Big-Bang Simulation for embedding network
distances 1in Euclidean space

Yuval Shavitt

Tomer Tankel

Dept. of Electrical Engineering,
Tel-Aviv University, Israel
Email: {shavitt,tankel} @eng.tau.ac.il

Abstract— Embedding of a graph metric in Euclidean
space efficiently and accurately is an important problem in
general with applications in topology aggregation, closest
mirror selection, and application level routing. We propose
a new graph embedding scheme called Big-Bang Simulation
(BBS), which simulates an explosion of particles under
force field derived from embedding error. BBS is shown
to be significantly more accurate, compared to all other
embedding methods including GNP. We report an extensive
simulation study of BBS compared with several known
embedding scheme and show its advantage for distance
estimation (as in the IDMaps project), mirror selection and
topology aggregation.

I. INTRODUCTION

Knowledge of the distances between all pairs of a
group of nodes can improve the performance of many
practical networking problems, such as routing through
a subnetwork and selecting the closest mirror server.
However, measuring and to a greater extend dissemination
of this information becomes impractical even for a few
tens of nodes, since the number of node pairs is quadratic
in the number of nodes. Thus, researchers sought ways to
reduce the all pair distance representation while preserv-
ing the distance in the reduced representation as close as
possible to the original ones. Next we shortly describe two
example networking problems, where all pair distance
information is required.

Routing through a subnetwork. When routing
through an ATM sub-network, the distances between all
pairs of border nodes, i.e., nodes that are connecting the
sub-network to other sub-network, are used to compute
the shortest (or cheapest) path through the cloud [1].
For this end, each network advertises its distance matrix
in a compressed manner, and it is recommended that
the matrix representation is smaller than 3b, where b is
the number of border nodes [1]. The best compression
technique that was suggested in the past [2] will be
presented later.

I'This research was supported by a grant from the United States -
Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Selecting the closest mirror. Recently, there was a
large interest in using distance maps of the Internet to aid
in tasks such as closest mirror selection and application
layer multicast [3], [4], [5], [6]. In the IDMaps project it
was identified that the number of possible nodes which
represent the distance map granularity is in the thousands
which makes accurate distance dissemination impractical.
Due to the practicality of the measurement process and
to reduce the representation, IDMaps suggests to use
a smaller number of measurement points, Tracers, that
measure distances among themselves and then use them
as a reference distance map to the other network regions.

A relatively new approach to represent a network
distance matrix is to map network nodes into points in
a real Euclidean space. Such a mapping is designed to
preserve the distance between any pair of network nodes
close to the Euclidean distance between their geometric
images. Such a mapping is called an embedding and
ideally graph edge lengths are exactly embedded in the
geometric edges. However, it can be easily shown that an
exact embedding is not always possible, e.g., in case of
a tree, and in-fact, in most cases embedding introduces
some distortion. In a good’ embedding, the average and
maximum distance distortion over all pairs of nodes are
relatively low. The distance distortion is defined for each
pair as the maximum of the ratio between the original
and Euclidean distance and its inverse.

Outside the networking community embedding has
been used for quite a long time in many diverse research
areas. Multi Dimensional Scaling (MDS) is widely used
in areas of statistics and vision. The simplicity and low
complexity of classical metric MDS [7] makes it appeal-
ing in these areas. Recently computer graphics researches
[8] suggested to use MDS for mapping flat textures over
curved surfaces with minimum distortion. Embedding is
used extensively in bio-informatics, and specifically for
classification of protein sequences into similarity families
[9].

Theoretical bounds on the maximal pair distortion and
the dimension of the target space were derived by Linial

et al. [10] for any discrete metric space?. Perhaps the first
use of graph embedding techniques in networking is due
to Ng and Zhang [5] who suggested to estimate Internet
host distances by embedding distances among Tracers
nodes and other network regions. Their embedding tech-
nique sought minimum of total square embedding errors
over all nodes pairs, which is proportional to the average
pair distortion.

In this paper we present a new scheme for embedding,
based on a novel idea, utilizing notions from Newtonian
mechanics. We shall compare our scheme, Big-Bang Sim-
ulation (BBS), to other embedding methods and show that
it produces the best embedding over various parameter
choices with reasonable complexity. This is not to say
that for special cases, e.g., when the number of embedded
nodes is very small, it will outperform all other schemes,
but it will be better than any other scheme when all cases
are considered.

a) Big-Bang Simulation: BBS models the network
nodes as a set of particles, each is the ’geometric image’
of a node, that is the position of this particle in Euclidean
space. The particles are traveling in that space under the
effect of potential force field. The force field reduces the
potential energy of the particles, that is related to the
total embedding error of all particle pairs. Each pair of
particles is pulled or repulsed by the field force induced
between them depending on their pair embedding error,
that is the embedding error of the distance between them.
As a particle accelerates under the effect of the force field
it is also attenuated by simulated friction force.

The BBS scheme advantage over conventional gradient
minimization schemes, such as steepest decent and down-
hill simplex (DHS), is that the kinetic energy accumulated
by the moving particles enables them to escape the local
minima. Moreover, DHS which was used by Ng and
Zhang [5] is very sensitive to the initial coordinates for
vertices. The key idea which inspired the name *Big-Bang
Simulation’ is that all particles are initially placed at
the same point, the origin. Starting with such initial
condition BBS obtains ’good’ embedding, that is low
average distortion and quite low maximal distortion,
in several hunderds simulation iterations for input graph
sizes in the range 30 < n < 750.

BBS achieves equally good performance for a wide
range of system friction coefficient. Moreover, in the case
the pairwise field force is given by the difference between
the Euclidean and network pair distances (see Eq. 7), the
embedding is insensitive to small changes in the input
graph. Indeed, even after modifying as many as 20%

2Though [10] and more recent publications discusses mapping to lp,
we will concentrate only on embedding in [> which is the most popular
in applications.

(A)

(B)

Fig. 1. Problem Statement

of the input edges, and resuming simulation from the
previous particles positions, our simulation requires only
.5% (for 150 node Waxman topology) and 5% (for 15
node BA topology) of the simulation time starting at the
origin.

Next we discuss in more details one of the applications
mentioned above for which we have applied our embed-
ding and compare it to previous results.

b) Internet Distance Maps Application: While it
was shown that IDMaps performs quite well, e.g., it
correctly points a client to the closest mirror server in
about 85% of the cases, [4] it is far from being ideal.

Fig. 1 illustrates the main reason for inaccuracies in
IDMaps: In the example, client H; estimates the network
distance A; to mirrors H;, [= 2,3 as a sum of several
measured segments, s; + s; + S;. The inaccuracy of
IDMaps estimation is larger when a nearest Tracer T}
is shared by the two nodes. For instance, in the case
depicted in Fig. 1A, the shortest network distance is
A3 < A, although the smallest sum of segments is
s1 + S22 < s1 + s3. On the other hand, in the case
depicted in Fig. 1B, the client is located near the Tracer
T5, and both mirror hosts are located near another Tracer
T;. The distance s; between 73 and T is larger than two
times the distances from the client and mirror hosts to
their nearest Tracer. Thus the distances Aj; | = 2,3 are
both dominated by s; and are approximately equal to the
estimated sum s; + S; + sj.

Having realized that IDMaps is blind to position,
Ng and Zhang [5] suggested to use coordinate—based
mechanisms to predict Internet network distances: Tracers
are embedded in an Euclidean space and each network
region finds its image coordinates according to distances
measured from the region to some Tracers. The estimated
distance between two regions is then given by the distance
between their images in Euclidean space.

However, due to the Internet AS structure that has a
core in the middle and many dandrils connected to it
[11] embedding of distances between nodes located in
different dandrils will result in large embedding error.
Thus, we suggest a threshold criterion to select either the
Euclidean distance or the additive estimation of IDMaps.
Our criterion performs well for multiple types of input
graphs and different Tracers selection algorithms, and out-
performs both the additive IDMaps and GNP.

The rest of the paper is organized as follows. The
BBS simulation, initial condition, friction, and an ex-
ample embedding in the Euclidean plane are discussed
in next section. In Sec. IIl, BBS is compared to four
other methods, using simulated graphs created according
to both Waxman [12] and Barabasi-Albert (BA) [13]
methods. In Sec. IV we apply BBS in two practical
applications, topology aggregation and Internet distance
maps, comparing it with previous results from [2] and
[4], [5], respectively.

II. BIG-BANG SIMULATION

A. The Model

The vertices of the graph, the network nodes, are
modeled as a set of particles, traveling in the Euclidean
space under the affect of potential force field. Each
particle is the geometric image of a vertex. The field
force is derived from potential energy which is equal to
the total embedding error

n

Er(vi,va,...,v,) = Z Eij(vi,v5) . (1)
i,j=1
i>j

Here vg, k = 1,..., n are vectors designating the

coordinates of the n network nodes in the target Euclidean
space R?. The distance embedding error of a pair of
particles, the "pair embedding error’ is denoted by E;;.
The field force induced between the two particles either
pulls or repulses the particle pair, aiming to reduce their
pair embedding error.

Our method works in four calculation phases. The
potential field force in each calculation phase p is derived
from a phase-specific potential energy, E<T10). The phase

pair embedding error function denoted by Efjp)

the form

, asSumes

B (vivy) =

for i # j

where ||x|| is the Euclidean size of vector x € RY,

ie. x| =/, 22, and, A = (A;) is the distance
matrix among network node pairs (i, j) . During each
calculation phase the particles are traveling in trajectories
which tends to reduce the potential energy of the entire
system. At the end of each phase the system approxi-
mately achieves an equilibrium point where the potential
energy is minimized.

The potential function of the first phase E<T1>, Eq. (6), is
equal to the simple squared error used in [5]. The induced
pair field force is equal to the difference between the
Euclidean and network pair distances. The resulting field
force can be realized by attaching an ideal spring with
fixed elastic coefficient to each pair of particles. The rest
length of the spring in each pair is equal to the network
pair distance. The objective of the next phases is to reduce
the distortion of large relative error edges at the price
of slightly increasing the average relative error. The pair
error functions in the next phases are increasingly sensi-
tive to the directional relative error Eq. (15). Numerical
stability is maintained however, because earlier phases are
normally capable of substantially reducing the maximum
pair embedding error.

A calculation phase consists of several iterations which
moves the particles in discrete time intervals. The par-
ticles positions and velocities calculated in the current
iteration are the input to the next iteration. An iteration
begins with calculating the field force F; on each particle
at current particles positions. In all iterations, except the
first iteration of phase 1, the field forces are derived
from the potential energy (1). Next, assuming constant
field forces in time interval (¢, ¢ 4+ dt), apply Newton’s
movement equations to calculate the positions and
velocities at time ¢+ dt. At the end of an iteration the new
potential energy (1) and other statistics are calculated at
the new particles position. They include the maximum
particles velocity max; ||9;]] and maximum symmetric
pair distortion d;; Eq. (9).

There is a tradeoff between increasing the time step
for greater numerical efficiency and keeping it small to
detect and attract particles to global minimum points of
the potential energy function.

In each iteration we move all n particles, where n =
|[V| is the number of graph vertices being embedded.
The force elements affecting each particle are induced
by all other (n — 1) particles. A single iteration thus

F(llvi = vl 5 Agj) s)
and w; 7’5 Uj

Friction Effect on Energy and Velocity

—6— Energy @ u=.7
—— Energy @ u=0 Alg

)
2000
¢

50

max(lv())

)
A
o
8
8

N
S

@
S

1000

Single Particle Energy (E‘

N
S
Maximum Velocity of Particles

500

0 Velocity @ p=.7
& % Velocity @ u=0
N 87" 0
1 2 3 4 5 6 7 8 9
Single Particle Distortion :rnax(\\/I JVA\)J)
'

Fig. 2. Friction Effect on Energy and Velocity

has a complexity of O(n?). Because the total number of
iterations [is independent of n, the overall complexity
of the method is O(In?), that is linear in the input size.

B. Friction vs. Kinetic Energy

As a particle accelerates under the affect of the force
field it is also attenuated by simulated friction force. The
friction force slows the particles down, so they can be
drawn into wells of the potential energy. This effect is
illustrated by Fig. 2, comparing two runs with an identical
simulated metric input (see paragraph II-E) consisting of
20 nodes .

The figure shows the movement of one of the par-
ticles during the first calculation phase of each run.
The horizontal axis depicts the maximum ratio between
Euclidean distance and original network distance for all
node pairs attached to that one particle 7¢. As our particle
converges to its perfect embedding its horizontal position
approaches the distance ratio 1. The solid lines depicts
the potential energy of the particle ¢o, given by E;, =
> i1, jio Fioj(vig,v5) . The dashed line depicts the
maximum velocity of all particles, maz!_, (]|0;||), which
is closely related to the total kinetic energy of the system.
The lines marked with circles (o) depict the case where
the dynamic friction coefficient is py = 0.7, whereas the
lines marked with cross (x) depict no friction, that is
pr = 0. Each marked point represents 10 mili—seconds
of CPU time. The total CPU time per phase 1 is thus
200ms with friction and 160ms without friction. When
comparing the solid and dashed lines we should recall that
initially our particles were placed at the origin, where
the distance ratio equals 0. The effect of friction is to
attenuate the particles that are moving away from each
other, so that immediately as ||v;,;|| /Ai,; > 1, the field

force attracts the particles back to each other and they
are stopped at equilibrium of ||v;, ;| /Ai,; = 1. Without
friction however, the particles are moving away too fast
and the attracting field force just cause them to oscillate
forever with constant velocity.

The friction force attenuating each particle depends
on the normal force which is particle dependent, and on
the constant friction coefficients of the system. Different
friction coefficients, denoted g, py, are accounted for
static and moving particles, respectively.

Fig. 2 might suggest that BBS is sensitive to the
system friction coefficients. Thus, we checked the sen-
sitivity to system friction coefficients of the CPU time,
indicating calculation iterations count, and the maximum
and average of symmetric pair distortion d;;. Due to
space limitations, we present sensitivity of results for a
fixed graph size, that is n = 50. Note that in the case
that the graph size is fixed, a calculation iteration has
constant complexity, so that the CPU time is proportional
to total number of iterations. Fig. 3 illustrates results for
n = 50 tracers in Waxman and BA topologies. The figure
indicates that all three values are almost indifferent to
friction in the wide range 0.003 < py < 3.

C. Potential Field Force

We shall now calculate the field force ﬁio , derived from
the potential energy (1), which affects one particle 7.
This force is given by the opposite of the potential energy
gradient with respect to the position of its particle v;,

n

)== > V. Ej. 3

4, j=1,i>]

F:io =-V ET(Ul,...

Vig

Here Vi f(-) denotes the gradient with respect to vector
x = (x1,22,...,24) defined as

V.f = (a%f B%f %f).

Let F;; denote the magnitude of the field force element
induced on particle ¢y by particle j, along the course of
vector vj;,. Then the force affecting particle %¢ is given
by
Fiy = Y Fiojtjio -)

j=1

J#io
The sign of Fj; determines whether the induced force
pulls or repulse the two particles ¢, j. If F;; > 0, the
induced force pulls the two particles together, whereas
if F;; < O the induced force repulse them apart. It can
easily be shown [14] that

d

= —f(x,Ain) . (5)

Fioj dx |

m:“vjio

Sensitivity to Friction — Waxman Topology of 600 nodes,
exp.uniform weights [0,1000], 50 tracers, embedding dim= 7

8.9 T T T T T T d T T " "
ol 1 108 1
8.8 b S e
¥ N + + + + B E—
1.9F 1 5 1
ol | 1.07
I
1.8F 1
a6l e 1.06F 1
s
_ L 1e
g [~ anGxm - 2
§85| + TRANSIT-AS,GXM | O 2105 1
o @ 0
8 16 12
e g o
Ess 1€ H
= F15t {E104r 1
& £
O 83t 1% E
2 S14f 12
= < 1.08f 1
8.2 1<

®
L
[N

8r 1 1ar 1

. . . . 1 Lo . . . 1 Lo . . .
0.003 0.03 0.3 3 0.003 0.03 0.3 3 0.003 0.03 0.3 3
Mechanics dynamic friction Mechanics dynamic friction Mechanics dynamic friction y

7.9

(3 (3
B-A graph of 1000 nodes, 50 tracers, uniform[0,1000] weights, embedding dim= 7
T d d T d d d

(3

8.6

25F 1

+ ot
et 11

8.4 B

®
S
L
o
©
T
L

©

=3

>
T
L

—+— LAN;GX.M
+ TRANSIT-AS;GX.M

N
©

Avg Symmetric Distortion
5

B

T

.

Avg CPU Time(seconds)

Avg Max A-Symmetric Distortion
P

T

.

N
o
L

e,

7.0l . . - 1 Lot . . . 1 Lo . . .
0.003 0.03 0.3 3 0.003 0.03 0.3 3 0.003 0.03 0.3 3
Mechanics dynamic friction By Mechanics dynamic friction By Mechanics dynamic friction e

Fig. 3. Sensitivity to Friction Coefficients

Namely the field force induced on a particle by another
particle is given by the derivative of the pair embedding
error with respect to the Euclidean distance between the
particles.

D. Error Functions of Phases

At the first phase the pair embedding error, Efjn is
given by
1
B wivy) = Fllvi— vl Ay)
= (lvi — vl = Ay5)?, (6)
that is the squared pair distance error. The field force
induced between two particles is given by (5), that is
1
ES = Falllvi = vl Ay)
2(|Jvi = v5ll = Agy) - @)

The derivation of the induced forces in the rest of the
phases is omitted due to lack of space, see [14] for
details.

The second phase pair embedding error function is
given by

EE = (dyj—1)° ®)

Here d;; is the symmetric pair distortion defined as
the maximum between the expansion and the contraction
ratios

[vi —vsll Ay)
di;i = max(, . 9
! Ay v — vy
Substituting Eq. (6) in the above we find?
(1)
B
(2 _ ij
o= (10)

min ([|v; — v;]|, Agy)?

The pair embedding error function of the last two
phases are functions of the second phase error

] 3
EP = expiT _1= explhaD® 1, (1)
EW = epl 1= epV —1. (12)

E. Example of Perfect Embedding

We take as a simple example the metric representing
the distances among fixed points in an Euclidean space.
Note that the Euclidean distances between any set of fixed
points is a metric because the triangle inequality holds in a
geometric space. Moreover, this metric can be embedded
perfectly, i.e. with distortion 1 for all pairs, by choosing
the coordinates of those fixed points as geometric images
for its vertices. For ease of presentation we stick to the
simplest case of 2 dimensional space, that is the XY
plane. Next we calculate the input metric, that is the
% (n — 1) Euclidean distances among these n points, and
run our BBS procedure with d = 2 on this metric.

If the embedding is accurate we would expect that
Euclidean distances would match exactly, up to the
rounding error, to the simulated metric distances. We
experimented with BBS embedding with and without
friction. The results are illustrated in Fig. 4. We scattered
n = 20 random points uniformly in a 16 x 16 rectangle,
(x4,9:) € (=8, +8) x (—8, +8). For presentation clarity
we have drawn only the trajectories of the first 6 particles
out of n = 20. The trajectories on the right side are from
a run with zero friction, u; = pus = 0, whereas on the left
side they are with friction coefficient of iy, = .7 and pg =

3A similar error function, with A? replacing the denominator in
Eq. (10), was used by Kamada and Kawai [15, eq.(1)] for undirected
graph drawing. The sensitivity of 2nd order newton-raphson used there
makes it impractical even for small 15 — 20 nodes graph.

.9. Trajectories were matched to the input points using
only shift, rotation, and reflection transformation. We’ve
placed an enlarged marker at each of the input points, and
marked the trajectory of the corresponding particle with a
smaller marker of the same type. Indeed all trajectories on
the right, with friction, converged to their corresponding
input points. However, except for the trajectory matched
by the transformation, no trajectory with zero friction,
have even come close to its corresponding input points.

Trajectories without Friction Trajectories with Friction

10 0& 6 X

L) 4 X

A X
A O%:g 0

o

o
4
o
;ox<
<>
<
<><>

o

+ 0 &
+ 0
4P K 0 1
+ o
+ -4 +%
-10 &)@ % ; *
B S — R
-5 0 5 10 15 -10 -5 0 5 10

Fig. 4. Friction Effect on simulated metric trajectories

III. EMBEDDING METHOD COMPARISON

In this section we compare our BBS method to three
other Embedding methods, and also to a topology aggre-
gation method [16].

A. Other Embedding Methods

We begin by briefly describing the four methods.

1) Semi-Definite Programming: (—)* SDP is a well
known optimization technique that have drawn attention
from diverse areas. The use of SDP for graph embedding
was introduced in the seminal work of Linial, London,
and Rabinovich [10]. The SDP problem in primal stan-
dard form is

max tr(CX) s.t.
tT(AlX)
axy= |MAX s
tT(AkX)

where all the matrices A;, X, and C are symmetric, and
a is a vector. The matrices A;, C' and the vector a depend
on the metric A, and X is the variable. A Cholesky
decomposition of the solution to the SDP problem, X =

4The graphs in this section use a unique marker for each method
which is given in the heading of the paragraph describing each method.
Our embedding method, Big-Bang Simulation (BBS), is marked with
XL

MM?, yields the embedding coordinates matrix M,, .
The embedding dimension, that is the number of columns
of matrix M, is reduced by Johonson and Lindenstrauss
[17] random projection from R™ into R<.

2) Multi-Dimensional-Scaling (——): The classical
metric MDS [7] has a simple and low complexity im-
plementation. The Matlab code we used is described in
[8, Sec. 4].

3) Down-Hill Simplex (DHS) (—+): This minimization
method is known for a very long time [18], and was
just recently used as an embedding method in [5]. For
Euclidean embedding, the minimization target function is
either equal to the total embedding error from phase 1,
E§F1> , Eq. (6); or the normalized pair error given by

2
g (il = AT

4) MST2RST (~): The MST2RST topology aggrega-
tion procedure, discussed in [2], represent a network by
an aggregated graph of at most 3n edges. The edges in the
aggregated graph are the union of a minimum spanning
tree (MST) of a clique that is built from the shortest
paths of the original graph, and two or more Random
spanning trees (RST) of this clique. This method had the
lowest distance distortion among the aggregation methods
considered in [2], and our comparison was done using the
C-code used there.

(14)

B. Environment Details

The network graphs in our comparison were created
according to both Waxman [12] and Barabasi-Albert (BA)
[13] methods. Only a subset of the graph nodes, was
selected to be embedded, according to the characteristics
of the two applications. For IDMaps [4] the subset was
selected using two Tracer placement methods, TRANSIT
or LAN (stub), which select the Tracers among the
highest or lowest degree nodes, respectively. For topology
aggregation [2], the subset includes all the border nodes
which are located on the edges of the Waxman topology
rectangle area.

To increase the confidence each experiment was con-
ducted on 10 networks using 5 sets of random weights
per network. Namely each point in the comparison graph
results from 50 embedding experiments’. For Waxman
networks, the edge weights were taken as |10%*P 4 .5,
where exp are i.i.d. uniformly distributed in the interval
(0,3]. For BA networks the edge weights are 4.i.d.
uniformly distributed in the interval [1,1000].

SHowever, for n = 150 tracers, we performed only 5 X 5 = 25
embedding, and for n = 750 only 3 embedding, due to their large
space and time requirements

C. Performance Metrics

The symmetric pair distortion, d;;, is defined in Eq.
(9). The directional relative error, E,.;, was defined by
[5, Eq. 4] and for Euclidean embedding is given by

sl — A
P e -

: (15)

min ([Jv; — v;[|, Aij)

1]
and substituting Eq. (8) we thus have d;; =1+ |E,q| -

The average symmetric pair distortion is given by d;; =
1+ |Erel| .

As a measure of the worst-case distortion we use the
two-sided embedding distortion defined as

Comparing with Eq. (10) we find that |E,..;| = \/E@)

1
min <0102 s > v — vl > —Aij) , (16)
. o

over all node pairs 7,7 =1, ..., n; i # j.
An alternative measure, defined by Linial et al. [10],
is the one-sided distortion

1
min (c s A > v —] > EAij>) (17)

over all node pairs 4,5 = 1, ..., n; ¢ # j. The above
measures are comparable since from linear contraction
of our coordinates we get ¢ = cjco . However this

contraction increases the other metric d;;.

D. Comparison Results

a) Symmetric Pair Distortion: We compare the ac-
curacy of the five methods using the complementary
symmetric distortion distribution over all pairs of the 50
embedding experiments. Fig. 5 compares DHS, SDP, and
BBS for the LAN placement methods of n = 15 Tracers
in the BA topology which is typical to the IDMaps
application discussed here-on. BBS is more accurate
than DHS, having smaller complementary distribution
along the entire range of the distortion. For example the
probability P(d;; > 1.1), is .11 for BBS vs. .15 for
DHS, i.e., a 35% increase. SDP is much worse than both.
The insets in the top right depicts the non-symmetric pair
distortion in the lower graphs and the embedded distance
in the upper graphs, both vs. original pair distances. The
SDP embedding contract nearly all edges whereas DHS
and BBS has similar mass of contracted and expanded
edges. Fig. 6 compare MDS and BBS for the LAN and
TRANSIT placement methods of n = 150 tracers in the
Waxman topology. We rule out SDP and DHS as practical
embedding methods for large n due to thier long running
time and sensitivity, respectively. The accuracy of BBS
is much better then MDS, e.g. P(d;; > 1.3), is .05 for
LAN-BBS and TRANSIT-BBS vs. .6 for LAN-MDS and
.98 for TRANSIT-MDS.

BA Graph 1000 nodes, placement method LAN, 15 tracer nodes, dim= 7

3000 3000
2000 2000 y
1000 1000f 4

0 0
00 -0 2000 4000 - O 2000 4000

1004

90

©
S

~
=)

R SDP
0.8 1.2

@
S

o
=]

0.4 0.8 .

IS
S

complementary distribution

10 10° 10* 10 10° 10*
Original distance

@
=]

20

. L .
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
Symmetric Pair Distortion

Fig. 5. BA Symmetric Pair Distortion

Waxman Graph 1000 nodes, 150 tracers, uniform weights 10103 , embedding dim=7

=)
-

©
=]

@
S

~

=]
T
S

—— LAN;MDS
—— LAN;BBS
*- TRANSIT;MDS
> TRANSIT;BBS

-
S
T

complementary distribution
» 151
o o
T T
= 4

@
o
:
%
o 3a3
R
5
el

201

1 1.1 1.3 15 1.8 22
Symmetric Pair Distortion

Fig. 6. Waxman Symmetric Pair Distortion

b) Embedded Graph Size: Fig. 7 depicts the per-
formance of the different methods as a function of the
number of embedded nodes. For n > 30, the long running
times of SDP and high sensitivity of DHS exclude them
from the comparison. The linear approximation for n >
30, depicted in dotted lines in the average CPU time
graph, indicates that MDS, MST2RST and BBS has
complexity Cn? . The value of C calculated on IBM
Thinkpad 600X with Pentium-3 450Mhz processor, is
3x 1075 for MDS, 4 x 10~* for MST2RST, and 3 x 103
for BBS. The BBS embedding distortion is the lowest
for all graph sizes except for n = 750 where MST2RST
distortion is smaller in TRANSIT, 6 vs. 24, and in LAN,
7.5 vs. 12.5. BBS has the lowest average symmetric pair

distortion in all graph sizes. The symmetric pair distortion
of MST2RST and SDP are not comparable with the rest
of the methods, since all MST2RST edges are expanded
and most SDP edges are contracted.

B BA Graph 100 — 4000 nodes, 10 — 750 tracers, uniform weights [1,1000], embedding dim= 7
T

10 | ;
150
/ —< LAN;BBS

Ly —+ LAN;DHS
¥ / / 1.45 LAN;M2R
J — LAN;MDS
10° b /A * / TRANSIT;SDP
/ +| TRANSIT;BBS
/j + / / ~+ TRANSIT;DHS
TRANSIT;M2R
F* TRANSIT;MDS

T
LAN;SDP

w
G

O‘, [} *

=}

X
o
a
T

Avg CPU Time(seconds)

Embedding Distortion (two-sided)
~+
Avg du — Symmetric Pair Distortion
*

o
T
+

.
10° 10
num of tracers

.
10° 10
num of tracers

.
10° 10
num of tracers

Fig. 7. Performance Metrics vs B-A Graph Size

BA Graph 1000 nodes, 15 tracers, uniform weights [1,1000], embedding dim=2 - 10
! 12r B !

221

—< LAN;BBS ol
LAN;SDP _ - i
— LAN;DHS 3 S
54| = LAN:MDS ne 5
E « TRANSIT:BBS | [| [8F z
1 TRANSIT;SDP | [| 2 C18f
3 + TRANSIT.DHS |/ | T 8
% || * TRANSITMDS | | £ ©
E3r 1 ¢ H
[y / k) £
2 2 6r ¢ E16F
[[2 &
g [, 8 '
<, / é =
g
/ w <141
+ 4

5 10
embedding dimension d

5
embedding dimension d embedding dimension d

Fig. 8. Performance Metrics vs B-A Embedding Dimension
c) Embedding Dimension: Fig. 8 illustrates the ef-
fect of the embedding dimension on the BA topology with
n = 15 Tracers. Naturally, the performance of all methods
improve when the embedding dimension increases. For
the BA topology the knee point, where the improvement
diminishes, is at d = 7 as indicated by Ng and Zhang
[51.
For d < 7, the performance gap between all other
methods and ours is significant, as can be seen by the two

right graphs of Fig. 8. The difference is larger for the two-
sided embedding distortion. The larger performance gap
in embedding distortion is explained by the improvement
of large distortion pairs in the last two phases of our
calculation. Although the main objective of SDP is to
reduce the embedding distortion, with LAN placement it
has a larger embedding distortion compared to both DHS
and BBS for all dimensions. However, with TRANSIT
placement for d > 7, the SDP distortion is the smallest.
The results for the Waxman topology with n = 70 and
150 Tracers are similar, and are thus omitted. However,
for n > 30 the sensitivity of DHS rules it out as a viable
method.

IV. APPLICATIONS
A. Topology Aggregation

Topology aggregation is used in hierarchical networks
to compactly represent the cost of traversing a network
between every possible entrance and exit points. If the
aggregation decreases the cost of an edge it means that
a routing application that is using the aggregated view to
find a route in the network may select a path with a higher
cost than it expects. It is generally considered undesirable
to receive such bad news, since, e.g., if the traversal cost
means delay we may choose a route which violates the
application bound. Thus, for topology aggregation we
seek an embedding that favors length increase over length
decrease.

The MST2RST aggregation procedure (Sec. III-A.4)
insures that an edge length in the aggregation is never
smaller than the original. However, in the embedding
methods we discussed so far some distances are con-
tracted while other are expanded. A transformed embed-
ding in which no edges are contracted (or expanded)
was discussed in Sec. III-C. The problem with the trans-
formed embedding is that it increases the average pair
distortion which is, of course, important for aggregation
performance.

An alternative way to favor expansion in our em-
bedding is an introduction of a price factor denoted
P, P > 1, in the definition of pair embedding error
functions

(p) oo lvi—v,l
E iy Vg if 2 Z 1
Ef? (viavj) = * <(1)} U]) A” (18)
PEi]’-) (v;,vj) otherwise.

Thus, the weight of a contracting pair in the total embed-
ding error will be larger than the weight of an expanding
pair. Such a price factor can be directly incorporated into
the DHS method, but should pose inherent difficulty for
MBDS since it is not linear. We introduce the price factor
into our calculation at the end of the first calculation

phase. Particles are placed at the best position of the
first phase, and then moved by a modified field force
incorporating the price factor P;; P > P; > 1. As
particles reach near an equilibrium of the modified field
force the price factor is increased again, and particles
continue from the previous equilibrium point to the next
equilibrium. This procedure is repeated until the price
factor is increased to the final value P. In the rest of
the phases, the calculation continues with the field force
which directly incorporates P.

Fig. 9 illustrates the effect of the price factor P =
512 on our embedding method compared to embedding
without it, i.e., P = 1. The middle graph shows that the
price factor decreases our two sided embedding distortion
by approximately half at d = 2 and for d > 2 its effect is
only modest. However, with the price factor, the average
symmetric pair distortion increases approximately by 2%,
which translates to 10% increase of the absolute relative
error. Here the knee point where the improvement dimin-
ishes is at d = 6. Although at d = 2 our performance is
worth than MST1RST, at d > 3 it supersedes MST2RST.

Waxman Graph 600 nodes, 70 BORDER tracers, uniform weights 10%%), embedding dim=2 - 8
60 T T T T T T

161 14}

50t

a
S

2f|
‘

@
&

w

= c
H 2
— 2 1s
2] S
° A a8
g g || e \
3 < 10l | J & 12500
o ——BBS §10r | S \
£ 30 M2R H £ I
|y = BBS P=512 7] £ \
2 a 1 € 12F |
S 28 16 A
2 3 !
< =
20 é ERRELS \X
L 12
w 6 z %
- > | AN
“ | 110 N
13 >
10 4r lx\\
e 1.05
R
2t R -
ol : : . . 1 . .
2 4 6 8 2 4 6 8 2 4 6 8
embedding dimension d embedding dimension d embedding dimension d
Fig. 9. Waxman Symmetric vs. A-Symmetric Aggregation

Fig. 10 compares the symmetric pair distortion his-
tograms of MST3RST and BBS with d = 4 and P = 512.
The insets in the top right illustrates nicely the effect of
the price factor which is to force all pairs to expand rather
then contract. Almost all the pairs of BBS are above the
y = x line in the upper inset and the y = 1 line in the
lower inset.

B. Internet Distance Estimation

IDMaps [4] is a project that aims to build a global
architecture for Internet host distance estimation and
distribution. The architecture is based on Tracers, which

Waxman Graph 600 nodes, placement method BORDER, 70 tracer nodes, dim= 4
100% 1000 1000 1000

90 [+
ik‘
8oL

70

500 ’ 500

Embedded distance:

60

50

complementary distribution

0 0 2 4
10 10 10
30 Original distance
20t
10H — BBSP=512 e, ke
M3R k" i N
—¥— MDS %g
o T i s : N
1 12 14 16 18 2 22 24 26 28

Symmetric Pair Distortion

Fig. 10. Aggregation Distortion Histograms

are instrumentation boxes, that are placed in the Internet.
Each Tracer measures distances to other Tracers and
to address prefixes (AP) that are close to it. These
measurements are multicast to topology servers which
combine them to an estimated map of the Internet.
Euclidean embedding yields smaller relative distance
errors compared to IDMaps, especially when both nodes
are sharing a single nearest Tracer (see Fig. 1A). The
main problem with Euclidean distance estimation is un-
derestimation of large measured distances. That is an
inherent problem when embedding the BA topology, as
all shortest path between distant nodes must go through
a small number of core nodes [11]. Indeed, due to the
triangle inequality, the Euclidean distance between distant
nodes is bound to be smaller then their shortest path
which goes through the core nodes. On the other hand,
IDMaps sum of segments accurately estimate the longer
paths going through the core nodes, as in Fig. 1B.
Throughout this section we’ve estimated distances in
BA graphs, using 3 sets of random weights per each of
5 simulated BA graphs. Fig. 11 compares the additive
estimation of IDMaps with Euclidean embedding by GNP
and BBS methods using the directional relative error,
Eq. (15). We only experimented with LAN and TRANSIT
Tracer placement methods, illustrated on the top and
bottom pictures respectively, because LAN placement is
the most easy to deploy, and TRANSIT placement yields
the best mirror selection performance [4]. We used 15
Tracers and measured distances from each host to all 15
Tracers, that matches the conditions of the similar figures
in [5]. The groups of vertical lines 75ms apart depicts
the distribution of relative errors for measured distances
belonging to the 75ms interval. The lines marked with

square, upright triangle, and circle markers depicts GNP,
IDMaps, and BBS, respectively. The method marker is
placed at the average relative error point, and the star
marker depicts the median. Each line has whiskers at the
5, 25, 75, and 95 percentiles.

For each placement and calculation method we ran-
domly picked 150 nodes out of the 1000 graph nodes in
each of the 15 simulated BA graphs. We estimated the
distance from all other graph nodes to each picked node,
that is a total of 2,247,750 distance pairs per method..
The thick lines depict the overall count of measured pair
distances per interval.

BA Graph 1000 nodes, 15 LAN Tracers, 15 Tracers/AP, embedding dim= 7

<

—=— GNP
—e— BBS
—&— IDMaps ||
- = AFreq.

" —":‘f}qmmﬁm ik

0 500 1000 1500

2000 3000

BA Graph 1000 nodes, 15 TRANSIT Tracers, 15 Tracers/AP, embedding dim= 7
4 T T Y T T

I
0 500 1000 1500 3000

Fig. 11. Relative Error (stand-alone)

IDMaps additive estimation for TRANSIT is less accu-
rate than Euclidean embedding at A < 400, having larger
positive relative errors, but more accurate for A > 700,
having 0 average and median there. Had we known the
value of A for each pair we could chose between IDMaps
additive and Euclidean embedding estimations, using a
threshold of Ar; = 550. Unfortunately, the optimum
threshold point changes for different placement methods,
graph topologies and ranges of random edge weights.

An alternative for selecting between Euclidean and
IDMaps additive estimations is using the ratio R between
the two, given by

Fuclidean distance

R = IDMaps additive ’ (19)
and the estimated distance is selected as follows
{Euclidean distance if R < Ry, 20)
IDMaps additive otherwise.

Fig. 12 illustrates the improvements in accuracy of our
estimation compared to IDMaps additive, with threshold

Rrp, = 0.45. As in the previous figure we used 15 Tracers
and measured distances from each host to all 15 Tracers.

BA Graph 1000 nodes, 15 LAN Tracers, 15 Tracers/AP, embedding dim= 7

- BBS
—— IDMaps
- = AFreq.

&7::'k’.ﬂTIIllLLLLLﬁiflLLillllli{{il)

I
2500 3000

() 500 1000 1500 2000

BA Graph 1000 nodes, 15 TRANSIT Tracers, 15 Tracers/AP, embeddlng dim=7
4 T T C ailinir I8 T
-,

All_] P ™ —o- BBS
L ” N —4— IDMaps | |
3 - ‘f’ N = = AFreq.
o \
2 ps XY
| 4 \\\’\
e 7
T >
BTN N STvsrar e Y2
0 e () R “ﬁ;~ ,,,,, g
o Sa. .
-1 - L L L . it
0 500 1000 1500 2000 2500 3000

Fig. 12. Relative Error (Thld. selection)

One could have selected the closet mirror as the one
with smallest distance estimated by (20). Such naive
approach however doesn’t maintain the ordering among
estimated distances, as some were estimated by additive
IDMaps and some as Euclidean distances. We calculate
the ratio
miny { Euclidean distance}
ming {IDMaps additive}

where the minimum among mirrors for either method is

R =

2n

achieved by the closet mirror denoted by kfnln The closet
mirror is then selected as

(Euclidean) if R’ R

min 1 < Th (22)

IDMaps additive
k P
min

otherwise.

We compared the mirror selection accuracy of IDMaps
additive with BBS using the selection criterion of (22)
with R’Th = .45, i.e., the same threshold value used for
distance estimation. Following [4] we randomly selected
10 mirror servers and estimated the closet mirror to each
of the rest of the graph nodes acting as clients. The
client decision is considered correct if it selects the mirror
whose client-mirror distance is at most twice the optimal
distance. For each mirror group rank accuracy is defined
as the percentage of correct client decisions. Fig. 13 illus-
trates the average cumulative distribution function (CDF)
of rank accuracy. Each mark is the average of the CDFs
from the 15 simulated graphs, where each CDF consists
of 300 mirror group experiments performed on a single
graph. The number of Tracer distance measurements per

AP, is specified in the legend after the 'x’ mark, and is
depicted with increasing marker sizes.

BA Graph 1000 nodes, 15 Tracers/AP, embedding dim= 7
ot

— 8Ot

A

[| — LAN;BBSx01

—— LAN;|IDMapsx01

0.8H —— LAN:BBSx03

—— LAN;IDMapsx03

—— LAN;BBSx05

0.7H —+— LAN;IDMapsx05

—=— LAN;BBSx08

—£— LAN;IDMapsx08

061 o LAN;BBSx10

-£- LAN;IDMapsx10

-5~ LAN;BBSx15

-£- LAN;IDMapsx15

- TRANSIT;BBSx01

TRANSIT;IDMapsx01

TRANSIT;BBSx03

TRANSIT;IDMapsx03

TRANSIT;BBSx05

TRANSIT;IDMapsx05

TRANSIT;BBSx08

TRANSIT;IDMapsx08

TRANSIT;BBSx10

TRANSIT;IDMapsx10

TRANSIT;BBSx15

TRANSIT;IDMapsx15
T T

050

Complemntary Distribution Function

BPOPBOBO+ 6 b 6+

I | .
84 86 88 920 92 94 96 98 100
Rank Accuracy

Fig. 13. Mirror Selection Accuracy (Thld. selection)

Additive IDMaps becomes less accurate when more
then 2 Tracer measurements are used. The accuracy
of our threshold selection however, improves with each
additional Tracer measurement. With 3 measurements its
more accurate then additive IDMaps for both LAN and
TRANSIT placement. With 15 measurements for LAN
placement its nearly as accurate as IDMaps for TRANSIT
placement, pointing clients to the closest mirror server
with confidence 0.95 in 94% of the cases, compared to
88% of the cases of additive IDMaps for LAN placement.

V. CONCLUDING REMARKS

We presented a novel scheme for embedding a graph
metric in a d-dimensional Euclidean space, and showed
that with one exception (SDP for very small networks
with LAN placement and high dimension) BBS was
always the most accurate embedding scheme. In addition,
BBS execution time is second only to MDS, but MDS
has a stability problem in large graphs and works well
only with high d. In addition, MDS is not applicable to
topology aggregation as we stated before. Finally, BBS
is insenstive to its only arbitrary parameters, the dynamic
and static friction coefficients, as demonstrated in Fig. 3,
thus no fine tuning is required.

We demonstrated the efficiency of our scheme for
important networking problems: topology aggregation,
closest mirror selection, and distance estimation. We

believe our method can be applied to other problems as
well, such as routing in ad-hoc networks, and efficient
building of peer-to-peer networks and application layer
multicast.

ACKNOWLEDGEMENT

We would like to thank Udi Ashkenazi for implement-
ing the SDP embedding algorithm and for his insight
of SDP. We also thank Cheng Jin for providing the
IDMaps simulation code, and for helping us integrating
new features into it.

REFERENCES

[1] “Private network - network interface specification version 1.0
(PNNI),” The ATM Forum technical committee,” Tech. Recomen-
dation, Mar 1996, af-pnni-0055.000.

[2] B. Awerbuch and Y. Shavitt, “Topology aggregation for directed
graphs,” IEEE/ACM Trans. Networking, Feb 2001.

[3] W. Theilmann and K. Rothermel, “Dynamic distance maps of the

internet,” in Infocom, 2000, tel Aviv, Israel.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and

L. Zhang, “IDMaps: A global internet host distance estimation

service,” IEEE/ACM Trans. Networking, Oct 2001.

[5] T. Ng and H. Zhang, “Predicting internet network distance with
coordinates based approaches,” in Infocom, 2002.

[6] E. Cronin, S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt,
“Constrained mirror placement on the internet,” IEEE J. Select.
Areas Commun., vol. 20, pp. 1369-1382, Sept. 2002.

[71 W. Togerson, “Multidimensional scaling of similarity.” Psychome-
trika, vol. 30, pp. 379-393, 1965.

[8] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture mapping

using surface flattening via multidemnsional scaling,” IEEE Trans.

Visual. Comput. Graphics, 4-6 2002.

G. Yona, N. Linial, and M. Linial, “ProtoMap: automatic classi-

fication of protein sequences and hierarchy of protein families,”

Nucleic Acids Research, vol. 28, pp. 49-55, 2000.

[10] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs
and some of its algorithmic applications,” Combinatorica, vol. 15,
pp. 215-245, 1995.

[11] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Charac-
terizing the internet hierarchy from multiple vantage points,” in
Infocom, 2002.

[12] B. Waxman, “Routing of multipoint connections,” IEEE J. Select.
Areas Commun., pp. 1617-1622, 1988.

[13] R. Albert and A.-L. Barabasi, “Topology of evolving networks:
local events and universality,” Physical Review Letters, pp. 5234—
5237, 11 Dec. 2000.

[14] Y. Shavitt and T. Tankel, “Big-Bang simulation for embedding
network distances in Euclidean space,” E.E.-Systems Department,
Tel-Aviv University, Tech. Rep., July 2002.

[15] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Information Processing Letters, vol. 31, pp.
7-15, 1989.

[16] B. Awerbuch, Y. Du, B. Khan, and Y. Shavitt, “Routing through
networks with hierarchical topology aggregation,” Journal of
High-Speed Net., vol. 7, 1998.

[17] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz
mappings into a hilbert space,” Contemporary mathematics, pp.
189-206, 1984.

[18] J. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Computer Journal, pp. 308-313, 1965.

[4

=

[9

—

