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A New Decomposition Algorithm for
Rearrangeable Clos Interconnection Networks

Hyun Yeop Lee, Frank K. Hwang, and John D. Carpinelli, Senior Member, IEEE

Abstract—We give a new decomposition algorithm to route a
rearrangeable three-stage Clos network in O(ns?) time, which is
faster than all existing decomposition algorithms. By performing
a row-wise matrix decomposition, this algorithm routes all pos-
sible permutations, thus overcoming the limitation on realizable
permutations exhibited by many other routing algorithms. This
algorithm is extended to the fault tolerant Clos network which
has extra switches in each stage, where it provides fault toler-
ance under faulty conditions and reduces routing time under
submaximal fault conditions.

Index Terms— Interconnection networks, multiprocessor sys-
tems, routing algorithm, fault tolerance.

1. INTRODUCTION

LOS interconnection networks [1] have been gaining

attention due to their potential uses in data networks
and computing systems. The general Clos network is shown
in Fig. 1. The three-stage Clos network consists of two sym-
metrical outer stages of rectangular switches, with an inner
stage of square switches. The first stage contains r switches,
each of which has n inputs and m outputs. Each switch is a
simple crossbar switch which can realize any mapping of its
inputs onto its outputs on a one-to-one basis. The second stage
consists of mr x r switches, each of which receives exactly
one input from each first-stage switch. The output stage has
rm X n switches, each of which receives exactly one input
from each second stage switch. The number of inputs to the
network is N = nr.

Various routing schemes for this type of network have
been reported in the literature [2]-[10]. In general, matrix
decomposition algorithms are not as fast as graph coloring
algorithms in the computational complexity. However, the
former have the advantage of addressing the problem directly,
without the need of converting to a graph-theoretic problem.
Thus, they could be the right choices in many practical
applications when the problem size is not too large and the
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Fig. 1. A general ordinary Clos network.

computational complexity has to be balanced by the overhead.
For example, the decomposition matrix algorithm proposed
in this paper has been coded and used by the AT&T DACS
IV-2000 switch group.

Unfortunately, it has been shown that many of the early
matrix decomposition algorithms are incomplete, except
Neiman’s algorithm [2], which is correct in principle, but
gives no details for implementation. (It was stated in [5]
that Neiman’s algorithm can be implemented in O(nr?)
time.)

Recently, Gordon and Srikanthan [8] introduced an algo-
rithm, referred to as the (GS) algorithm in this paper, which
uses two nouvelle matrices, called the specification matrix and
the count matrix (the count matrix is not strictly necessary but
helps in describing the algorithm). However, the GS algorithm
was suspected to be incomplete by Chiu and Siu [9], and Lee
and Carpinelli [12].

On the other hand, efforts have been devoted to making
the interconnection networks fault tolerant including Clos
networks. A single fault in the interconnection network can
cause a severe degradation in performance unless measures
are provided to make the network tolerant of such faults.

With developments in very large scale integration (VLSI)
technology, large scale multiprocessor systems with fault-
tolerant interconnection networks have become feasible. Nas-
sar [11] has introduced the fault tolerant Clos (FTC) network
by adding extra switches in each stage of the Clos network.
Lee and Carpinelli [12] have given an algorithm for routing
FTC networks. They also showed that the extra switches in
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FTC networks can improve the run time of the algorithm
significantly when the system displays few or no faults.

In this paper, we give a new decomposition algorithm, also
based on the specification matrix, which requires O(nr?) time.
Thus, it is faster than all existing decomposition algorithms.
This algorithm is extended to FTC networks.

II. THE GS ALGORITHM

It is customary to assume that the necessary connections in-
volve every input and every output, and thus are representable
by a permutation ‘

N-1
m(N —1)

where input : is to be connected to output w(¢), 0 < ¢ < N—1,
and N = rn. Since each switch is assumed to be nonblocking
between its inlets and its outlets, we may transform P into
a mapping between input switches and output switches. For
example, for r = 4 and n = 3

P 0 1 2 3 4 5 6 7 8 9 10 11
12 10 3 5 6 11 71 9 4 0 8
is transformed to
Pt = 000111222333
03112320310 2|

Gordon and Srikanthan introduced an r X n matrix S =
(si5), called the specification matrix, where s;; is the jth
element in the sth row of S. The rows of S are indexed
by input switches and columns by center switches, while
entries represent output switches. Thus, s;; = e implies that a
connection from the ith input switch to the eth output switch
is routed through the jth center switch. Clearly, the routing
represented by S is feasible if and only if each column is
complete, i.e., containing each output exactly once. S is called
complete if every column is complete. While the initial S may
not be complete, the GS algorithm gives a method to yield a
complete S through iterative swapping of two entries in the
same row.

Gordon and Srikanthan also introduced another r X n» matrix
C = (ce;), called the count matrix, whose rows are indexed
by output switches and columns by center switches, while c.;
is the number of occurrences of entry e in column j of S. Let
S; (respectively, C;) denote column j of S (respectively, C').
Then S; is complete if and only if C; is all ones. From the
P* given before, we have

0 3 1 1 2 0
1 2 3 2 01
§= 2 0 3 ¢= 111
1 0 2 01 2

We now describe the GS algorithm.
Step 1) Initialize by setting j = u = 0.
Step 2) Find the minimum j such that S; is not complete.
If no such j exists, then stop.
Step 3) Find a row e of C such that ¢.; = 0.
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Step 4) Find Cj with c.x > 2. Search a row ¢ in the order
of u, u+ 1, --- such that s;;, = e.

Step 5) Swap s,; with s,;. Set v =i +71. Go to Step 2).

Note that e and k are chosen arbitrarily if there is more
than one choice. On the other hand, ¢ is chosen by following
a specific order controlled by the variable u. Suppose that e is
chosen in a similar way to 7, namely, by setting up a variable
w and letting the search follow the order w, w + 1, --- (mod
r). However, the following counterexample shows that such
a choice of e can lead to infinite looping. Since an arbitrary
choice includes this specific choice, the GS algorithm can also
encounter infinite looping. Given the matrix

0 2 4
1 3 2
S=10 3 3
0 4 1
2 1 4

the GS algorithm can perform the following swaps in the order
shown: 810 2 S11; S840 > 8425 S10 < 8115 S40 < S42- This
returns to the original matrix and thus represents a potential
infinite loop. An expanded description of this example is
included in the appendix. This example will also be used to
demonstrate our proposed algorithm.

Chiu and Siu [9] modified the GS algorithm by adding the
control variable w, along with a few other perturbations. But
there is no guarantee that these perturbations can avoid infinite
looping.

III. A NEwW DECOMPOSITION ALGORITHM

We give a new decomposition algorithm which also swaps
elements of S until S is complete. For a given element e, a
column of S is e-excessive if it contains more than one e, and-
e-deficient if it does not contain e (there are at most n — 1
e-deficient columns). An element ¢ is called balanced if there
exists no e-excessive column, and unbalanced otherwise.

At an iteration step, suppose that ¢,0 < e < r — 1, is
the minimum unbalanced element (if all but one elements are
balanced, the remaining element is also balanced). Then there
exists an e-excessive column S; and an e-deficient column 5.
Arbitrarily select arow k with s3; = e. Let s; = e1. If e < ey,
swap sg; with s, and the iteration step, labeled simple swap,
is completed. If e > e, select another row k' with sg/; = e.
Let sp/; = €}. If e < e}, swap sy; with s;/; and the iteration
step, labeled next simple swap, is again completed. If e > €],
swap sx; with sp;. Let k1 be the row such that s¢,; = e; (recall
that e; was balanced), swap si,; with si,; = e2. If € < e, the
iteration step, labeled successive swap, is completed. If e > e,
let ko be the row such that sy,; = e and swap sy,; with s, ;,
and so on. Since e, eg, e, - - - are all distinct, a successive swap
iterative step must be completed in at most e swappings.

At the end of an iteration step, either the minimum number
of balanced element increases to e + 1, or it remains at e, but
the number of e-deficient columns is decreased by one. Hence,
the number of iteration steps is at most

r—2
-1 =(-1mn-1)

e=0
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and the number of swappings is at most
r—2

Sn-1(e+1)=(n-1) @ = O(nr?).

e=0

We now show that our algorithm can be implemented in a

way such

that each iteration step requires constant time. We

need to do some preprocessing which consists of construction
of the following three types of sets.

D) (e

),7=0,1,-,n—1,e=0,1,---,7—1, is the set

of rows {i} such that s;; = e.

2) 0(e),e=0,1,---,r—1,is the set of columms {7} such
that S; does not contain e.

3) 2(e),e=0,1,.--,r—1, is the set of columns {j} such
that S; contains ¢ at least twice.

By going through all s;; once, and assigning ¢ to (j,e) if
si; = e, the nr sets (j,e) can be constructed in O(nr) time.
We will also keep a count |(j, ¢)| on the cardinality of (7, e).
At the beginning, put all columns in 0(e). Remove j from 0(e)

whenever
reaches 2.

[(4,€)] > 1, and assign j to 2(e) whenever |(7, )]
In this way 0(e) and 2(e) are constructed along with

(7,€). We now state the proposed algorithm using these sets.
Initialize by setting e = 0.

Step 1)
Step 2)

Step 3)

Step 4)

Step 5)

If 2(e) is empty, ie., |2(e)| = 0, set ¢ = e + 1.
Stop if e = r; otherwise repeat Step 1).
If 2(e) is not empty, i.e., |2(e)| > 0, take its first
element j. Also, take the first element & of 0(e).
(Simple Swap) Set 7 to be the first element of (7, e).
If e < sk, swap s;; with ;. Suppose s;;, = €.
Remove ¢ from (7, ¢) and (k, '), and add i to (j, ')
and (k,e). If |(4,¢)| = 1, remove j from 2(e). If
|(4,¢")] =1, remove j from 0(e'). If |(4,¢)| = 2,
add j to 2(¢’). If |(k,€')] = 0, add k to 0(¢). If
|(k,e")| = 1, remove k from 2(¢’). Remove k from
0(e) and go to Step 1).
(Next Simple Swap) If e > s;;, repeat Step 3) on
the second element ¢’ of (j,e). If ¢ > sy, go to
Step 5).
(Successive Swap) Divide into substeps.
A) Set u = e. Remove k from O(uw). If |(j,u)| = 2,
remove j from 2(u):
B) Set v = ;. Swap 85 with s;;. Remove 7 from
(j,w) and (k,v) and add 4 into (7,v) and (k, ).
C) Suppose e < v. If |(k,v)| =0, add k to O(v). If
[(k,v)| = 1, remove k from 2(v). If |(4,v)| = 1,
remove j from O(v). If |(7,v)| = 2, add j to
2(v). Go to Step 1).
D) Suppose e > v. Set v = v and go to Step 5B).

Adding an element to a set and choosing or removing the
first (or second) element from a set take O(1) time. Since k and
1 are the first elements of their sets, Steps SA), 5B), and 5D)
each take O(1) time. Note that 7 is a unique element in (k,v)
in Step 5B). Removing a specific but generally positioned
element from an r-set takes O(r) time. This occurs in Step
5C) when we remove k from 2(v) and j from O(v). But the
looping of Step 5) occurs only between Step 5B) and Step 5D).

Therefore
time.

Step 5) takes O(r) time and the algorithm O(nr?)

N TN N N
= e e

*

N W WO

We illustrate this algorithm with an example. Constructing
three types of sets of rows or columns from the S matrix

Successive swap: e =2, j =0, k=1,i=4,¢ =1, u =2,

0(0) ={1,2} 2(0)={0}
0(1) = {} 2(1) = {}
0(2) = {} 2(2) = {}
0(3)={0}  2(3)={1}
0(4)={0}  2(4)={2}
0)={} 2,0) = {}
1) = {4} 2,1) = {3}
2) = {0} 2,2) = {1}
3)={1,2} (2,3)=1{2}
4) = {3} 2,4) = {0,4}.
1,1=0,¢ =2
0(0) = {2} 2(0) = {0}
o) ={r 201)=4{}
0(2) ={1} 2(2)={0}
0(3)={0} 2(3)={1}
0(4) ={0} 2(4)={2}
= {0} ,0) ={}
= {4} 1) = {3}
={} ,2) = {1}
={1,2} (2,3)={2}
= {3} ,4) ={0,4}.
k=21=2¢ =3
00) = () 20)=1)
o= 2Ay=1{
0(2) = {1} 2(2) = {0}
0(3)={2} 2(3)={1}
0(4) ={0} 2(4)={2}
= {0} ,0) = {2}
={4} 1) = {3}
={} ,2) = {1}
={L2} (2,3)={}
={3} (2,49={0.4}
000)={} 2(0)={}
0(1) ={1} 2(1)={0}
02)={r 22)={}
03) = {2} 2(3)={1}
0(4) = {0} 2(4) = {2}
= {0} ,0) = {2}
=1{} 1) = {3}
= {4} ,2) = {1}
={L2} (2,3)={}
= {3} ,4) = {0,4}.
=Li=1lLu=1v=3
000)={} 2(0)=1{}
o) ={t 2)=1{}
02)={t 22={}
03) ={2} 2(3)={0}
04) = {0} 2(4)={2}
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v/ = extra switch

Fig. 2. A fault-tolerant 9 X 9 Clos network with one extra switch in each stage

(0,0)={3}  (1,0)={0} (2,0)={2}
(0,1)={4 (1,1)={1} (2,1)={3}
(0,2)={0}  (L,2)=A{4} (2,2)={1}
(0,3) ={2,1} (1,3)={2} (2,3)={}
0,4)={} (1,4)=1{3t (2,4)={0,4}.
Successive swap: e =3, =0, k=2,1=2,¢ =0, u =3,
v =20
2 0 4 0(0) = {2} 2(0) = {0}
3 12| on={ 201)=1{)
S=10 3 3 02)={}r 22)={}
0 4 1*| 03)={} 203)={)
1 2 4 0(4) ={0} 2(4) ={2}
(0’0) = {3> 2} (1a0) = {0} (270) {}
(0,1)=A{4} (L, 1)={1} (21)={3}
(0,2)={0}  (1,2)={4} (2,2)={1}
(0,3)=A{1}  (1,3)={2} (2,3)={2}
(0,4) = {} (L,4)={3} (2,4)={0,4}.
Simple swap: j =0,k =2,i=3,u=0,v=1
2 0 47 00)={} 20)={}
3 1 2 0(1) = {2} 2(1)={0}
S=10 3 3 02)=1{} 22)={}
1 4 0 03)=1{} 23)={}
1* 2 4* 0(4) = {0} 2(4)={2}
(0,0)={2}  (1,0)={0} (2,0)={3}
(0,1)=A{4,3t (1,1)={1} (2,1)={}
(0,2)={0}  (1,2)={4} (2,2)={1}
(0,3)={1} (1,3)={2} (2,3)={2}
(0,4) = {} (1,4)= {3} (2,4) ={0,4}.
Simple swap: e = 1,1 =0,k=2,i=4,¢ =4
2 0 47 0(0)={} 2(0)={}
3.1 2] o1)=A{}r 201)={}
S=10 3 3| 02={} 20={}
1 4 01 0o3)={} 2(3)=A{}
4 2 11 04)={} 29={}

(0,00 ={2} (1,0)={0} (2,0)={3}
0,1)={3} (L)={1} (2,1)={4}
(0,2) ={0} (1,2)={4} (2,2)={1}
(0,3) ={1} (1,3)={2} (2,3)={2}
(0,4) = {4} (1,4)={3} (2,4)={0}.

IV. EXTENDED ALGORITHMS FOR FTC NETWORKS

The Clos network can be made fault-tolerant as shown in
Fig. 2 by adding extra switches in all stages and multiplex-
ers/demultiplexers before the first stage and after the last stage
[11]. For the FTC networks, the following fault model is
assumed.

1) Any switch can fail

2) Any interstage link can fail

3) The failure rate of multiplexers, demultiplexers and
external links is negligible as compared to that of the
switches.

The faults are assumed to occur independently, and the faulty
components are unusable. The FTC network achieves fault
tolerance by redirecting inputs to multiplexers, demultiplexers
and extra switches in the outer stages when there is a fault in
the outer stage switches. If there is a fault in a middle stage
switch, inputs bound to a faulty ‘switch are directed to one
of the extra switches in the middle stage. FTC networks with
y extra switches in each outer stage and x extra switches in
the center stage can tolerate up to 2y + z switch failures, as
long as each stage contains no more faulty switches than it
has spare switches. A link failure may be modeled as a failure
of either of the switches it connects.

The S matrix is basically the same as in the ordinary Clos
network except that the spares are considered in the matrix.
The extra y switches in each of the first and third stages add
an additional y rows to the S matrix, which provide ny extra
spare elements. These spares are denoted as «, and can be
considered as wild cards during the routing process; this eases
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the swapping of a pair of elements. The extra x switches in
the second stage, on the other hand, add x extra columns to
the S matrix, which provide rx extra spare elements. These
spares are represented as (3. The « spares correspond to the
paths created by multiplexers/demultiplexers along with extra
switches in outer stages, and may swap with any element in
the same column except 5 spares. The 3 spares correspond to
the paths generated by extra switches in the second stage, and
these spares can be swapped with any element in the same row
except « spares. The spares o and (3 also can be swapped only
if the resulting number of « spares in each column remains
the same. Violating these rules would correspond to physically
changing the connections and switch locations in the FTC
network, which is prohibited. As noted in Section II, the rows
of S are indexed by input switches and columns by center
switches, while entries represent output switches.

Fault checking is performed prior to the execution of the
proposed algorithm. If there is a fault in any nonspare switch,
an available spare switch within that stage must be assigned
in place of the faulty switch. However, when a first stage
spare switch is faulty, one of the o rows in the matrix is not
used. When a second stage spare switch is faulty, one of the
[ columns of the matrix is removed. If a third stage switch is
faulty, its corresponding value is not used. Once the network

is reconfigured, the algorithm is applied as if there is no fault -

in the network and switches are set accordingly.

In the FTC network, a column j, 0 < j <n+zx of S is
called e-excessive for a given element e if it contains more
than one e in the rows k, 0 < k < r, and e-deficient if it
does not contain e in the rows k£, 0 < k < 7. When e = «
(respectively, ), a column j, 0 < j < n+ 2z of S is called
e-excessive if it contains more than y e’s (respectively, z €’s)
in the rows k, 0 < k < r+y, and e-deficient if it contains less
than y o’s (respectively, = 3’s) in the rows k, 0 < k < r+y.
An element e is called balanced if there exists no e-excessive
column, and unbalanced otherwise. Note that « needs to be
balanced to completely decompose the S matrix, but 3 may be
unbalanced because of its flexibility. The previous algorithm
for ordinary Clos networks can be easily extended to FTC
networks which also swaps elements of S until S is complete.

As an iteration step, suppose that e, 0 < e < r — 1, is
the minimum unbalanced element. Then there exists an e-
excessive column S; and an e-deficient column S;. Select
arbitrarily a row k with s;; = e. If there is any spare « (or §)
in the extra column ¢ (or extra row k), swap s;; with o (or
(). This is labeled wild swap since « or 3 can be used as a
wild card during routing. Otherwise, let s;, = e1. f e < &1
or ¢ = f3, swap s;, with s;; and the iteration step, labeled
simple swap, is completed. If e > e;, select another row £’
with 850 = €. Let s;r = €f. If e < €} or e = 3, swap s
with s;,- and the iteration step, labeled next simple swap, is
again completed. If e > €}, swap s;, with s;x. Let k1 be the
row such that s;;, = ey (recall that e; is balanced), swap s;z,
with s;3, = es. If e < ep or e = [3, the iteration step, labeled
successive swap, is completed. If e > es, let ky be the row
such that s;, = es and swap s;x, with si,, and so on.

To speed up the algorithm, we again need to do some
preprocessing. By going through all of S once, construct sets
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0(e), 2(e), and (j,e). We now state the algorithm for FTC
networks using these sets.
Algorithm: Initialize by setting ¢ = 0.

Step 1) If 2(e) is empty, i.e., if the cardinality of 2(e) is
zero (|2(e)] = 0), set e = e+ 1. Stop if e = 7;
otherwise repeat Step 1).

If 2(e) is not empty, ie., |2(e)| > 0, take its first
element j. Also, take the first element & of 0(e).
(Wild Swap) Set ¢ to be the first element of (7, ¢).
If w is an element of (4, ), i.e., u € (§,a), u > 7,
swap s;; with s,;. Remove ¢ from (7, e), v from
(j,a) and add 7 to (4, ), u to (j,e). If ¢ € (v, 3),
v > m, swap s;; with s5,,. Remove ¢ from (4,€) and
(v, ) and add i to (7, 0) and (v,e). If |(j,e)| =1
in both cases, remove j from 2(e). Go to Step 1.
If no spares are available, go to Step 4).

(Simple Swap) Set i to be the first element of (7, e).
If e < sik, OF 85 = (3, swap s;; with s;;. Suppose
sir. = €. Remove 7 from (j,e) and (k,€’), and
add 7 to (j,¢’) and (k,e). If |(j,e)| = 1, remove
j from 2(e). If |(4,€')| = 1, remove j from 0(e’).
If |(4,¢)] = 2, add j to 2(¢'). If |(k,¢')| = 0, add
k to 0(¢’). If |(k,¢')| = 1, remove & from 2(e’).
Remove k from 0(e). Go to Step 1).

(Next Simple Swap) If e > s, or s; = 3, repeat
Step 4 on the second element i’ of (7, e). If e > 811,
or Sy, = «, go to Step 6).

Step 6) (Successive Swap) Divide into substeps.

A) Set u = e. Remove k from O(u). If |(j, u)| = 2,
remove j from 2(u).

B) Set v = s;,. Swap s;; with s;;. Remove ¢ from
(j,w) and (k,v), and add ¢ to (4,v) and (k,u).

C) Suppose e < v orv = . If [(k,v)| =0, add k
to O(v). If |(k,v)| = 1, remove k from 2(v). If
|(4,v)] = 1, remove j from O(v). If |(5,v)| = 2,
add j to 2(v). Go to Step 1).

D) Suppose e > v or v = . Set v = v and go to
Step 6B).

We again illustrate the algorithm by starting from element
zero in the S matrix whenn =3, r =4 andz =y =1.In
this example no switches are faulty; this is done to illustrate
the use of fault-tolerance hardware under no-fault conditions.
Constructing three types of sets of rows or columns from the
S matrix

Step 2)

Step 3)

Step 4)

Step 5)

2202 B0 o0)=10,2,3} 2(0) = {1}
s |1 o 8 G| om=1L23) 20)=1{0)
“o s al =6 k=0
pol 0(3) = {0,1,3} 2(3) = {2}
(2,0) = {)
(O>O) = {} (170) = {1’2a3} _
On={2300)=0 5P
(07 2) = {0} (132) = {O} (273) — {1 9 3}
03 ={}  (1,3=1{} g
(01/3) = {} (1,/6) = {} (2705) — {4}
Go=tt o= g =01,23).
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For elements s;; = 1 (wild swap)

22200 oo={02)  20)=1{}
sl 65 0] am=123 20)={0)
b0 Gl = ae=g
w0 o T =013 2m)=12)
_ (1,0)={3,4} (2,0)={}
o,y @U=0 @y=)
(073) — {} (173) = {} ) (2a3) = {1’273}
LR
,a) = ,a) =
Ca=t " Go={z3 (G8=1{013
For an element s;; = 3 (wild swap)
2 2 2 8
a a 3* f
S=1(1 8 3 0
B0 3 1
e 0,0)= {}
0,0) =
0(0) ={0,2} 2000={} (0,1)=1{2,4}
0(1) ={1,2} 2()={} (0,2)={0}
0(2) = {3} 2(2) ={} (0,3)={}
0(3) = {0’ 173} 2(3) = {} (Ouﬁ) = {3}
(07a) = {1}
(LO) = {37 4} (2a0) = {} —
ay=0  @y=g  GP=
(172) = {0} (27 2) = {0} (372) — {}
(1,3) i{} (2;3) i{vaas} (3:3) ={}
S B R
Again, for an element s;; = 3 (wild swap)
22 2 B
a a a f
S=11 g 3 o
B30 3 1
P 0,0)={}
0,0) =
0(0) = {0,2} 200)={} (0,1)={2,4}
0(1) = {1,2} 2 ={}y (0,2)={0}
0(2) = {3} 22)={} (0,3)={}
0(3) ={0,1,3} 23)={2} (0,8)={3}
(0,a) = {1}
(1,0)={3,4} (2,0)={} _
=0 @n=g  GP=i
(172) = {0} (272) = {0} (372) — {}
(173) = {} (273) = {27374} (3: 3) — {}
TE N LR

1577

Simple swap: e =3, j =2, k=1,i=2,¢ = §

2 2 2 8
a a a f3
S=11 3 8 o0
g 0 3 1
1 0 3
(0,0) =}
00)=1{0,2}  20)={} (0,1)={24)
o) ={1,2}  21)={} (0,2)={0}
0(2) = {3} 22)=1{} (0,3)={}
03) =103}  23)={ (0,0)=1{3}
(0,0) = {1}
(170 :{3a4} (270):{} —
Ly=4 =0 o9=t
12={0) @y=-{ HH=1
EH R R
Lay={1} @a)={3 GA={01k

Note, that a successive swap iterative step will be completed
in at most e+ y swaps because of the additional y o elements.
As in the ordinary case, either the minimum balanced element
increases to e + 1, or it remains at e at the end of an iteration
step, but the number of e-deficient columns is decreased by 1.
Hence the number of iteration steps is at most

r—2

Y (ntz-1)=(r-1)(n+z-1)

e=0
and the number of swappings without no wild swaps is at most

r—2
(n+z-1)(e+y+1)=0(r(n+z)(r+y)).
0

e=

However, the wild swap can suppress at most rz + ny simple,
next simple, or successive swaps. Thus, as the number of extra
rows and columns increases, the algorithm has more chances to
suppress the possible swaps and, as a result, can significantly
improve the run time especially when there are few or no
faults in the FTC network. Note, that Nassar [11] suggested an
algorithm for FTC networks, but the run time of his algorithm
increases as the number of spares switches increases.

V. CONCLUSION

This paper has presented a new routing algorithm for
Clos networks. The proposed algorithm, which proceeds row-
wise, can assure correct routing in contrast to the GS al-
gorithm which runs column-wise. The time complexity of
the preprocessed algorithm for the Clos network is O(nr?).
This algorithm can easily. be applied to FTC networks by
introducing the wild swap, which treats extra switches as wild
cards. The extra switches in the FTC network provide extra-
spare elements, which helps to improve the run time of the
algorithm as well as the reliability.
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APPENDIX
EXPANDED COUNTEREXAMPLE TO
GORDON AND SRIKANTHAN’S ALGORITHM

The following counterexample shows that such a choice of ¢
can lead to infinite looping. Since an arbitrary choice includes
this specific choice, the GS algorithm can also encounter
infinite looping. Elements selected for swapping are marked
with an asterisk
First iteration: j =0, w =0, u=0,e=3, k=1,1=1

0 2 47 3 0 OW
1* 3% 2 11 1
S=10 3 3(C=1 11
0 4 1 2 1
12 1 4] L0 1 24
Second iteration: j =0, w =4, u=2,e=
0 2 4 1 3 0
3 1 2 0 2
S=10 3 3 C=1]1 1
0 4 1 1
2% 1 4*] 0 1
Third iteration: j =0, w =0, u=0,e=1
o 2 47 3 0 0
3* 1 2 0 2 1
S=1(0 3 3|C=|0 1 2
0 4 1 1 1 1
14 1 2] L1 1 1]
Forth iteration: j =0, w =2, u=2,e=2, k=2,1=4
0 2 4 3 00
1 3 2 111
S=10 3 3 |C=|0 1 2
0 4 1 0 2 1
4* 1 2* 1 11

This results in the original matrix and value of v, thus realizing
an infinite loop.
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