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Abstract— In this paper we investigate the problem of
finding minimum delay application-layer multicast trees,
such as the trees constructed in overlay networks. It is
accepted that shortest path trees are not a good solution
for the problem since such trees can have nodes with very
large degree, termed high load nodes. The load on these
nodes makes them a bottleneck in the distribution tree, due
to computation load and access link bandwidth constrains.
Many previous solutions limited the maximal degree of the
nodes by introducing arbitrary constraints. In this work,
we show how to directly map the node load to the delay
penalty at the application host, and create a new model
that captures the trade offs between the desire to select
shortest path trees and the need to constraint the load on
the hosts.

In this model the problem is shown to be NP-hard.
Therefore, we present a logarithmic approximation algo-
rithm and an alternative heuristic solution. Our heuristic
algorithm is shown by simulations to be scalable for large
group sizes, and produces results that are very close to
optimal.

I. I NTRODUCTION

Multicast is a key component in the design of group
communication applications which require efficient data
delivery to multiple destinations. However, IP multicast
which implements multicast functionality at the network
layer is still not widely deployed in current IP networks.
To alleviate this problem, several recent proposals [1]
have advocated an alternative approach, termedappli-
cation layer multicastor end-host multicast, which im-
plements multicast functionality at the application layer
using unicast network level services only, forming an
overlay network between end hosts.

The goal of application layer multicast [2] is to
construct and maintain efficient distribution trees be-
tween the multicast session participants, minimizing the
performance penalty involved with application-layer pro-
cessing. Many proposals attempt to optimize the cost of
the multicast delivery tree using application level perfor-
mance metrics such as delay or throughput. The systems
which aim at reducing the overall delay [2], [3], [4], [5],
[6], construct a minimum height (or minimum diameter)
tree with constrained degrees. The degree constrains are
used to control the network resource usage, i.e., available

bandwidth or stress on the physical links. However, this
solution stipulates the usage of a dual cost optimization
objective which mixes network level and application
level costs to characterize applications performance.

In this paper we advocate an application-centric ap-
proach which quantifies system performance using ap-
plication level costs only. We claim that the conventional
overlay network model and its corresponding delay met-
ric are designed to characterize multicast systems which
assume network-level data distribution capabilities. Un-
fortunately, message processing by end-hosts involves an
additional delay penalty which is not captured by such
models and is related to application-layer implementa-
tions of packet duplication and routing. In particular, the
shift of multicast functionality to the upper level influ-
ences the simultaneous distribution capabilities of end-
hosts, implying a communication model with sequential
message distribution. This constraint stems from the
fundamental change in the characteristics of the routing
infrastructure assumed by the overlay network, attributed
to the difference between message distribution speeds
of routing nodes (i.e., end-hosts) in overlay networks
and packet distribution speeds of routers in conventional
physical networks.

For example, consider the simple network of Fig. 1A,
composed of three hostsH1, H2, andH3 and two routers
R1 and R2 connected using a high speed backbone,
where hostH1 uses a low-bandwidth access link for
network connectivity, e.g., modem access, andH2, H3

use high-bandwidth LAN access connectivity. Assume
that the goal of the overlay system is to devise a
multicast tree that provides minimal distribution delay
from H1 to H2 and H3. Clearly, a multicast system
must be careful to avoid delegating large degree to the
low bandwidth hostH1 in order to eliminate unnecessary
bottleneck due to its low-speed data distribution capabil-
ities. Fig. 1B depicts the corresponding optimal multicast
tree. Now, consider the conventional routing algorithm
used by many application-layer multicast architectures
that optimize tree delay, namely the shortest path tree
algorithm. In this case the shortest path multicast tree
reduces to a star topology (Fig. 1C), which ignores the
performance penalty at the star center. Hence, serialized
message distribution which is irrelevant to IP multicast
schemes must be accounted for in the evaluation of
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Fig. 1. Comparison between application-layer multicast and
network-layer multicast in a simple heterogeneous overlay network

overlay multicast architectures. Surprisingly, however,
many application-layer architectures which optimize tree
delay have neglected these implications on the overall
performance of group communication applications.

Another factor which constrains parallel message dis-
tributions in overlay networks is the processing capacity
of end-host machines. For instance, consider a server
which implements router like functionality at the appli-
cation layer and therefore may not have enough CPU
power to handle message processing at the full speed
of its network interfaces. Hence, the effective message
distribution rate of an end-host is shaped by two factors,
the bandwidth of the access link connecting the host
or its local area network to the physical network, and
the processing power and the computational load on
the host machine. A recent study [7] that measured
the actual end-host heterogeneity of popular peer-2-peer
(p2p) overly systems showed that the bandwidth and
latency parameters can vary several orders of magnitude
across different hosts in the system.

In this paper, we present an application-centric overlay
network model which captures the realistic costs in-
volved with application-layer multicast. The model uses
a single delay metricto characterize multicast perfor-
mance using the following measures. The processing
delay measure, which is a reciprocal of the effective
message distribution speed of an end-host application,
and the communication delay measure, which represents
the delay of traversing an overlay link. This model
serves as a theoretical framework which enables formal
comparison of the performance of different multicast
algorithms.

We use the proposed framework to develop heuristic
and approximation algorithms for the basic problem of
optimal multicast tree construction. Both the heuristic
and the approximation generate minimum delay trees
that intrinsically balance short latency with small de-
gree, and thus avoid an external trial-and-error type of

balancing between the two, i.e., we do not impose a
maximum degree on our trees. Our heuristic algorithm
constructs such trees efficiently (we conjecture it is
optimal) and thus can scale to large multicast groups,
which is a known problem [2]. Note that the suggested
solution works both for fully connected topologies, and
for structured topologies, used in some p2p overlay
networks [8]. Therefore, we address the issue of mul-
ticasting in partially connected networks and provide
performance bounds for tree and grid graphs.

The presented algorithmic solutions can be effectively
used to implement centralized overlay systems, such as
p2p and server based systems. The heuristic algorithm is
particularly useful in the context of two-tier server based
architectures [5], [9], [3] which construct a virtual tree
among the servers to provide an efficient content and data
delivery services to end-users. Each end-user registers to
a server in order to receive multicast services, and the
server handles the dissemination of the aggregated traffic.
Such semi-static architectures employ reliable servers
to provide high-availability service, stipulating a simple
implementation with low computational overhead due to
minor topology changes. Furthermore, a centralized ap-
proach is capable of providing quick and efficient session
management services by sharing the computational load
among several overlay servers [4].

The main applicability of our algorithms is in the
context of delay-sensitive multicast applications, which
require tight bounds on the end-to-end delays due to jitter
and timing constrains. Applications which belong to this
category include audio conferencing, real-time media
streaming, content distribution services, and multi-player
distributed games.

The rest of this paper is organized as follows. The next
section formulates the overlay communication model. In
Section III we discuss the problem of optimal multicast
tree construction and show that this problem is NP-
Complete. In Section IV we develop approximation and
heuristic algorithms for solving this problem. Section V
deals with performance analysis of the heuristic algo-
rithm for several overlay topologies. An experimental
evaluation of our solutions is presented at Section VI.
Finally, Section VII concludes the paper.

II. OVERLAY COMMUNICATION NETWORK MODEL

In this section we define the overlay communication
model and the corresponding delay measures which char-
acterize the performance of application-layer multicast
solutions.

An overlay networkis a fully connected virtual net-
work formed by hosts which communicate with each
other using a physical network, such as the Internet. The
overlay network utilizes the regular unicast services of
the physical network to provide communication among
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hosts, and do not require any special support at the
network level. The delay experienced by a message that
travels between hosts is composed of two elements:
(a) Communication delay- which represents the delay
of traversing the unicast path between the hosts. This
component includes the accumulated propagation and
queuing delays of the physical links on the unicast path,
and the message reception overhead at the receiver host.
(b) Processing delay- which represents the delay of
processing a message at the sender host. This element
includes the overhead of preparing a message for trans-
mission and the transmission delay through the physical
access link.

The overlay network is modelled by a directed com-
plete graphG = (V, E), whereV is a set of vertices
representing hosts, andE is the set of edges representing
the unicast paths. We use the terms ”host” and ”link”
to refer to the vertices and edges in the overlay graph.
Each overlay edge(u, v) ∈ E is associated with a
communication delay cost,c(u, v), and each hostv ∈ V
is associated with a bounded and finite processing delay
cost,p(v).

The direct communication between hosts is character-
ized as follows. Assume that at timet, hostu initiates
processing of a message targeted to hostv. Then host
u is busy processing this message during the time
interval [t, t+p(u)], and the message arrives at hostv at
time t + p(u) + c(u, v). Therefore, the processing delay
measure represents the minimal time interval between
consecutive transmissions.

Although current operating systems and their com-
munication services have mechanisms which allow ap-
plications to perform simultaneous (or near simultane-
ous) message transmissions, the simultaneous effect is
overridden by the inherent serialization involved with
message transmission through a physical access link.
This type of serialization is typically performed at the
hardware level by the access equipment. Furthermore,
the sequential distribution prohibits the usage of un-
realistic application design schemes which relies on
simultaneous message transmissions.

It is important to note that in our model, the delay
costs between pairs of hosts do not necessarily satisfy
the triangle inequality. This is a known phenomena in
the Internet, stemming in part from policy routing. For
example, Jaminet al. [10, Figs. 2 and 3] show that about
30-50% of the triangles in the Internet do not obey the
triangle inequality.

Thecommunication latencymetric is used to represent
the end-to-end delay of direct and indirect communica-
tions between two hosts in the overlay structure. Given
a pair of hostsv1 andvk which are connected by a path
pv1,vk

=< v1, . . . , vk > of lengthk, the communication
latency fromv1 to vk, denoted byl(pv1,vk

), is the sum

of communication delays of the overlay links in the
path and the processing delays of the traversed hosts,
assuming each traversed host distributes the message
on its first processing round. Thereforel(pv1,vk

) =∑k−1
i=1 p(vi) + c(vi, vi+1), wherevi, 1 ≤ i ≤ k denotes

theith host on the pathpv1,vk
. One may view the latency

metric as a measure of minimal distribution delay along
an overlay path.

III. T HE OPTIMAL MULTICAST TREE PROBLEM

In this section we state our design objective formally
and show that the optimal multicast tree problem is NP-
Complete.

We formulate the optimal multicast tree problem, also
denoted asminimal delay multicast (MDM)problem, as
follows.

Definition 1: The optimal multicast tree problem
(MDM): Given a directed complete graphG = (V, E),
a multicast groupM ⊆ V , a source hosts ∈ M , a
non-negative real processing delayp(v) for each vertex
v ∈ V , and a non-negative real communication cost
c(u, v) for each edge(u, v) ∈ E, find a multicast
scheme that minimizes the delay required to disseminate
a message from the source hosts to all the other hosts
in M assuming that only the group members inM may
participate in the distribution.

Our goal is to devise a multicast scheme which
minimizes the distribution delay, i.e., minimizes the time
till all the hosts have received the message. Therefore,
we consider only ”non-lazy” multicast schemes [11], in
which a host which has already received a message does
not delay message distribution by becoming idle.

Without loss of generality we assume thatM ≡ V ,
such that the multicast problem reduces to the problem
of finding an ordered directed treeT , rooted ats and
spanningV . In this tree, the outgoing edges of a non-leaf
nodeu are ordered according to the message distribution
order of hostu in the multicast scheme, where theith
outgoing edge corresponds to theith transmission.

The reception delayof hostv ∈ V , denoted bytT (v),
is the time at whichv receives a message from the
source host,s. The reception delay ofs is defined to
be 0. The cost of a multicast treeT is defined as the
overall delay of the multicast scheme. This cost equals
maxv∈V tT (v), i.e., the earliest time at which all the
hosts have been notified. Given a multicast tree we can
easily calculate the optimal ordering using a recursive
computation, working bottom-up. Therefore, in the rest
of the paper we neglect the ordering and concentrate on
finding the optimal tree.

We show that the MDM problem is NP-complete using
a simple reduction from the telephone broadcast (TB)
problem. In theTelephone model(see [12]) communi-
cation is synchronous, i.e., each node can either sent or
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receive a single message per communication round. The
TB problem seeks an optimal broadcast scheme which
distributes a message from a source noder ∈ V to all
the nodes inV in a minimal number of rounds. The
TB problem is known to be NP-Hard [13, ND49] for
arbitrary graphs.

Theorem 1:The decision version of the MDM prob-
lem, finding a multicast tree with a delay boundK, is
NP-complete.

Proof: The proof follows by applying a reduction
from TB which constructs an overlay configuration with
unit processing costs and zero communication costs for
all the edges in the input graph. The cost of the remaining
edges is set ton.

IV. M ULTICAST ALGORITHMS

Broadcast and multicast are important communication
primitives which have many applications in distributed
and parallel systems. The problem of designing effi-
cient broadcast and multicast algorithms which assume
sequential message distribution, have been extensively
studied in the context of several communication models.
One model which was widely investigated is the tele-
phone model, described in the previous section. Some
telephone model studies have focused on the problem
of designing optimal broadcast schemes for specific
classes of graphs (see [14] for a comprehensive survey),
while others have suggested approximation algorithms
for optimal broadcasting in general graphs ([15], [16],
[17]).

The postal model, introduced by Bar-Noyet al. [12],
is a similar homogenous model which captures network
communication costs by incorporating a latency parame-
terλ. It assumes a fully connected communication model
in which each node can either transmit or receive a
single message per time unit. Another related model
which incorporates the processing and communication
delay measures is presented by Cidonet al. [18] in the
context of high-speed communication networks. Raz and
Shavitt [19] proposed a similar model for active net-
works which supports IP-like routing. Optimal broadcast
schemes for complete homogenous cost networks can be
found at [12], [18].

The heterogeneous postal model[20] extends the
postal model by assuming non uniform communication
costs. In addition the model incorporates a switching
time measure which represents the minimal gap between
message transmissions. The model represents the com-
munication network using an undirected graphG =
(V,E), a switching time function which associates a
sending timesv with each nodev ∈ V , and a commu-
nication latency function which associates a lengthλuv

with each pair of nodes(u, v) ∈ E. The communication
delayλuv takes into account the sending time atu and

the receiving time atv, and therefore the model assumes
that su < λuv, ∀(u, v) ∈ E. A log k approximation
algorithm is given in [20] for the problem of optimal
multicast wherek is the size of the multicast group.

Since the problem of finding the optimal multicast
tree is NP-complete, we seek to devise approximations
and heuristics. We begin with developing approximation
algorithm based on a modified version of the postal
approximation algorithm. This algorithm requires undi-
rected overlay graph inputs, implying that its domain
is limited to overlay networks with symmetric links.
This restriction is in many cases unrealistic due to the
widespread deployment of asymmetric access links, such
as ADSL and cable-modem connections. The approxima-
tion algorithm also requires a high (polynomial) running
time. Therefore, we devise an alternative cost-effective
heuristic algorithm that supports directed overlay net-
works, and evaluate its performance. Finally, we analyze
homogenous overlay networks and show that ’non-lazy’
trees achieve logarithmic multicast delay.

We also discuss shared tree extensions of these algo-
rithms. In the shared tree approach [21] a single tree
is constructed for the purpose of multi-source multicast
Our analysis show that the presented algorithms can be
easily modified to support shared trees without major
impact on the performance. Of course, using multiple
single source multicast trees will always achieve lower
delay, but at the expense of the management and resource
usage overhead.

A. Approximation outline

We base the overlay approximation on the postal
approximation scheme of Bar-Noyet al. [20] originally
designed for the heterogeneous postal model. Although
both models have common properties, the postal model
differs from the overlay model in the following aspects.
(1) In the postal model the communication latency of a
link incorporates the sending time, while in the overlay
model the sending time is incorporated in the processing
delay of the sender host. (2) The postal model assumes
that su < λuv,∀(u, v) ∈ E.

Thus, we need to adapt the postal approximation
algorithm before applying it to the overlay model. We
do this in three phases. First, we define thegeneralized
heterogeneous postal (GHP)model, which excludes the
restriction on the values of the communication and
switching measures. Second, we adapt the original postal
approximation algorithm to support the GHP model.
Finally, we construct a cost preserving GHP configu-
ration and apply the GHP approximation to compute the
multicast tree. This process results in an approximation
algorithm, Approx-MDM, which increases the original
approximation by an additive factor.
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Definition 2: The GHP model is a heterogeneous
postal model which excludes the restriction on the net-
work costs, such that the edge length parameter in the
GHP model is finite and positive, i.e.,λuv > 0, ∀(u, v) ∈
E.

The GHP model provides a framework that includes
nodes with switching time which is larger than the
communication latency to the neighbors. The following
measure captures the proportion between switching and
communication times.

Definition 3: Given a GHP model with graphG =
(V,E), switching time functions, and a communication
latency functionλ, defineγ = max(v,w)∈E{ sv

λvw
} as the

switching to communication ratio of the graphG.

B. The GHP approximation algorithm

Before proceeding to the GHP approximation we
provide an outline of the postal approximation algorithm.
The interested reader is directed to [20] for the full
details.

The problem of multicasting in the postal model is de-
fined as follows. Given a configuration of an undirected
graph with associated communication and switching cost
functions (G = (V, E), s, λ), a set of terminalsU ⊆ V ,
and a source noder ∈ U , find the minimal time scheme
that distributes a message fromr to the terminal set
U , where all the nodes inV may participate in the
distribution.

The postal approximation algorithm. The basic idea
of the algorithm is to find a multicast treeT which
minimizes the quantity∆T +LT , where∆T denotes the
maximum generalized degree (the generalized degree of
a node is its actual degree multiplied by the correspond-
ing switching time) ofT , andLT denotes the weighted
diameter ofT . The algorithm computes a multicast tree,
which approximates the cost of the optimal treeT ∗,
iteratively using l rounds. LetUi denote the terminal
set in theith round. The algorithm starts with the initial
set U0 = U and terminates whenU` = {r}. In the ith
round the algorithm uses thecore procedure to compute
the following, for anyi ≤ l:

1) a core subsetUi ⊆ Ui−1 of size at most34 · |Ui−1|
wherer ∈ Ui

2) a multicast scheme fromUi to Ui−1, such that the
obtained multicast time is linear in the optimal
multicast time fromr to Ui−1.

The computation ofcore(U ′) involves the following
steps:

1) Solve a linear program, variant of a multicommod-
ity flow. The resulting set of fractional paths is
rounded [20, Theorem 4] producing a set of|U ′|
integral paths, one for each terminal.

2) Transform the set of paths into a set of spider
graphs (see Section V-A). Select an arbitrary ter-
minal from each spider together with nodes which
are not spanned by any spider to be included within
the resulting core. This selection insures that the
chosen terminal is able to distribute a message to
all its spider nodes in the required linear time.

In [20] it is shown that the resulting tree has a
O(log |U |) multiplicative approximation factor. This ap-
proximation algorithm cannot be applied to overlay
networks due to the inherent cost restriction which
determines the coefficients of the rounding matrix.

We now describe theGHP roundingmechanism that
extends the postal approximation domain to support
networks withγ ≥ 1, i.e., GHP models. We preserve the
notations of [20],P1, P2, . . . denotes the length bounded
fractional flow paths, andV (Pi) andE(Pi) denotes the
set of nodes and edges in a pathPi, respectively;f(Pi)
denotes the amount of flow pushed on pathPi, andPj

denotes the set of all paths that carry flow of thejth
commodity. To simplify the presentation of the results
we defineγ′ = max{1, γ}. The following matrix is used
for the rounding of the fractional solution:

for eachv sv ·
∑

i: v∈V (Pi)

f(Pi) ≤ 6∆T

for all j −4LT · γ′ ·
∑

i: Pi∈Pj

f(Pi) = −4LT · γ′

The sum of positive entries in theith column is:
∑

v∈V (Pi)

sv ≤
∑

(v,w)∈E(pi)

λvw · γ′ + stj
≤ 4LT · γ′.

where the second part of the equation follows from the
definition of γ. The sum of the negative entries at each
column is at most−4LT · γ′. By invoking the postal
rounding [20, Theorem 4] we get a set of integral paths
such that their congestion, i.e., the generalized degree of
the graph spanned by a set of paths, is at most6∆T ∗ +
4LT ∗ ·γ′ and the length of each path is at most4LT ∗ ·γ′.

The GHP approximation algorithm. The GHP ap-
proximation algorithm is a postal approximation algo-
rithm which employees a GHP rounding mechanism
instead of the original rounding.

The correctness of the modified algorithm follows
from the fact the algorithm structure and its underling
theorems and lemmas are not related to the specific
switching and communication cost values, except of the
constrained selection of the rounding coefficient which
we handle appropriately. Therefore it remains to show
the approximation ratio.

The transformation performed on the rounded paths,
step (2) in the core procedure, yields a set of spiders
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which preserve the topological properties of the original
algorithm, such that the diameter of each spider is at
most4 · γ′ · (∆T ∗ + LT ∗) and the generalized degree (of
the center) of a spider is at most6 · γ′ · (∆T ∗ + LT ∗).
Since the algorithm invokesO(log |U |) iterations of the
core procedure and the cost of the optimal treeT ∗ is
at least0.5 · (∆T ∗ + LT ∗) [20, Lemma 1], we have that
the multicast time from the rootr to a set of terminals
U is at mostO(log |U | ·max{1, γ}) times the optimal
multicast time.

C. The MDM approximation algorithm

The following polynomial algorithm provides an ap-
proximation solution for the MDM problem. The algo-
rithm accepts as an input an overlay network configura-
tion (G, c, p) which consists of an undirected graphG =
(V,E) with associated processing and communication
cost functions,p and c, respectfully, and a source host
s̃ ∈ V .

Algorithm Approx-MDM(s̃, G, p, c)
1. Construct a GHP configuration instanceIGHP =

(G, s, λ), from the graphG, switching time function
sv = p(v), ∀v ∈ V and communication latency function
λu,v = c(u, v) + (p(u) + p(v))/2,∀(u, v) ∈ E.

2. Invoke the GHP approximation to compute a multi-
cast tree usingIGHP , source host̃s, and multicast group
U = V .

3. Return the computed multicast tree

Let OPT be the minimal multicast delay from̃s to
V , and letn be the size ofV . Let pmax = maxv∈V p(v)
and pmin = minv∈V p(v) be the maximal and minimal
processing costs in the overlay network.

Theorem 2:The multicast delay of the Approx-MDM
algorithm is at most(OPT + (pmax− pmin)) ·O(log n)

Proof: Given a multicast treeT which spansV
and a hostv ∈ V , let t

GHP

T
(v) be the reception delay

of v assuming GHP model timings. By substituting the
computed costs ofIGHP with the corresponding overlay
input costs we get the following relationship between the
reception delay costs.

t
GHP

T
(v) =

p(s)− p(v)
2

+ t
T
(v) (1)

Consider the following quantities computed assuming
GHP model timings. LetOPTGHP be the multicast de-
lay of an optimal treeT ∗GHP for theIGHP configuration.
Let u ∈ V be the node with the maximal reception delay
in T ∗GHP . Therefore we have that

OPTGHP ≤ OPT+
p(u)− p(s)

2
≤ OPT+

pmax − pmin

2
(2)

where the first inequality follows from Eq. (1).

The constructedIGHP instance satisfiesγ < 2, since
p(v)

0.5·(p(v)+p(w))+c(v,w) < 2, ∀(v, w) ∈ E, and therefore
the multicast delay of the resulting tree is at most
OPTGHP · O(log n). SubstitutingOPTGHP according
to equation (2) gives the requested upper bound.

When the processing costs are all equal, it improves
our approximation for the MDM problem toO(log n).
We do not restrict the communication costs to be homo-
geneous. The following theorem handles this case.

Theorem 3:Consider an overlay model with homoge-
nous processing costs, i.e.,p(v) = p, ∀v ∈ V . The
multicast delay of Approx-MDM algorithm for this case
is at mostOPT ·O(log n).

Theorem 3 can be obtained by substitutingpmax =
pmin = p in Theorem 2.

Given a network with symmetric communication
costs, a multicast treeT = (V,E) rooted at s can
be easily adapted to support multicasting from multiple
sources. To perform the multicast from a hostv ∈ V, v 6=
s, we reverse the direction of the edges on the path from
s to v. This modification results in a multicast scheme
that requires at mostp(v)− p(s) + 2 ·C time, whereC
denotes the cost ofT . Therefore, the undirected version
of the Approx-MDM multicast tree can be used as a
shared tree such that the multicast delay of any hostv ∈
V, v 6= s is at most2·(OPTs+(pmax−pmin))·O(log n),
whereOPTs denotes the optimal multicast delay from
s.

D. Heuristic algorithm

We introduce a heuristic tree construction algorithm
for the directed version of the MDM problem withn
hosts. The proposed algorithm computes the multicast
tree incrementally using a greedy approach; for each host
not yet included in the tree, a mate host which minimizes
its potential reception delay is computed, and the host
with maximal delay is chosen to extended the tree along
with the hosts on the path to its mate. Fig. 2 shows the
steps of the algorithm.

The algorithm maintains a ready time attributet[v]
for each hostv ∈ V which records the minimal time
at which the host is free to initiate processing of a new
message. The ready time is set to infinity to indicate non
notified host. The constructed tree is denoted byT and
the corresponding set of notified hosts byV [T ]. In each
iteration, the algorithm determines for each hostu ∈
V −V [T ] its mate hostm[u] ∈ V [T ] by selecting a path
which minimizes the potential ready time ofu, setting
v to indicate the host with the maximal reception delay.
Then, it updates the ready time of the hosts on the path
from m[v] to v to reflect their new potential processing
times, and it adds the path hosts to the constructed tree
T . The variablew indicates the current updated host.
The algorithm terminates when all the hosts are notified.



7

Algorithm Heuristic-MDM( s,G, p, c)

1. t[s] = 0, sets as the root of a treeT
2. for eachv ∈ V − {s}
3. do t[v] ←∞
4. for each(u, v) ∈ E
5. do wu,v = c(u, v) + p(u)
6. for each(u, v) /∈ E
7. do if v = u thenwu,v = 0 elsewu,v = ∞
8. D, Π ← All-Pairs-Shortest-Path(G,W )
9. while V − V [T ] 6= ∅
10. for each hostu ∈ V − V [T ] do
11. m[u] ← arg minv:v∈V [T ]{t[v] + dv,u}
12. v ← arg maxu:u∈V−V [T ]{t[m[u]] + dm[u],u}
13. w ← v
14. while w 6= m[v] do
15. t[w] ← t[m[v]] + p(w) + dm[v],w

16. addw to T as a child ofπm[v],w

17. w ← πm[v],w

18. t[m[v]] ← t[m[v]]+p(m[v]), t[v] ← t[v]−p(v)
19. returnT

Fig. 2. Greedy tree construction for the MDM problem

To be able to calculate the connection cost between
a non notified host and a notified host, a preprocess-
ing phase of computing all pairs shortest path using
the Floyd-Warshall algorithm [22] is implemented. A
shortest path from hostu to host v is defined as any
path with the minimal communication latency fromu to
v. The edge weights of the shortest path computation
correspond to the communication latency of the overlay
links, such that the input to the Floyd-Warshall compu-
tation is ann × n weight matrixW = (wvi,vj

) defined
as:

wvi,vj
=

{
p(vi) + c(vi, vj) if vi 6= vj ,
0 otherwise.

The output of the all pairs shortest path computation is
composed of twon×n matrices; all pairs distance matrix
D = (dvi,vj

) and predecessor matrixΠ = (πvi,vj
) (See

[22]). Observe that the shortest path from the sources
to any hostv is a lower bound on the cost of the optimal
tree.

This algorithm can be extended to support a shared
tree solution using the following modification. At the
initialization phase the longest path in the graphG is
computed using the weight matrixW , and the hosts
on this path are used as the initial set of notified hosts
in T . The shared tree variant uses this initial selection

v1

vn
v0

v2

vk

vn-2

vn-1
(A)

(C)

v1

v2 v3

vn

v0

v1

v2 v3

vn

0
0 0

0

v0

d
d

(B)

Fig. 3. Example that provides
√

n approximation ratio for the
heuristic tree. (A) The input graph (B) The heuristic tree. (C) An
optimal tree.

instead of the original one and proceeds with normal tree
construction as in the original algorithm.

The complexity analysis of this algorithm is straight-
forward. The all pairs shortest path computation requires
Θ(n3) time. Each iteration requiresO(n) time to find a
mate host, andO(n) time to update the host paths and
extend the tree. The total time per iteration is therefore
O(n2), and the total running time of the heuristic al-
gorithm is Θ(n3). We conjecture this time complexity
cannot be improved since any algorithm should at least
calculate the all pair shortest path.

We show using an example (see Fig. 3A) a lower
bound on the approximation ratio of the heuristic tree.
Consider the following complete undirected graphG =
(V, E) with n + 1 hosts denoted byv0, . . . , vn, with
processing costs defined asp(v) = 1, ∀v ∈ V , and
communication costsc(vi, vj) defined as

c(vi, vj) =





0 if i = 0, j = 1, . . . n ,
δ if 1 ≤ i ≤ n− 1, j = i + 1 ,
n otherwise.

whereδ → 0. For the simplicity of presentation Fig. 3A
omits the edges with costn. Assume that the source
host isv0. Therefore, the heuristic scheme would have
v0 distribute the message to the rest of the hosts usingn
processing rounds, such that the tree cost isn (see Fig.
3B). On the other hand, consider an optimal scheme in
which v0 distributes the message to an ordered set of
k paths,p1, . . . , pk, such that the number of edges in
pathpi, denoted by|pi|, forms the following sequence:
|pi| − 1 = |pi+1|,1 ≤ i ≤ k − 1, whereas for a single
index j in this set we may have|pj | = |pj+1|. Fig. 3C

depicts an optimal tree whenn = k·(k+1)
2 . Since the cost

of the optimal tree is at most(1+ δ) ·k andk = O(
√

n)
we get Ω(

√
n) approximation ratio for the multicast

delay. We conjecture that this example represents the
worst case, namely that our heuristic algorithm is an

√
n-

approximation.
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E. The homogenous case

Consider a fully connected overlay network with
homogeneous processing and delay costs, i.e.,p(v) =
p,∀v ∈ V , c(u, v) = c,∀(u, v) ∈ E. We denote this
model as thehomogenous overlay network. Observe that
the postal model can be reduced to the homogenous
overlay model by selectingp = 1, c = λ− 1.

In the homogenous overlay network, a non-lazy
scheme directs each notified host to distribute the mul-
ticast message to a new host every processing interval
p. Due to symmetry, any non lazy multicast algorithm
which avoids sending duplicate messages to the same
destination host will result in an optimal solution. In
particular, an optimal solution can be obtained by us-
ing the non-lazy centralized Heuristic-MDM algorithm
described in section IV-D. It remains to show the con-
vergence rate of message distribution. Using the analysis
of [18, Eq. (3)] we derive the following

Theorem 4:In the homogenous model, the maximal
number of hosts that can be reached during the time
period (0, t] is given by

N(t) =

{
1 if 0 ≤ t < p + c,
N(t− p) + N(t− p− c) if t ≥ p + c.

It is easy to derive upper and lower bounds forN(t),
and get that:2b

t

p+c
c ≤ N(t) ≤ 2b

t

p
c, for any real

numberst, p, c ≥ 0. Therefore, the optimal algorithm
has logarithmic multicast delay in homogeneous overlay
networks.

V. TOPOLOGIES

In this section we analyze the performance of the
heuristic tree for the special case of partially connected
overlay networks. Partial connectivity, which assumes
arbitrary or structured graphs, is an important model
which arises in several contexts.

Partial connectivity is implement by many data dis-
tribution services, such as content distribution networks
and multimedia streaming systems, which utilize a ded-
icated network of leased lines and virtual connections to
provide connectivity among application servers. These
systems optimize resource usage, and therefore enforce
connectivity constrains to achieve efficient resource uti-
lization. Structured p2p systems [8] are another class of
applications which utilize partial connectivity overlays.
Despite the fact that many of these systems employ dis-
tributed architectures, our centralized application-centric
approach can still be used to provide theoretical perfor-
mance bounds on the multicast delay in such systems.

Partial connectivity may also rise in cases where due
to anonymity requirements not all the hosts are aware of
each other and thus connectivity is sparse. That is, hosts
use local policies to override universal connectivity. For

example, consider security policies in the internet, which
limit the connectivity of hosts located behind firewalls
and NAT facilities.

Partial topologies are also relevant to the case of
active networks [19], which have similar properties to
those of overlay networks. It is possible to view the
overlay network as an application level implementation
of the active network model, where the active network
uses programmable routers to add new functionality and
services to the network. For example, Raz and Shavitt
[19] have used a framework that considers the processing
and communication delays in active networks, to develop
and analyze the time complexity of several basic algo-
rithms, including multicasting. Their framework uses the
processing delay measure to capture the delay imposed
by a software router implementing copy and forward of
packets.

Therefore, in order to support networks with partial
connectivity an extended overlay model is assumed; in
this model the communication cost of an overlay link
(u, v) is set to infinity, i.e.,c(u, v) = ∞, to indicate the
absence of direct communication fromu to v.

For general graph topologies our analysis focuses
on the performance of the broadcasting communication
primitive in which a source host disseminates a message
to the rest of the hosts in the graph. In the next section,
we analyze the broadcast performance of the heuristic
tree for several common undirected graph topologies.

A. Trees

We consider broadcasting in tree graphs. In these
graphs each node has a single path from the root,
implying that any broadcast scheme is characterized only
by the message distribution order of non-leaf hosts.

Lemma 5:Any non-lazy broadcast scheme provides a
factor d approximation for the minimal broadcast delay
for a tree graphT = (V, E) with a maximal degree of
d.

Proof: Denote bys the source host. In any non lazy
scheme, the time that the last notified leaf, denoted by
v∗, receives a message is at mostl(ps,v∗), i.e., the latency
of the unique path froms to v∗ in T , plus the additional
processing delay imposed by each host on the pathps,v∗ .
Since the degree of the tree is bounded byd, this delay
is at most(d− 1) ·∑k−1

i=0 p(vi) wherevi, denotes theith
host on this path such thatv0 = s,vk = v∗. It is easy to
see that this additional delay is at most(d− 1) · l(ps,v∗),
and the lemma follows.
This result indicates that a distribution along a degree-
constrained multicast tree at an arbitrary order, such
as delivery schemes used by overlay multicast systems
which ignore sequential distribution of messages, pro-
duces a delay which is up to a multiplicative constant
factor higher than the optimal result.
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The heuristic algorithm achieves optimal solution for
a special class of tree graphs termed spiders, in which
at most one node has degree larger than two. The proof
is omitted due to space limitations.

B. Grids

This section investigates broadcasting in the context of
homogenous rectangular grid graphs. LetGm,n = (V, E)
denote anm× n grid graph. Each host in this graph is
uniquely identified by a row and column indexes(i, j),
where1 ≤ i ≤ m and1 ≤ j ≤ n. The broadcast analysis
is conducted assuming a homogenous cost model where
p(v) = 1,∀v ∈ V , c(u, v) = 0,∀(u, v) ∈ E. This
particular selection reduces the model to the well known
telephone model, and enables the usage of known results
in grid broadcasting.

The problem of finding an optimal broadcast scheme
in 2-dimensional grid graphs have been previously inves-
tigated by Farley and Hedetniemi [24]. They have shown
that:

Given a grid graphGm,n with a nodev at position
(i, j). Then

b(v) =





D + 2 if i = j = m+1
2 = n+1

2
D + 1 if i = m+1

2 or j = n+1
2 , i 6= j

D otherwise.

whereb(v) denotes the optimal broadcast time fromv,
andD denotes the maximal distance fromv to a corner
node in Gm,n. The distance between a pair of nodes
u and v in positions(iu, ju) and (iv, jv), respectively,
is defined as the number of edges on the shortest path
between them, i.e.,||u− v|| = |iu − iv|+ |ju − jv|.

The following Theorem shows that the heuristic tree
provides an optimal solution for broadcasting in grid
graphs. The proof for this case assumes that the heuristic
algorithm uses a tie-breaking strategy to handle multiple
path choices when connecting a new non-notified host to
the constructed tree. The strategy selects a path which
satisfies the following conditions. (a) the path has the
minimal latency among all the paths leading to the
constructed tree (b) the path uses the minimal number
of direction changes in the grid topology. This strategy
greatly simplifies the analysis, since it implies that the
algorithm uses one-turn paths, i.e., paths with only one
direction change, or zero-turn paths, i.e., horizontal or
vertical paths.

Lemma 6:The Heuristic-MDM algorithm provides an
optimal solution for a homogenous grid graphGm,n =
(V,E).

Proof: Let T denote the computed heuristic tree,
rooted at s. Since the heuristic algorithm uses max-
min criteria for the selection newly of notified hosts,
it follows that T is an SPT. The proof is omitted due

to space limitations. This implies the following degree
delegation inT . If s is a corner host than its degree
is 2 and rest of the nodes have maximal out-degree of
2. If s is a side or interior host, than the out-degree
of the interior nodes which share a common coordinate
with s is 3 and the maximal out-degree of the rest
of the nodes is2. The degree ofs is 3 when s is
a side host, and4 when it is an interior host. Define
S3 = {v : deg(v) = 3, v 6= s} as the set of hosts with
out-degree3, wheredeg(v) denotes the out-degree ofv
in T .

Let T2 be a binary subtree ofT rooted atr, such that
r is a child of v ∈ S3 or a side host which is a child
of s. The grid topology implies that a subtree of height
d, rooted at an internal node ofT2, has a single leaf
at depthd. Therefore, by using a bottom-up recursive
computation we get that the optimal broadcast time from
the root of aT2 tree with heightd requiresd time units.
If s is a corner host thenT has twoT2 subtrees linked
to it (that is, the root of each subtree is a child ofs).
Since only one of these trees has a height ofD−1 while
the height of the other is at mostD − 2, the broadcast
time from a corner host requiresD units of time, and
the lemma follows for this case.

The other cases are analyzed using a compressed ver-
sion of T . A T2 tree with heightd can be ’compressed’
to a path withd edges which preserve the broadcast time
of the tree. The compressed version ofT , denoted asTc,
is produced by replacing all theT2 subtrees with their
corresponding paths. This compression does not modify
the broadcast time ofT .

Let T3 denote a subtree inTc rooted at a child
of s. Consider the case of trinaryT3 trees. The grid
topology implies that a subtree of heightd rooted at
an internal node ofT3, v ∈ S3, may have at most
two leaves at depthd. Each hostv ∈ S3 has three
children in T , v1,v2 and v3, ordered according to the
height of the subtrees rooted at these hosts, such that
h(Tv1) ≤ h(Tv2) ≤ h(Tv3) whereTvi

,i = 1, 2, 3 denotes
the subtree rooted atvi, andh(Tvi

) denotes the height
of Tvi

. Given a subtree of heightd rooted atv with
a single leaf at depthd, the grid topology implies that
h(Tv3) > max{h(Tv2), h(Tv1)}. If the subtree has two
leaves at depthd, thenh(Tv3) = h(Tv2) > h(Tv1). The
operation of the heuristic algorithm insures that a subtree
T3 with heightd wont contain a hostv ∈ S which has
two subtrees in which the maximal distance from the
leaves to the root isd − 1. Denote this assumption as
the heuristic path selection restriction (the proof for this
claim is omitted due to space limitations). By using a
bottom-up recursive computation of the broadcast time
we have that the broadcast time from the root of aT3

with heightd is d when there is a single leaf at depthd,
andd + 1 when there exists two leaves at depthd.
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Now, we need to check all the combinations of hosts
at depthD and D − 1 in the T3 trees linked to the
sources. First, consider the case whens is a side host
linked with threeT3 trees. If s is a middle side host,
there are two nodes at distanceD from s. If these two
hosts reside in the sameT3 tree, then the maximal height
of the remainingT3 trees isD − 2 and we have that
the broadcast time from a corner host is at mostD +
1. If these two hosts reside in different subtrees, then
the maximal height of the third subtree isD − 2 and
the broadcast time is again at mostD + 1. In the case
of a non middle side host, the single host at distance
D is located at one of theT3 trees and the maximal
height of the remaining trees isD − 2. The broadcast
time is at mostD, and the lemma follows for this case.
The case of broadcasting from an interior source host
requires similar analysis. By checking all the possible
combinations we get that the broadcast time from an
interior node obeys the optimal time, which completes
the proof of the lemma.

Corollary 7: The broadcast delay of a shortest path
tree for homogenous cost grid graphGm,n = (V, E) is
at mostOPT + 2

Proof: If we remove the heuristic path selection
restriction, the broadcast time from the root of aT3 is
increased by at most one unit of time, and therefore the
total broadcast time can be increased by at most two
units of time.

VI. A S IMULATION STUDY

In this section we analyze the average performance of
the proposed algorithms on random networks assuming
various group sizes and wide range of network costs.

The simulations assume two undirected network
topologies - fully connected and partially connected
overlay graphs. The topologies of the physical networks
and the partially connected overlays are constructed
using a power-law graph generator. This generator is
based on the Notre-Dame model [25] which constructs
undirected graphs with power-law node degree frequency
distribution using an input parameter setm0,m, p, q.
This parameter set defines the properties of the resulting
graph. A common parameter setm0 = 3,m = 2, p =
0.1, q = 0 was used to derive all the topologies. This set
results in graphs with average degree of approximately
4.38.

In our simulations we compare the performance of the
Heuristic-MDM algorithm with the following schemes.
• Approx-MDM multicast algorithm. In our simula-

tion environment which includes 1.5Ghz PCs with
512M RAM, the Approx-MDM algorithm was able
to effectively solve problems with up to25 hosts.
This limitation is due to the high running time of
the algorithm, which is at leastΘ(n7) [17].

• Shortest Path Tree. This tree is evaluated to assess
the performance penalty involved with SPT routing,
a common routing scheme employed by many over-
lay multicast systems. The SPT is computed using
Dijkstra’s algorithm [22], where the edge weights
are defined using the formulation of section IV-D.

• Latency bound. Since the MDM problem is NP-
Hard (see Section III) the optimal solution could
not be computed. Instead, the maximal value of
the minimal communication latencies between the
source and the group members is computed. This
maximal latency is a lower bound on the perfor-
mance of any multicast scheme.

A. Simulation results

First we describe the format of the plotted graphs.
In all the presented results we apply 40 independent
simulation experiments per each data point, plotting the
mean value with error bars representing a95% confi-
dence interval. In the case of fully connected overlay
networks, we present the simulation results using two
plots, one that covers small group sizes up to25 members
and another which handles larger group sizes up to4000
members. Thus, the performance of the heuristic and
approximation trees is compared in the context of small
group sizes, while large group sizes are used to analyze
the scaling properties of the heuristic and SPT trees.

Next, we present the results for the case of a fully
connected overlay network. Figs. 4–6 plot the costs, i.e.,
the multicast delays, of the Heuristic-MDM, Approx-
MDM, and shortest-path trees as a function of the
multicast group size. In each simulation the network
costs are randomly selected using a discrete uniform dis-
tribution on the intervals([1, 10], [1, 10]), ([1, 1], [1, 10]),
([1, 10], [1, 1]), respectively. The left range in each pair
is the communication cost range, and the right range is
the processing range.

According to Fig. 4, the cost of the heuristic tree is
up to 30% smaller than the cost of the approximation
tree. Fig. 5 indicates that the trees achieve similar cost
when the processing costs dominate the communication
costs. Fig. 6 shows that in the alternative case of network
with dominating communication costs, the heuristic tree
cost can be up to3 times smaller than the approximation
cost. This performance gap stems from the fact that the
approximation scheme constructs trees with logarithmic
height. The usage of logarithmic height trees increases
the probability of selecting high cost communication
delays, and therefore reduces the average efficiency of
approximation trees.

As expected SPT provides the worst case performance,
providing a cost function which is almost linearly pro-
portional to the tested group size. Observe that the
multicast delay is plotted on a logarithmic scale, such
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Fig. 4. The multicast delay for a clique topology with random
network costs from[1, 10]
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Fig. 5. The multicast delay for a clique topology with random
processing costs from[1, 10] and unit communication costs

that the linear performance degradation is shown using
a logarithmic curve. The SPT performance is consistent
with the tree construction mechanism which makes no
attempt to minimize the degree of the resulting tree.
The quality of the SPT is determined according to the
dominance of the communication costs, such that the
applicability of SPT is limited to small multicast groups
in overlay networks with dominating communication
costs (Fig. 6).

The previous experiments were repeated using other
cost intervals,[1, 5], [1, 100], preserving the methodology
of network cost selection. The obtained results were con-
sistent with the previous outcomes. We also simulated
near homogeneous costs and verified the logarithmic
convergence rate (see Section IV-E) of the heuristic.

We used a4000 node physical network, based on a
power-law graph, to simulate fully connected overlay
structures over the internet. In each simulation the mul-
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Fig. 6. The multicast delay for a clique topology with random
communication costs from[1, 10] and unit processing costs
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Fig. 7. The multicast delay for a power-law topology with random
network costs from[1, 10]

ticast group hosts were attached to a randomly selected
uniformly distributed set of edge nodes in the power-
law topology. The communication costs were derived
according to the minimal hop count, yielding an average
overlay link cost of 4.8 hops with a maximal value of
9 hops. The processing costs were randomly selected
from the discrete intervals[1, 5], [1, 10] and [1, 100].
Unsurprisingly, the obtained results were similar to the
previous results which use random cost selection, and
therefore the corresponding graphs are omitted.

Next, we consider the case of partially connected
overlay networks derived using the power-law topology
generator. In this case, we weren’t able to apply the ap-
proximation scheme due to the implicit full-connectivity
assumption inherent in the heterogeneous postal model.
This assumption makes the postal approximation, and
consequently the Approx-MDM algorithm, unsuitable
for partially connected graphs. This limitation cannot be
bypassed since invoking the approximation scheme on
arbitrary graphs may result in a partially connected core
subset, making the following core computations prob-
lematic. Therefore we compare the performance of the
heuristic tree with SPT, using the same network costs as
in the fully connected case. The results indicate that the
heuristic tree scales well, such that its maximal cost is up
to 80% higher than the lower bound, which is not tight.
Fig. 7 shows a typical large scale result with processing
and communication costs randomly selected from the
discrete intervals([1, 10], [1, 10]). The large-scale results
for a clique topology are similar. For example, see Fig. 4
in which the maximal cost of the heuristic tree is up to
3 times higher than the non-tight lower bound.

VII. C ONCLUDING REMARKS

In this work we looked at building efficient application
layer multicast trees. We presented a new model that
captures the trade offs between the desire to select
shortest path trees and the need to constraint the load
on the hosts. We defined the minimum delay multicast
tree problem, and presented both an approximation and a
heuristic for its solution. Our simulation study shows that
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the heuristic algorithm provides a cost effective solution
for the MDM problem, which is very close to optimal.
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