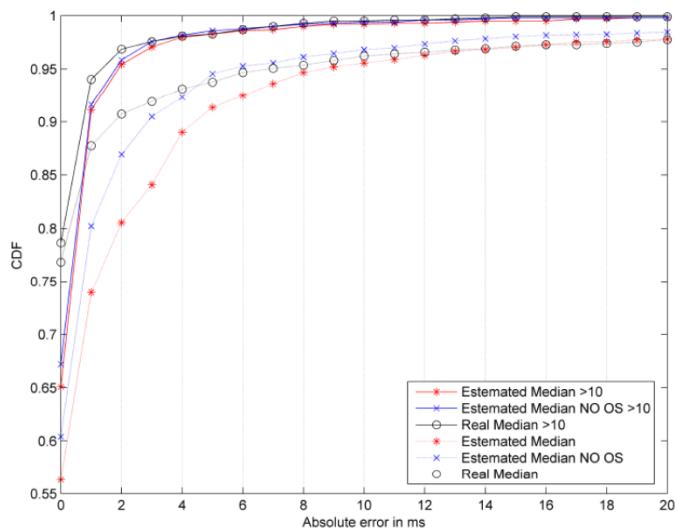
Proof: Approximation quality



Fame Convergence Rate



FAME: Test On Real Data



Summary

- Works well for a stream of 10,000,000s samples of $\sim 1,600,000$ r.v.
 - Some r.v. have a few samples
 - Some r.v. have 1000s of samples
 - All samples are mixed