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Big-Bang Simulation for Embedding Network
Distances in Euclidean Space

Yuval Shavitt, Senior Member, IEEE, and Tomer Tankel, Student Member, IEEE

Abstract—Embedding of a graph metric in Euclidean space effi-
ciently and accurately is an important problem in general with ap-
plications in topology aggregation, closest mirror selection, and ap-
plication level routing. We propose a new graph embedding scheme
called Big-Bang Simulation (BBS), which simulates an explosion of
particles under a force field derived from embedding error. BBS
is shown to be significantly more accurate compared to all other
embedding methods, including GNP. We report an extensive sim-
ulation study of BBS compared with several known embedding
schemes and show its advantage for distance estimation (as in the
IDMaps project), mirror selection, and topology aggregation.

1. INTRODUCTION

NOWLEDGE of the distances between all pairs of a

group of nodes can improve the performance of many
practical networking problems, such as routing through a
subnetwork and selecting the closest mirror server. However,
measuring and, to a greater extent, disseminatng this informa-
tion becomes impractical even for a few tens of nodes, since
the number of node pairs is quadratic in the number of nodes.
Thus, researchers sought ways to reduce all pair-distance
representation while preserving the distance in the reduced
representation as close as possible to the original ones. Next
we briefly describe two example networking problems, where
all pair-distance information is required.

Routing through a subnetwork. When routing through an
ATM subnetwork, the distances between all pairs of border
nodes, i.e., nodes that are connecting the subnetwork to other
subnetwork, are used to compute the shortest (or cheapest) path
through the cloud [1]. For this end, each network advertises its
distance matrix in a compressed manner, and it is recommended
that the matrix representation be smaller than 3b, where b is the
number of border nodes [1]. The best compression technique
that was suggested in the past [2] will be presented later.

Selecting the closest mirror. Recently, there was a large
interest in using distance maps of the Internet to aid in tasks
such as closest mirror selection and application layer multicast
[3]-[6]. In the IDMaps project, it was identified that the number
of possible nodes which represent the distance map granularity
is in the thousands, which makes accurate distance dissemi-
nation impractical. Due to the practicality of the measurement

Manuscript received December 28, 2002; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor R. Govindan. This work was sup-
ported in part by a grant from the United States—Israel Binational Science
Foundation (BSF), Jerusalem, Israel, the Israel Science Foundation (ISF)
Center of Excellence Program under Grant 8008/03, and the European Union
6th FP EVERGROW.

The authors are with the Department of Electrical Engineering, Tel-Aviv
University, Tel Aviv 69978, Israel (e-mail: shavitt@eng.tau.ac.il; tankel @eng.
tau.ac.il).

Digital Object Identifier 10.1109/TNET.2004.838597

process and to reduce the representation, IDMaps suggests using
a smaller number ¢ of measurement points, Tracers, that mea-
sure distances among themselves and then using them as a ref-
erence distance map to the other network regions.

A relatively new approach to represent a network distance
matrix is to map network nodes into points in a real Euclidean
space. Such a mapping is designed to preserve the distance be-
tween any pair of network nodes close to the Euclidean distance
between their geometric images. Such a mapping is called an
embedding, and the embedding dimension d is the dimension of
the Euclidean space. Ideally, graph edge lengths are exactly em-
bedded in the geometric edges. However, it can be easily shown
that an exact embedding is not always possible, e.g., in the case
of a tree, and, in fact, in most cases embedding introduces some
distortion. In a “good” embedding, the average and maximum
distance distortions over all pairs of nodes are relatively low.
The distance distortion is defined for each pair as the maximum
of the ratio between the original and Euclidean distance and its
inverse.

Outside the networking community, embedding has been
used for quite a long time in many diverse research areas.
Multisimensional Scaling (MDS) is widely used in areas of
statistics and vision, in which its simplicity and efficiency is
an advantage over more complicated methods. Classical metric
MDS [7] develops the metric as a symmetric bilinear form
and calculates the leading d eigen values of the corresponding
matrix.! Recently, computer graphics researchers [8] suggested
using MDS for mapping flat textures over curved surfaces
with minimum distortion. Embedding is used extensively in
bioinformatics and specifically for classification of protein
sequences into similarity families [9].

Embedding of graph edges in the Euclidean plane is also
achieved by the spring embedder algorithm for graph drawing
applications. This algorithm is a heuristic based on a physical
model which was first described in [10]. The heuristics which
followed this direction, such as [11]-[13], are reviewed in a re-
cent survey [14].

Theoretical bounds on the maximal pair distortion and the
dimension of the target space were derived by Linial et al. [15]
for any discrete metric space.2 Perhaps the first use of graph em-
bedding techniques in networking is due to Ng and Zhang [5],
who suggested estimating Internet host distances by embedding
distances among Tracer nodes and other network regions. Their
embedding technique sought the minimum of the total square

IFinding the leading eigenvalues of the matrix of a symmetric bilinear form
is equivalent to Singular Value Decomposition (SVD).

2Though [15] and more recent publications discuss mapping to /,,, we will
concentrate only on embedding in [, which is the most popular in applications.
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embedding errors over all nodes pairs, which is proportional to
the average pair distortion.

In this paper, we present a new scheme for embedding, based
on a novel idea, utilizing notions from Newtonian mechanics.
We shall compare our scheme, Big-Bang Simulation (BBS), to
other embedding methods and show that it produces the best em-
bedding over various parameter choices with reasonable com-
plexity. This is not to say that, for special cases, e.g., when the
number of embedded nodes is very small, it will outperform all
other schemes, but it will be better than any other scheme when
all cases are considered.

A. Big-Bang Simulation

BBS models the network nodes as a set of particles; each is
the “geometric image” of a node, that is, the position of this par-
ticle in Euclidean space. The particles are traveling in that space
under the effect of a potential force field. The force field reduces
the potential energy of the particles that is related to the total em-
bedding error of all particle pairs. Each pair of particles is pulled
or repulsed by the field force induced between them depending
on their pair embedding error, that is, the embedding error of the
distance between them. As a particle accelerates under the ef-
fect of the force field, it is also attenuated by simulated friction
force.

The advantage of the BBS scheme over conventional gra-
dient minimization schemes, such as steepest decent and down-
hill simplex (DHS), is that the kinetic energy accumulated by
the moving particles enables them to escape the local minima.
Moreover, DHS, which was used by Ng and Zhang [5], is very
sensitive to the initial vertices coordinates. The key idea which
inspired the name “Big-Bang Simulation” is that all particles
are initially placed at the same point, the origin. Starting with
such initial condition, BBS obtains “good” embedding, that is,
low average distortion and quite low maximal distortion, in
several hundred simulation iterations for input graph sizes in the
range 30 < n < 750. The above good performance is equally
achieved for a wide range of system friction coefficients.

Next we discuss in more detail one of the applications men-
tioned above for which we have applied our embedding and
compare it to previous results.

B. Internet Distance Maps Application

While it was shown that IDMaps performs quite well, e.g.,
it correctly points a client to the closest mirror server in about
85% of the cases [4], it is far from being ideal.

Fig. 1 illustrates the main reason for inaccuracies in IDMaps:
in the example, client H; estimates the network distance A; to
mirrors H;, I = 2, 3, as a sum of several measured segments,
$1+5¢+5;. The inaccuracy of IDMaps estimation is larger when
a nearest Tracer 77 is shared by the two nodes. For instance, in
the case depicted in Fig. 1(a), the shortest network distance is
A3z < A, although the smallest sum of segments is s1 + s9 <
$1 + s3. On the other hand, in the case depicted in Fig. 1(b),
the client is located near the Tracer 75, and both mirror hosts
are located near another Tracer 7. The distance s; between T}
and 75 is larger than two times the distances from the client and
mirror hosts to their nearest Tracer. Thus, the distances AJ; | =
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Fig. 1.

Problem statement.

2, 3, are both dominated by s; and are approximately equal to
the estimated sum s; + s; + s;.

Having realized that IDMaps is blind to position, Ng and
Zhang [5] suggested using coordinate-based mechanisms to pre-
dict Internet network distances: Tracers are embedded in a Eu-
clidean space and each network region finds its image coordi-
nates according to distances measured from the region to some
Tracers. The estimated distance between two regions is then
given by the distance between their images in Euclidean space.

However, due to the Internet AS structure that has a core in
the middle and many tendrils connected to it [16], embedding
distances between nodes located in different tendrils will result
in a large embedding error. Thus, we suggest a threshold cri-
terion to select either the Euclidean distance or the additive es-
timation of IDMaps. Our criterion performs well for multiple
types of input graphs and different Tracers selection algorithms
and outperforms both the additive IDMaps and GNP.

C. Dynamic Distance Map

Due to the dynamic character of real networks, the calcu-
lated distance map has to be updated to track network distance
changes. As with IDMaps [4], we expect only part of the Tracer
pair distances to be measured at every measurement cycle. In
the following, we discuss the map recalculation due to changes.
We distinguish between two scenarios: slow variation, where
less than 20% of the Tracer pair distances changes, and large
transient, where more than 20% of the Tracer pair distances are
changed between consecutive measurements.

Labovitz et al. [17] studied BGP route changes and concluded
that, in reality, Internet routing is stable. They found that over
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80% of the routes change at a frequency lower than once a
day. Similarly, Paxson [18] found that a very high percentage
of the routes are stable. Given that our measurements cycle is
15-20 min long, we can expect the slow variation scenario to
be the common one, where large transient would happen rarely,
due to major failures or attacks.

1) Slow Variations: Such update cycles recur constantly.
In this case, one does not need to recalculate the coordinates
from scratch and can use the previous coordinates as the initial
condition for the embedding calculation. We verified that BBS
embedding is insensitive to small changes in the input graph, in
case the pairwise field force is given by the difference between
the Euclidean and the network pair distances [see (7)]. Indeed,
even after modifying as many as 20% of the input edges, and
resuming simulation from the previous particles positions, our
simulation CPU time is only 0.5% (for 150-node Waxman
topology) and 5% (for 15-node BA topology) of the CPU time
of the full calculation.

2) Large Transient: When network topology undergoes
major change, e.g., failure of a major AS, we are required to
recalculate all of the coordinates. In IDMaps, the number of
measurements is t2 + 7N, where t is the number of Tracers,
N the number of Address Prefixes (APs), and r is the number
of measurement per AP. Due to the added accuracy of our
embedding, we can use fewer Tracers than IDMaps, but we
need more measurements per AP. That is, we use smaller ¢
values and pay with higher r values, » = 5 compared to r = 2
in IDMaps. This gives us a factor of three more measurements,
which we feel is worth the added accuracy.

The remainder of the paper is organized as follows. The
BBS simulation, initial condition, friction, and an example
embedding in the Euclidean plane are discussed in Section II.
In Section III, BBS is compared to four other methods, using
simulated graphs created according to both Waxman [19] and
Barabasi—Albert (BA) [20] methods. In Section IV, we apply
BBS in two practical applications, topology aggregation and
Internet distance maps, comparing it with previous results from
[2], [4], and [5].

II. BIG-BANG SIMULATION

In this section, we shall discuss the embedding of network
distances using BBS. We develop the potential field force equa-
tion and discuss the initial conditions for them and the effect of
friction. Finally, an example of simulated metric is given, which
is embedded perfectly in the 2d Euclidean space, that is, the
linear plane.

A. Model

The vertices of the graph, the network nodes, are modeled as a
set of particles, traveling in the Euclidean space under the affect
of a potential force field. Each particle is the geometric image of
a vertex. The field force is derived from potential energy which
is equal to the total embedding error

Er(vi,va,...,v0) = Y Eij(vi,v)) ()

where vy, k = 1, ..., n, are vectors designating the coordinates
of the n network nodes in the target Euclidean space R¢. The
distance embedding error of a pair of particles, the “pair embed-
ding error,” is denoted by E;;. The field force induced between
the two particles either pulls or repulses the particle pair, aiming
to reduce their pair embedding error.

The rationale behind our approach is similar to locking an
adaptive tracking loop using an increasing feedback constant
to increase sensitivity or decrease the tracking bandwidth. Our
method thus comprises several calculation phases performed se-
quentially. We start with an insensitive but less optimal poten-
tial function, and as we move along to the next phases we use an
increasingly sensitive and adequate potential function. The sen-
sitivity of the pair error functions in each phase increases with
respect to the directional relative error (16). Numerical stability
is maintained, because earlier phases are normally capable of
substantially reducing the maximum pair embedding error.

In the first phase, the induced pair field force is equal to the
difference between the Euclidean and network pair distances.
The resulting field force can be realized by attaching an ideal
spring with a fixed elastic coefficient to each pair of particles.
The rest length of the spring in each pair is equal to the network
pair distance. The objective of this phase is to find an approx-
imate minimal energy configuration of the system of particles.
The objective of the rest of the phases is to reduce the distortion
of large relative error edges at the price of slightly increasing the
average relative error. During each calculation phase, the parti-
cles are traveling in trajectories which tends to reduce the po-
tential energy of the entire system. At the end of each phase, the
system approximately achieves an equilibrium point where the
potential energy is minimized.

At the beginning of the first phase, particles are placed at the
origin. The field forces for the first iteration are chosen ran-
domly. The initial position of particles in the next phase is at the
point where the potential energy had achieved its global min-
imum in the previous phase. That point need not be the final
position of the previous phase because the particles trajectories
are stopped near but not precisely at equilibrium.

The potential field force in each calculation phase p is derived
from a phase-specific potential energy E(Tp ). The phase pair-

embedding error function denoted by E () assumes the form

1

B (vi,0) = F (o = 03, A)

fori #3 and v; #v; (2)

where ||x]| is the Euclidean size of vector x € R%, i.e. [|x|| =

Zle z?,and A = (A;;) is the distance matrix among net-
work node pairs (i, j). The potential function of the first phase
E$>, (6), is equal to the simple squared error used in [5].

A calculation phase consists of several iterations which move
the particles in discrete time intervals. The particles positions
and velocities calculated in the current iteration are the input to
the next iteration. An iteration begins with calculating the field
force F; on each particle at the current particles’ positions. In all
iterations, except the first iteration of phase 1, the field forces are
derived from the potential energy (1). Next, assuming constant
field forces in time interval (¢, t + t), apply (27) and (28) to
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Friction Effect on Energy and Velocity
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Fig. 2. Friction effect on energy and velocity.

calculate the positions and velocities at time ¢ + 6t. At the end
of an iteration, the new potential energy (1) and other statistics
are calculated at the new particle positions. They include the
maximum particle velocity max; ||v; || and maximum symmetric
pair distortion d;; (9).

There are several numerical tradeoffs discussed in Ap-
pendix A: short versus long simulation time for each phase,
in order to obtain efficiency while insuring good convergance,
and large versus small simulation time-step, in order to obtain
efficiency yet insuring particles are attracted to their minimum
energy position.

In each iteration, we move all n particles, where n = |V| is
the number of graph vertices being embedded. The force ele-
ments affecting each particle are induced by all other (n — 1)
particles. A single iteration thus has a complexity of O(n?). Be-
cause the total number of iterations [ is independent of n, the
overall complexity of the method is O(In?), that is, linear in the
input size.

B. Friction Versus Kinetic Energy

As a particle accelerates under the affect of the force field,
it is also attenuated by a simulated friction force. The friction
force slows the particles down, so they can be drawn into wells
of the potential energy. This effect is illustrated by Fig. 2, com-
paring two runs with an identical simulated metric input (see
Section II-E) consisting of 20 nodes.

The figure shows the movement of one of the particles during
the first calculation phase of each run. The horizontal axis
depicts the maximum ratio between Euclidean distance and
original network distance for all node pairs attached to that one
particle 2g. As our particle converges to its perfect embedding,
its horizontal position approaches the distance ratio 1. The
solid lines depicts the potential energy of the particle 7, given
by Eiy = 301 iz, Eiyi(vig,vj). The dashed line depicts
the maximum velocity of all particles, maz?_,(]|0:||), which
is closely related to the total kinetic energy of the system.
The lines marked with circles (o) depict the case where the
dynamic friction coefficient is pr = 0.7, whereas the lines
marked with a cross (x) depict no friction, that is, p, = 0.
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Each marked point represents 10 ms of CPU time. The total
CPU time per phase 1 is thus 200 ms with friction and 160 ms
without friction. When comparing the solid and dashed lines,
we should recall that initially our particles are placed at the
origin, where the distance ratio equals 0. The effect of friction
is to attenuate the particles that are moving away from each
other, so that immediately as ||v;,;||/Ai,; > 1, the field force
attracts the particles back to each other and they are stopped at
equilibrium of ||v;, ;|| /Ai,; = 1. Without friction, however, the
particles are moving away too fast and the attracting field force
just cause them to oscillate forever with constant velocity.

The friction force attenuating each particle depends on the
normal force, which is particle-dependent, and on the constant
friction coefficients of the system, defined in Appendix E. Dif-
ferent friction coefficients, denoted ps, fi, are accounted for
static and moving particles, respectively.

Fig. 2 might suggest that BBS is sensitive to the system fric-
tion coefficients. Thus, we checked the sensitivity to system fric-
tion coefficients of the CPU time, indicating calculation itera-
tions count, and the maximum and average of symmetric pair
distortion d;;. Due to space limitations, we present sensitivity
of results for a fixed graph size, that is n = 50. Note that in
the case that the graph size is fixed, a calculation iteration has
constant complexity, so that the CPU time is proportional to
total number of iterations. Fig. 3 illustrates results for n = 50
tracers in Waxman and BA topologies. The figure indicates that
all three values are almost indifferent to friction in the wide
range 0.003 < pp < 3. As for larger and smaller graph sizes,
in limited tests we’ve found similar indifference to friction co-
efficients.

C. Potential Field Force

We shall now calculate the field force F‘io, derived from the
potential energy (1), which affects one particle 7. This force
is given by the opposite of the potential energy gradient with
respect to the position of its particle v;, as follows:

Ry Vo Brli) == Y VuBs O

4,7=1,i>]

where V f(-) denotes the gradient with respect to vector x =

(21,a,...,24) defined as
7] 7] 7]
W=(a—xl i a_>

Let F;; denote the magnitude of the field force element induced
on particle ¢ by particle j, along the course of vector v;;,. Then
the force affecting particle g equals the sum of induced forces
by the other particles

ﬁio = Z Fiojv}io' (4)
T
The sign of F}; determines whether the induced force pulls or

repulse the two particles ¢ and j. If F;; > 0, the induced force
pulls the two particles together, whereas if F;; < 0 the induced
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Fig. 3. Sensitivity to friction coefficients.

force repulse them apart. In Appendix C, we calculate the pair
field force and show that it is given by

d
F; = %f(vaioj) | . (5)

m:Hv.im

Namely the field force induced on a particle by another particle
is given by the derivative of the pair embedding error with re-
spect to the Euclidean distance between the particles.

D. Error Functions of Phases

At the first phase the pair embedding error, E'S) is given by
1
B (vi,v;) = F (i = vjll, Aij)
2
= (llvi = vjll = Aij) (©)

that is the squared pair distance error. The field force induced
between two particles is given by (5), that is

1
Fi) =Fo (o = v, Asy)
=2(llvi —vll = Aij) . ©)
Namely, in the first phase, the force induced between each par-
ticle pair is equal to twice the distance error of the two particles.
Substituting (30) for the field force at ¢ = 0, we find

n
Fi(le=o =2 Y (luli, )l = Aij) (i ). ®
J‘J;ilo
The error functions we chose below for the rest calculation
phases are increasingly sensitive to directional relative error
(16). An equally good output should result from choosing any
similar series of increasingly sensitive error functions.
The symmetric pair distortion d;; is defined as the maximum
between the expansion and the contraction ratios

v — vl

The pair embedding error function of the second phase is se-
lected as follows:

[0 — vyl

Ai]'

di; = max ( ©)

B = (dij — 1) (10)
Substituting (6) into the above, we find
B
E? = & (11)

) . 2"
Y min ([l — g, As)
Thus, the second phase function is the square of pair distance
error, divided by the square of minimum between embedding
and network pair distance.

For last two phases, we selected the following two functions:

)\ § 3
EP = exp(Pi)" _1zexp@-0f 1 (1)
Ef;-1> = expES> —-1= exp<d” | (13)

The derivation of the induced forces in the other phases fol-
lowing the first phase is given in Appendix D.

E. Example of Perfect Embedding

We take as a simple example the metric representing the
distances among fixed points in a Euclidean space. Note that
the Euclidean distances between any set of fixed points is a
metric because they satisfy the triangle inequality. Moreover,
this metric can be embedded perfectly, i.e., with distortion 1
for all pairs, by choosing the coordinates of those fixed points
as geometric images for its vertices. For ease of presentation,
we stick to the simplest case of two-dimensional space, that is,
the XY plane. Next we calculate the input metric, that is, the
(n/2)(n — 1) Euclidean distances among these n points, and
run our BBS procedure with d = 2 on this metric.

If the embedding is accurate, we would expect that Euclidean
distances would match exactly, up to the rounding error, to the
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Fig. 4. Friction effect on simulated metric trajectories.

simulated metric distances. We experimented with BBS embed-
ding with and without friction. The results are illustrated in Fig. 4.
We scattered n = 20 random points uniformly ina 16 x 16 rec-
tangle, (z;,v;) € (—8,+8) x (—8, +8). For presentation clarity,
we have drawn only the trajectories of the first six particles out of
n = 20. The trajectories on the right side are from a run with zero
friction, ur, = ps = 0, whereas on the left side they are with
friction coefficient of uy, = 0.7 and s = 0.9. Trajectories were
matched to the input points using only the shift, rotation, and re-
flection transformations. We placed an enlarged marker at each
of the input points and marked the trajectory of the corresponding
particle with a smaller marker of the same type. Indeed, all trajec-
tories on the right, with friction, converged to their corresponding
input points. Especially interesting is one of the right trajectories,
marked with the triangle pointing up, which left the origin and
then returned back home to its point at the origin. To the con-
trary, none of the trajectories with zero friction, except for the
trajectory matched by the transformation, have even come close
to their corresponding input points.

III. EMBEDDING METHOD COMPARISON

In this section, we compare our BBS method to three other
embedding methods, a topology aggregation method [21], and
a force-directed graph drawing method [11].

A. Other Embedding Methods

We begin by briefly describing the four methods.

1) Semi-Definite Programming: (—)3 SDP is a well-
known optimization technique that has drawn attention from
diverse areas. The use of SDP for graph embedding was in-
troduced in the seminal work of Linial et al. [15]. The SDP
problem in primal standard form is

fT(AlX)

A(X): fT(AzX) —a

tT(AkX)

where all of the matrices A;, X, and C' are symmetric, and a is
a vector. The matrices A; and C and the vector a depend on the

max tr(CX) s.t. (14)

3The graphs in this section use a unique marker for each method which is
given in the heading of the paragraph describing each method. Our embedding
method, Big-Bang Simulation (BBS), is marked with “x.”

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 6, DECEMBER 2004

metric A, and X is the variable. A Cholesky decomposition of
the solution to the SDP problem, X = M M?, yields the embed-
ding coordinates matrix M,y . The embedding dimension, that
is, the number of columns of matrix M, is reduced by Johonson
and Lindenstrauss’ [22] random projection from R™ into R%.
The Matlab code we used is due to [23]. It executes the Brian
Borchers SDP solver [24].

2) Multidimensional-Scaling (—x—): The classical metric
MBDS [7] has a simple and low-complexity implementation. The
Matlab code we used is described in [8, Sec. 4].

3) Down-Hill Simplex (DHS) ( = ): This minimization
method has been known for a very long time [25] and was
recently used as an embedding method in [5]. For Euclidean
embedding, the minimization target function is either equal
to the total embedding error from phase 1, E<1>, (6); or the
normalized pair error used in GNP [5] as follows:

2
peney _ (llvi—vill = Aij
(¥ AU °

We experimented with both unnormalized and normalized min-
imization target functions, and both yielded similar results. The
results for DHS throughout this paper were calculated with the
normalized target function (15).

4) MSTxRST (—e—): The MSTxRST topology aggregation
procedure, discussed in [2], represents a network by an aggre-
gated graph of at most ( + 1)n edges. The edges in the aggre-
gated graph are the union of a minimum spanning tree (MST) of
a clique that is built from the shortest paths of the original graph
and = or more random spanning trees (RSTs) of this clique. For
instance, in MST2RST, the aggregated graph has 3n edges. This
method had the lowest distance distortion among the aggrega-
tion methods considered in [2], and our comparison was done
using the C-code used in that work.

5) KK89 Force Directed Graph Drawing (—o—): This al-
gorithm was used for a different purpose, that is, to create a
straight-line drawing of a graph with as much symmetry as pos-
sible. The mechanical model of this algorithm, called spring
embedder, resembles our model. The drawing process simu-
lates mechanical systems, where vertices are replaced by rings
and edges are replaced by springs. Many attempts were made
to draw graphs utilizing the spring model. However, in most of
these attempts, springs connect only between neighbor vertices,
and the spring original length is set to the corresponding edge
length. We did limited testing of BBS in which forces were con-
sidered only between neighboring nodes and verified that it did
not converge well for simulated metric graphs of medium sizes,
that is 50-100 nodes. Thus, all of the embedding methods com-
pared here take as their input the clique built from the shortest
paths of the input graph.

The first attempt to model such a clique with springs is due to
Kamada and Kawai [11]. We decided to compare Kamada and
Kawai, because their KK89 algorithm is simple, and its embed-
ding error function is same as ours in phase 2, except that A%j
replaces the denominator in (11). We set the algorithm constants
as follows:

5)

Lo =10
K=1
¢ =0.00001.
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The second-order Newton—Raphson (NR) method of KK&89 is
very sensitive even with a simulated metric graph of small size,
that is, 15-20 nodes. Thus, the following changes were made to
the original algorithm.

The outer loop of the KK89 algorithm selects a par-
ticle with maximal gradient size ||V, E7|| and ex-
ecutes the inner loop with that particle. Originally,
this loop continues as long as the maximal gradient
size is larger than e. However, we stop after 1000
times, leaving particles at their last position.

The inner loop of the KK89 algorithm finds a local
minimum of Ep(...,vnm,...) as a function of the
position w,,, using second-order NR. Originally,
this loop continues until ||V, Er|| < e. However,
we stop after 500 iterations and check if the gra-
dient size ||V, Er|| is smaller than its size at the
beginning of the loop. If it is, the outer loop con-
tinues and selects the next particle to be moved, but
otherwise we abort the outer loop.

We check after each iteration of second-order NR
that its particle remains inside the ball with radius
Ly, that is, twice the size of the drawing. In case
the result point is outside the ball, we place the
particle at random point in a 0.001-neighborhood
of the origin.

outer

inner

region

B. Environment Details

The network graphs in our comparison were created ac-
cording to both Waxman [19] and Barabasi—Albert (BA) [20]
methods. Only a subset of the graph nodes was selected to be
embedded according to the characteristics of the two appli-
cations. For IDMaps [4], the subset was selected using two
Tracer placement methods, TRANSIT or LAN (stub), which
select the Tracers among the highest or lowest degree nodes,
respectively. For topology aggregation [2], the subset includes
all of the border nodes which are located on the edges of the
Waxman topology rectangle area.

To increase the confidence, each experiment was conducted
on ten networks using five sets of random weights per network.
Namely, each point in the comparison graph results from 50 em-
bedding experiments.* For Waxman networks, the edge weights
were taken as | 10°*P + 5|, where exp are i.i.d. uniformly dis-
tributed in the interval (0,3]. For BA networks, the edge weights
are i.i.d. uniformly distributed in the interval [1,1000].

C. Performance Metrics

The symmetric pair distortion, d;;, is defined in (9). The di-
rectional relative error, E,..;, was defined by [5, eq. 4] as

predicted distance-measured distance

min (measured distance; predicted distance)
and for Euclidean embedding is given by

sl — A
E,o = ||vi 'UJH ij

X 5 (16)
min ([lv; — v;l, Aij)

4However, for n = 450 tracers, we performed only 5 X 1 embeddings, due
to their large space and time requirements.
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Fig. 5. BA symmetric pair distortion.

Comparing with (11), we find that | E,a| = /EL;’, and, sub-
stituting (10), we thus have d;; = 1 + | E,e1|. The average sym-
metric pair distortion is given by Eij =1+ m

As a measure of the worst-case distortion, we use the two-
sided embedding distortion defined as

1
min <(2102 te1Aij > v — v > —A,L-j) )
ca

over all node pairs 7, j = 1,...,n;1 # 7.

An alternative measure, defined by Linial er al. [15], is the
one-sided distortion

. 1
min | ¢: Ayj > [Jv; —vj|| > —Ay; (18)
c

over all node pairs i, 7 = 1,...,n; 7 # j. The above mea-
sures are comparable since, from linear contraction of our coor-
dinates, we obtaill ¢ = c1c¢o. However, this contraction increases
the other metric d;;.

D. Comparison Results

A different marker depicts each of the embedding methods
compared in following figures. Lines with no marker depict
SDP method, lines marked with “x” depict the MDS method,
“+” depict the DHS method, “e” depict the MSTxXRST method,
and “o” depict the KK89 method. Some figures uses different
line styles to distinguish between the several tracer placement
methods shown on the same picture.

1) Symmetric Pair Distortion: We compare the accuracy of
the five methods using the complementary symmetric distor-
tion distribution over all pairs of the 50 embedding experiments.
Fig. 5 compares all methods, except from topology aggregation
(MSTxRST), for the LAN placement methods of n = 15 tracers
in the BA topology, which is typical to the IDMaps application
discussed here. BBS is more accurate than DHS, having smaller
complementary distribution along the entire range of the distor-
tion. For example, the probability P(d,; > 1.1),is0.11 for BBS
versus 0.15 for DHS, i.e., a 35% increase. SDP is much worse
than both. The insets in the top right depict the nonsymmetric
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pair distortion in the lower graphs and the embedded distance in
the upper graphs, both versus original pair distances. The SDP
embedding contract nearly all edges whereas DHS and BBS
have similar masses of contracted and expanded edges. Fig. 6
compare MDS, KK89, and BBS for the LAN and TRANSIT
placement methods of » = 150 tracers in the Waxman topology.
We rule out SDP and DHS as practical embedding methods for
large n due to thier long running times and sensitivity, respec-
tively. The accuracy of BBS is much better than MDS, e.g.,
P(d;; > 1.3),is 0.05 for LAN-BBS and TRANSIT-BBS versus
0.6 for LAN-MDS and 0.999 995 for TRANSIT-MDS.

2) Embedded Graph Size: Fig. 7 depicts the performance of
the different methods as a function of the number of embedded
nodes. For n > 30 or 70, the long running times of SDP or
KK89 and high sensitivity of DHS exclude them from the com-
parison. For BBS, we depicted in dotted lines a linear fit of the
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average CPU time graph, which indicates that BBS has com-
plexity Cn?, Vn € [10450]. The value of C' calculated for a Pen-
tium-IV 2.0-GHz processor is 6 x 10~%. The BBS embedding
distortion is the lowest for all graph sizes except for n > 150,
where MSTORST distortion is smaller, e.g., for n = 450, the
distortions are 4 versus 15.5, respectively. BBS has the lowest
average symmetric pair distortion in all graph sizes. The sym-
metric pair distortion of MST6RST and SDP are not comparable
with the rest of the methods, since all MST6RST edges are ex-
panded and most SDP edges are contracted.

3) Embedding Dimension: Fig. 8 illustrates the effect of the
embedding dimension on the BA topology with n = 15 tracers.
Naturally, the performance of all methods improves when the
embedding dimension increases. For the BA topology, the knee
point, where the improvement diminishes, is at d = 7, as was
found by Ng and Zhang [5].

For d < 7, the performance gap between all other methods
and ours is significant, as can be seen by the two right graphs in
Fig. 8. The difference is larger for the two-sided embedding dis-
tortion. The larger performance gap in embedding distortion is
explained by the improvement of large distortion pairs in the last
two phases of our calculation. Although the main objective of
SDP is to reduce the embedding distortion, with LAN placement
it has a larger embedding distortion compared to both DHS and
BBS for all dimensions. However, with TRANSIT placement
for d > 7, the SDP distortion is the smallest. The results for the
Waxman topology with n» = 70 and 150 tracers are similar and
are thus omitted. However, for n > 30, the sensitivity of DHS
rules it out as a viable method.

4) Input Graph Sensitivity: We tested embedding of the BA
and Waxman topologies with 15 TRANSIT and 150 BORDER
nodes, respectively. We either increased or decreased the
weights of 15% of the input edges by 10% and disconnected or
reconnected an additional 5% of the edges. The input graph is
embedded first with regular initial conditions, and the modified
graph is embedded with initial positions of the unmodified
graph embedding. The test is repeated three times where the
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initial positions in each embedding are the output positions of
previous embedding. We compare the accuracy and complexity
of the three embedding by embedding the three modified
graphs again with regular initial conditions. With unnormalized
square embedding error, (6), the sensitivity of BBS is low. The
calculations from previous graph position achieves comparable
performance metrics with 13 iterations and 0.01-0.15 CPU
seconds for BA or Waxman topology, respectively, compared
to 200-1000 iterations and 0.15-10 CPU seconds, with regular
initial conditions.

IV. APPLICATIONS

A. Topology Aggregation

Topology aggregation is used in hierarchical networks to
compactly represent the cost of traversing a network between
every possible entrance and exit points. If the aggregation
decreases the cost of an edge, it means that a routing appli-
cation that is using the aggregated view to find a route in the
network may select a path with a higher cost than it expects. It
is generally considered undesirable to receive such bad news,
since, e.g., if the traversal cost means delay, we may choose a
route which violates the application bound. Thus, for topology
aggregation, we seek an embedding that favors length increase
over length decrease.

The MSTxRST aggregation procedure (Section III-A4) in-
sures that an edge length in the aggregation is never smaller
than the original. However, in the embedding methods we have
discussed so far, some distances are contracted while others
are expanded. A transformed embedding in which no edges are
contracted (or expanded) was discussed in Section III-C. The
problem with the transformed embedding is that it increases the
average pair distortion which is, of course, important for aggre-
gation performance.

An alternative way to favor expansion in our embedding is
an introduction of a price factor denoted P, P > 1, in the
definition of pair embedding error functions

~(p) . Ez(]m (Uiv vj)7
B35 (viv5) = @)
PE;Y (vi,vj), otherwise.

e llvi=v;ll
if ——= >1
Ay = 19)

Thus, the weight of a contracting pair in the total embedding
error will be larger than the weight of an expanding pair. Such a
price factor can be directly incorporated into the DHS method,
but should pose inherent difficulty for MDS since it is not linear.
We introduce the price factor into our calculation at the end of
the first calculation phase. Particles are placed at the best posi-
tion of the first phase, and then moved by a modified field force
incorporating the price factor P1; P > P; > 1. As particles
near an equilibrium of the modified field force, the price factor is
increased again, and particles continue from the previous equi-
librium point to the next equilibrium. This procedure is repeated
until the price factor is increased to the final value P. In the
rest of the phases, the calculation continues with the field force
which directly incorporates P.

Fig. 9 illustrates the effect of the price factor P = 512 on
our embedding method compared to embedding without it, i.e.,
P = 1. The middle graph shows that the price factor decreases
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our two-sided embedding distortion by approximately half at
d = 2 and, for d > 2, its effect is only modest. However, with
the price factor, the average symmetric pair distortion increases
approximately by 2%, which translates to a 10% increase of the
absolute relative error. Here the knee point where the improve-
ment diminishes is at d = 6. Although at d = 2 (orz = 1) our
performance is worth less than MSTxRST, atd =z + 1 > 3 it
supersedes MSTxXRST.

Fig. 10 compares the symmetric pair distortion histograms of
MST3RST and BBS with d = 4 and P = 512. The insets in
the top right illustrate nicely the effect of the price factor which
is to force all pairs to expand rather than contract. Almost all of
the pairs of BBS are above the y = x line in the upper inset and
the y = 1 line in the lower inset.

B. Internet Distance Estimation

IDMaps [4] is a project that aims to build a global architecture
for Internet host distance estimation and distribution. The archi-
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tecture is based on Tracers, which are instrumentation boxes,
that are placed in the Internet. Each Tracer measures distances
to other Tracers and to APs that are close to it. These measure-
ments are multicast to topology servers which combine them to
an estimated map of the Internet.

Euclidean embedding yields smaller relative distance errors
compared to IDMaps, especially when both nodes are sharing
a single nearest Tracer [see Fig. 1(a)]. The main problem with
Euclidean distance estimation is underestimation of large mea-
sured distances. This is an inherent problem when embedding
the BA topology, as all shortest paths between distant nodes
must go through a small number of core nodes [16]. Indeed, due
to the triangle inequality, the Euclidean distance between dis-
tant nodes is bound to be smaller then their shortest path which
goes through the core nodes. On the other hand, IDMaps sum
of segments accurately estimate the longer paths going through
the core nodes, as in Fig. 1(b).

Throughout this section we have estimated distances in BA
graphs, using three sets of random weights per each of five sim-
ulated BA graphs. Fig. 11 compares the additive estimation of
IDMaps with Euclidean embedding by GNP and BBS methods
using the directional relative error, (16). We only experimented
with LAN and TRANSIT Tracer placement methods, illustrated
in the top and bottom pictures, respectively, because LAN place-
ment is the most easy to deploy and TRANSIT placement yields
the best mirror selection performance [4]. We used 15 Tracers
and measured distances from each host to all 15 Tracers, which
matches the conditions of the similar figures in [5]. The groups
of vertical lines 75 ms apart depict the distribution of relative
errors for measured distances belonging to the 75-ms interval.
The lines marked with square, upright triangle, and circles de-
pict GNP, IDMaps, and BBS, respectively. The method marker

is placed at the average relative error point, and the stars de-
pict the median. Each line has whiskers at the 5, 25, 75, and 95
percentiles.

For each placement and calculation method, we randomly
picked 150 nodes out of the 1000 graph nodes in each of the 15
simulated BA graphs. We estimated the distance from all other
graph nodes to each picked node, that is, a total of 2, 247, and
750 distance pairs per method. The thick lines depict the overall
count of measured pair distances per interval.

IDMaps additive estimation has larger positive relative errors
than Euclidean estimation for short distances, but is more accu-
rate for longer distances. Therefore, the best distance estimate is
achieved by selecting Euclidean estimation for short distances
and IDMaps additive estimation for longer distances, based on a
threshold of the Euclidean distance. Unfortunately, the optimum
threshold point changes for different placement methods, graph
topologies, and ranges of random edge weights.

An alternative for selecting between Euclidean and IDMaps
additive estimations is using the ratio R between the two, given
by

_ Euclidean distance

20
IDMaps additive 20)
and the estimated distance is selected as follows:
Euclidean distance, if R < Ry, 21
IDMaps additive, otherwise.

Fig. 12 illustrates the improvements in accuracy of our estima-
tion compared to IDMaps additive, with threshold Ry, = 0.45.
As in the previous figure, we used 15 Tracers and measured dis-
tances from each host to all 15 Tracers.
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One could have selected the closet mirror as the one with
smallest distance estimated by (21). Such naive approach, how-
ever, does not maintain the ordering among estimated distances,
as some were estimated by additive IDMaps and some as Eu-
clidean distances. We calculate the ratio

, _ ming{Euclidean distance}

22
ming {IDMaps additive } 22)

where the minimum among mirrors for either method is
achieved by the closet mirror denoted by kfﬁin. The closet
mirror is then selected as
(Euclidean)
kmin ’
k(IDMaps additive)

min )

if R < Ry,

otherwise.

(23)

We compared the mirror selection accuracy of IDMaps addi-
tive with BBS using the selection criterion of (23) with R’ =
45, i.e., the same threshold value used for distance estimation.
Following [4], we randomly selected 10 mirror servers and es-
timated the closet mirror to each of the rest of the graph nodes
acting as clients. The client decision is considered correct if it
selects the mirror whose client—mirror distance is at most twice
the optimal distance. For each mirror, group rank accuracy is
defined as the percentage of correct client decisions. Fig. 13 il-
lustrates the average cumulative distribution function (CDF) of
rank accuracy. Each mark is the average of the CDFs from the
15 simulated graphs, where each CDF consists of 300 mirror
group experiments performed on a single graph. The number of
Tracer distance measurements per AP, is specified in the legend
after the “x”” mark and is depicted with increasing marker sizes.

The accuracy of additive IDMaps improves with three Tracer
measurements compared to one. Using TRANSIT placement,

IDMaps does not improve with more than three Tracer mea-
surements, and, using LAN Tracer placement, it becomes even
less accurate with the additional measurements. The accuracy of
our threshold selection, however, improves with each additional
Tracer measurement. three measurements, it iS more accurate
then additive IDMaps for both LAN and TRANSIT placement.
With 15 measurements for LAN placement, it is nearly as ac-
curate as IDMaps for TRANSIT placement, pointing clients to
the closest mirror server with confidence 0.95 in 94% of the
cases, compared to 88% of the cases of additive IDMaps for
LAN placement.

V. CONCLUDING REMARKS

We presented a novel scheme for embedding a graph metric
in a d-dimensional Euclidean space and showed that, with one
exception (SDP for very small networks with LAN placement
and high dimension), BBS was always the most accurate em-
bedding scheme. In addition, BBS execution time is second only
to MDS, but MDS has a stability problem in large graphs and
works well only with high d. In addition, MDS is not applicable
to topology aggregation, as we have stated earlier. Finally, BBS
is insensitive to its only arbitrary parameters, the dynamic and
static friction coefficients, as demonstrated in Fig. 3, thus no fine
tuning is required.

We demonstrated the efficiency of our scheme for important
networking problems: topology aggregation, closest mirror se-
lection, and distance estimation. We believe our method can be
applied to other problems as well, such as routing in ad hoc net-
works and efficient building of peer-to-peer networks and appli-
cation layer multicast.
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APPENDIX
METHOD TECHNICALITIES

A. Numerical Tradeoffs

The phase of calculation is ended if one of the following con-
ditions, concerning the total energy Fr and rest statistics, are
met.

1) Particles are almost perfectly embedded; The distortion
satisfies either Er < € or max; j(d;;) < 1+ €.

2) Particles are almost at a halt; the maximum particle ve-
locity decreases below threshold.

3) Particles are near an equilibrium; the difference between
local minimum and maximum of potential energy de-
creases below threshold.

4) Slow convergence rate of energy; the reduction pace of
potential energy is below threshold.

5) Divergence of particles; the maximum velocity grows
above threshold.

However, except for the first condition, which is always
checked, the other conditions are checked only after the phys-
ical system’s time is greater than the phase’s minimum period.
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The minimum period for the first phase equals 15 s and the
minimum period for the other phases is 10 s.

The time step 6t for the next iteration is adjusted according to
the total energy and rest statistics. In the beginning of each phase
the time step is small, to prevent the system from oscillating.
The particles acquire velocity and a definite direction, which re-
duces the potential energy. The time step is gradually increased
as the energy continues to decrease. There is a tradeoff between
increasing the time step for greater numerical efficiency and
keeping it small to detect and attract particles to global min-
imum points of the potential energy function. This tradeoff is
handled by backtracking the particles to their previous position
if the calculated statistics indicates minima of potential energy
was skipped.

B. Movement Equations

The instantaneous acceleration of an object is, according to
the second movement law of Newton

(24)

where ﬁc is the combined force affecting the object, Z is its
position at time ¢,5 and m is its mass. Assuming unit mass for all
particles,;m = 1, and neglecting the variation in the combined
force ﬁc within a small time interval (¢, ¢ + 6t), we have

x(t + 6t) — x(t) = @(t)6t + %i(t)(ét)z (25)

and

Z(t+ 6t) — z(t) = Z(t)ot (26)
where x, and Z denotes the first and second ¢-derivatives, that
are the velocity and acceleration of the particle respectively. The
combined force affecting particle ¢ at position v; is given by
Fe; = F, — Fr;, where F} is the field force affecting this par-
tlcle and Fr is its simulated friction force, discussed below.
Thus, we have®

= (F;— Fry)

byt + 8t) — bi(t) st 27)

) (61)2.

ilt + 61) = wi(t) = ()6t + 5 (Fi — Firy) 28)

1) Initial Conditions: The initial conditions for all phases
except the first phase are: all particles are at rest at the point
where the potential energy achieved its global minimum along
the particles trajectories of the previous phase. The initial con-
ditions for first phase are given by

vi(£)]o =0 fori=1,2 n
i (t)]o =0 Ty

that is, all particles are at rest in the origin. At the origin, how-
ever, its impossible to decompose the field force into induced

(29)

SFor notational convenience, we’ll omit the vector notation from position .

6Qur particle positions are denoted by v, to emphasize they are images of
vertices, although this letter normally denotes mechanics velocity.
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forces between pairs since v;; = v; — v; = 0; for all ¢, j: At
t = 0, in the first iteration, we thus set the field forces at t = 0
to

Fi(t)]y = Z fz(%Aij)|$:||u(i,]’)”ﬂ(ivj)

i=1
i
L)

J#ip
u(i,g) = (uf uf
where & denotes the unit vector along the course of vector x.
Here u;’, that are coordinates of vectors (i, j), are independent
random variables uniformly distributed across the interval (0,
1]. The pair embedding error function of phase 1 ¢ and the
derived field forces are given in Section II-D.
Substituting (30) and (29) into the approximate velocity and
position (27) and (28), we find the position and velocity of all
particles at time ¢t = 6t.

(30)

C. Puair Field Forces

In (2), we have assumed that the pair embedding error F;;
depends only on pair Euclidean distance, so, using the chain
derivation rule, we obtain

vig ij = %

€1y

|vi |

° vvio

z=|lvi|

where v;; = v; — v; is the vector connecting between particle
positions v; and v;. Taking the derivative of its Euclidean dis-
tance, we find

|| = § oo = v i =0 and j # o
2 - .
! 0, otherwise.

Voo, (32)

So for 7 # iq all derivatives are zero, and the other derivatives
are the opposite of the unit vectors along the course of the vector
v4;, connecting between particle positions v;, and v;. Substi-
tuting (31), (32) in (3) and comparing with the force expression
(4), we thus get (5).

One can easily check that signs are correct in (5). If F;; > 0
then the derivative of pair embedding error is positive, so in
order to decrease it the Euclidean distance should be decreased.
The pair Euclidean distance is decreased by the induced field
force because in case Fj; > 0, the two particles are pulled by
the field force. The case of F;; < 0 follows immediately from
symmetry.

D. Field Forces of Rest Phases

We derive the expressions of field forces from error function
of rest calculation phases. Following (5), we derivate the error
function of phase 2 (10), and, using (7), we obtain

(2)
Fo 2 B
S vl
:MD{MﬁZ if ujill > Ay
P Ulogll = if fJojall < Ay
v if [logill > Aij

A..?
=2(lvjll = Aij) § TA, . :
7 “ ||1,j7]||37 lf”vjiH < A’ii

(33)
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Similarly, for phases 3 and 4, whose error functions are defined
in (12) and (13), and substituting (33 we obtain

(2)
e _3 B L
ij 4. /di; — 1 ]
1
3 ) if ||vgil] > Ag
NSRS ’ D)
2 T i llvill < Ay
(4) _ p(2) (4)
F =p® Ef (35)

E. Simulation Friction

The attenuating force that affects on particle ¢ is given by
Fr; = {NsNi-Fh ifv; =0 (36)
weN;v;,  otherwise

where 2 denotes the particle velocity. The system static and dy-
namic friction coefficients are constant for all particles. When
the particle velocity approaches zero, the friction force used in
movement equation is only the dynamic one. In order to prevent
particle to switch its direction during an iteration due to friction,
the friction is affecting only at the approximately part of itera-
tion time interval where the velocity is opposite to it.

The normal force size N; represents the relative weight of the
particle. Particles with larger weight are less affected by small
changes in the positions of the rest of the particles. In the first
phase, it is given by

n

AV (37)

= —av
adjust factor j:‘?
I
whereas at phases p = 2,3, ... all particles have equal relative
weight

n

= . : 38

normalized adjust factor (38)
since the pair error functions are normalized by the pair network
distance (10) in those phases. The adjust factors are empirical
constants set to

{ adjust factor = 7500 (39)

normalized adjust factor = 100.
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