
Building Recommendation Systems using Peer-to-Peer Shared Content

Yuval Shavitt
School of Electrical Engineering

Tel-Aviv University, Israel
shavitt@eng.tau.ac.il

Ela Weinsberg
Dept. of Industrial Engineering

Tel-Aviv University, Israel
ela@eng.tau.ac.il

Udi Weinsberg
School of Electrical Engineering

Tel-Aviv University, Israel
udiw@eng.tau.ac.il

ABSTRACT

Peer-to-Peer (p2p) networks are used for sharing content
by millions of users. Often, meta-data used for searching is
missing or wrong, making it difficult for users to find content.
Moreover, this abundance makes searching for new content
almost impossible. Recommender systems are not unable to
handle p2p data due to inherent difficulties, such as implicit
ranking, noise and the extreme dimensions and sparseness
of the network.

This paper introduces methods for using p2p data in rec-
ommender systems. We present a method for creating content-
similarity graph while overcoming inherent noise. Using this
graph, a clustering method is presented for detecting prox-
imity between files using the “wisdom-of-the-crowds”. Eval-
uation using songs shared by over 1.2 million users in the
Gnutella network, shows that these techniques can leverage
p2p data for building efficient recommender systems.

1. INTRODUCTION
Peer-to-Peer (p2p) networks are used for sharing content

(i.e., files) by millions of users, making them an extremely
valuable resource for information retrieval tasks. Search-
ing for content is mostly done using query strings that are
matched against meta-data fields attached to the content,
e.g., song files contain tags that describe the name of a song,
artist, genre, etc. Often, some of this data is missing, incor-
rectly spelled or encoded (such as musical genre) making it
difficult for users to find the data they are looking for in the
abundance of existing content. Indeed, it was found tha-
tonly 7–10% of the queries are successful in returning useful
content [8] in Gnutella [5].

Various techniques were suggested for improving the ac-
curacy of information retrieval in large-scale p2p networks.
However, current p2p networks still employ simple string
matching algorithms against file name and meta-data. Rec-
ommender systems were also suggested to help users find
new content based on their preferences or similarity to other
like-minded users. These systems have been studied exten-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 25–29, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

sively in recent years [4], mostly relying on the willingness of
users to rank their preferences in order to provide better rec-
ommendation. However, p2p networks, alongside with new
home entertainment services such as IPTV, introduce new
difficulties to standard recommender systems making them
somewhat not fitted for this task.

First, users do not explicitly rank files, but simply down-
load them. This implicit ranking makes it difficult to as-
sess whether a user “likes” the downloaded content. Second,
there is a large amount of noise that inherently exists in p2p
networks, since content is inserted to the network and la-
beled (tagged) by the users. This results in an abundance of
duplicate content, multiple and even conflicting tagging and
spelling mistakes or ambiguities. Finally, p2p networks are
used by many users sharing lots of content, whereas a given
user holds only a tiny fraction of the content, resulting in
extreme sparseness of the user-to-content matrix.

These complexities often render most recommender sys-
tems useless for helping users find new unfamiliar content, as
they cannot efficiently leverage data that can be extracted
from p2p networks. The objective of this work is to over-
come the above difficulties and present methods that enable
recommender systems to leverage p2p data. This, in turn,
can improve the ability of users to find content, contributing
to an overall improved user experience.

The contribution of this work is twofold: (a) we present
a method for incorporating large-scale p2p data into rec-
ommender systems, by clustering the shared file similarity
graph, and (b) an in-depth study of a snapshot of the content
shared by over 1.2 million users in Gnutella is performed,
used for evaluation of the proposed clustering technique.

2. METHODOLOGY

2.1 P2P Network Model
The p2p network is modeled as a bipartite graph that

connects users to their shared content (files). Notice that
this graph is a special case of the standard collaborative
filtering matrix in which a link in the graph represents the
ranking of an item by a user. This graph is transformed into
a 1-mode file-similarity graph, S, where the weight of a link
between two files is the number of users that share them.
Additionally, a file popularity vector P is created, counting,
for each file, the total number of users that share it. In
order to account for high variance in the popularity of files,
the link weight, wij , is normalized using the cosine-distance
ŵij = wij/

√
Pi · Pj .

This graph alone is already quite useful for building rec-

ommender systems as it provides a distance between any two
files, in a way that captures the “wisdom of the crowds”.
Although this method requires crawling the network, it is
significantly less computationally expensive than signal pro-
cessing methods that are commonly used for estimating dis-
tance between media files. Additionally, the similarity graph
preserves user privacy, since although it is constructed using
private data regarding shared files, this data is aggregated
from a large set of users, therefore any data regarding a
specific user is extremely hard to extract. A second usage
of this graph is for extracting distance between users based
on their shared content [6] which helps overcome the low
overlap of content between any two arbitrary users.

2.2 Clustering Shared Content
Clustering is often used as a method for extracting sim-

ilarity between files [7]. We design a clustering algorithm,
which is similar to the Partitioning Around Medoids (PAM)
or k-medoids [2] method (a variation of k-medoids). The
algorithm, Graph k-Medoids (GkM), receives as input the

file similarity graph, Ŝ(V,E), the number of output clusters,
k, and a balancing threshold τ . A function d(w) is used to
convert similarities to distances. The distance between two
connected vertices is the sum of distances along the shortest
path, e.g., using Dijkstra algorithm.

GkM first iteratively selects a set O of k vertices that
are used as the cluster origins. The origins are selected
such that the distance between any two origins Oi, Oj is
at most min dist. The value of min dist is calculated by
min dist = γ · dmax/k, for a given 0 < γ < 1. The maxi-
mal distance, dmax, is heuristically calculated by randomly
selecting a vertex, finding the most distant vertex from it,
and then finding the most distant vertex from the latter.
The minimal distance ensures that clusters will not overlap,
resulting in possible mixture of their features. γ relaxes the
dmax, providing high probability of selecting cluster origins
that are distant enough.

Once the cluster origins are selected, the algorithm scans
all the vertices and assigns each vertex to the cluster whose
origin is the nearest. In case several cluster origins have
similar distance up to the given threshold τ , the vertex is
assigned to the smaller cluster, hence heuristically balanc-
ing the cluster size. Since only the distance to each origin
is used, only k single-source shortest paths are performed
hence any further distance calculations are avoided.

GkM performs a single iteration on the vertices and does
not change the origins when assigning vertices to clusters,
hence avoiding excessive shortest-path calculations. How-
ever, this causes GkM to not guarantee convergence to a
local minima, which is a key strength of k-means. The size
balancing threshold, τ , serves as a weak optimization for uni-
formly spreading vertices among clusters, since it shifts only
border-line vertices and performs it inside the single itera-
tion. However, as we later show despite the single iteration
and relaxed distance and size optimizations, the algorithm
manages to uniformly partition the input graph.

Due to the random nature of the selection of cluster ori-
gin, it may be thought that the resulting clusters may vary
significantly between runs. However, the heuristic behind
the algorithm design is that due to the large size of the
graph, the min dist limitation and existence of popular and
strongly connected vertices, clusters quickly “grow” towards
popular vertices and extend from there.

3. EVALUATION

3.1 Dataset
The clustering algorithm is evaluated using a snapshot of

the music files that are shared in the Gnutella [5] p2p net-
work. The files were collected by a 24 hours active crawling
of the shared folders of over 1.2 million users on the 25th
November 2007, selecting only files that correspond to mu-
sical content (.mp3 files). Using this data, a song similarity
graph was created, having songs as vertices and the weight
of a link connecting two vertices is the total number of dif-
ferent users that shared both files. The graph has over 531k
songs and more than 1 billion links. Songs are indexed by
descending order of their popularity.

Weak links between songs, that are due to malicious and
spam files or represent scarce relations, are filtered out to
reduce bias. Keeping for each file only the top 40% links
(ordered by descending similarity value) and not less than
10 keeps over 20 million undirected links.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Degree

N
u

m
b

e
r

o
f

s
o

n
g

s

TR1
TR5
TR10
TR20
TR50

Figure 1: Degree distribution using sampled graphs

The graph is still extremely large and sparse, having less
than 0.03% of possible links (NetFlix, which is considered
very sparse, has 1% of the possible links exist). Therefore,
we create smaller sub-networks that contain, for each vertex,
only the top N neighbors, ordered by decreasing normalized
similarity. In order to make sure that these sub-networks
do not significantly change the graph, we plot the degree
distribution for values of N . Fig. 1 shows that while for N=1
the distribution is extremely sparse, for N ≥ 10 the degree
distributions are almost identical with slightly higher node
degrees as N grows. Notice that the power-law distribution
suggests that there are relatively a few songs with very high
connectivity and many songs with low connectivity.

Most music files contain meta-data that provides infor-
mation about the song, such as its name, performing artist,
genre etc. Before analysis, all coded genres were resolved
into the appropriate genre strings. Overcoming spelling mis-
takes that exist in over 20% of the meta-data in the Gnutella
network [8] is achieved by using the SoundEx [3] algorithm
when comparing meta-data of different files.

Analysis of the genre reveals that over 35% of the files are
missing a genre, and the remaining files have over 3600 dif-
ferent genres, with the top being rap (9%), rock (8.8%) and
pop (4.5%). Over 14% of the files are missing an artist tag
but the remaining span across over 100,000 different artists.

10
1

10
2

10
3

10
4

10
5

Cluster index

D
is

ti
n

c
t

v
a

lu
e

s

Songs
Artists
Genres

(a) Cardinality

0

5

10

15

20

25

30

D
is

ta
n

c
e

 o
f

S
o

n
g

s
 i
n

 C
lu

s
te

r

Cluster Index

(b) Distance Distribution

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Percentage of maximum

P
e

rc
e

n
ta

g
e

 o
f

c
lu

s
te

rs

Radius

Diameter

(c) Radius and Diameter

0

1

2

3

4

5

x 10
5

S
o

n
g

s
 I

n
d

ic
e

s
 i
n

 C
lu

s
te

r

Cluster Index

(d) Popularity

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Percentage of dominant meta−data

P
e

rc
e

n
ta

g
e

 o
f

c
lu

s
te

rs

Genre

Artist

(e) Metadata Prevalence

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Percentage

U
s
e

r
p

e
rc

e
n

ta
g

e

Clusters

Prevalence

(f) User Mapping

Figure 2: Efficiency measures of the clusters resulting from GkM, using k=100 and TR10

3.2 Clustering Efficiency Measures
Since the goal of the clustering process is to improve abil-

ity to recommend content from p2p networks, we present
efficiency measures that aim to answer two questions: (a)
how closely related is the content in each cluster, and (b)
how different is the content between any two clusters. Since
answering these questions is highly subjective [1], we define
a set of quantifiable efficiency measures. Evaluation is per-
formed using the graph TR10 with k=100. Converting sim-
ilarity to distance was performed using d(w) = − log

2
(w).

3.2.1 Cardinality and Meta-data

A uniform distribution of songs into clusters is desired but
unlikely since musical content has a few main-stream genres
and many niches. Main-stream clusters are expected to be
much larger than the ones that represent a niche. Fig. 2(a)
plots the number of songs, distinct genres and distinct artists
in each cluster. The figure shows a relatively balanced dis-
tribution of songs, genres, and artists among the clusters.
The median cardinality is roughly 3k songs, but 4 clusters
have over 20k songs, each. The lower the number of genres
and songs relative to the number of songs, the more accu-
rate is the identification of musical preferences, hence better
clustering results.

3.2.2 Distance Distribution

Unlike k-means, GkM cannot guarantee convergence to a
local minimum, hence it is important to verify there is a uni-
form distribution of the distances of songs from the cluster
origin. Fig. 2(b) depicts the distribution of the distances of
all files in each cluster from the corresponding cluster origin
on a boxplot (the edges mark the 25th and 75th percentiles
and points beyond that are marked as outliers). The figure

shows that GkM creates clusters that mostly have a uni-
form distribution with overlapping distances of the major
percentiles. Even large clusters that contain more distant
outliers have a similar distance distribution. The heavy dis-
tribution of low-distance outliers is due to the way the clus-
ter “grows” while collecting near-by vertices.

3.2.3 Radius and Diameter

The radius of a graph is the minimum over the maximum
shortest paths between a node and all other vertices and the
diameter is the maximum distance between any pair. We
normalize these with the maximal value across all clusters.
The distribution can help assess whether most clusters are
relatively “tight” or are spread in a large space. Fig. 2(c)
shows the cumulative distributions of the radius and diam-
eter percentages. GkM results in relatively uniform cluster
spreading, having 80% of the clusters be 50-70% of the max-
imum cluster, which aligns with the distance distribution.

3.2.4 Diversity of Popularity

For the clusters to be efficiently used by recommender
systems, it is important that each cluster contain files with
large diversity of popularity. This allows a recommender
system to recommend less popular content, which is often
difficult to find. Fig. 2(d) shows that almost all clusters hold
a mixture of popular and unpopular songs. Furthermore,
most clusters have at least one song from the top 2,500.

3.2.5 Meta-data Prevalence

Having files in a cluster sharing various features is ex-
pected to be reflected in their meta-data. For each cluster,
we find the dominant genre and dominant artist (i.e, those
that have highest prevalence), and their prevalence.

Fig. 2(e) plots the CDF of the percentage of dominant
genres and artists. The figure shows that in roughly 60%
of the clusters more than 10% of the songs belong to the
dominant genre, and in 5% of the clusters 30% of the songs
belong to the dominant genre. This shows that many of
the songs in a cluster share a common feature (recall that
there are over 3600 genres in our database). Additionally, in
94% of the clusters the maximal prevalence of the dominant
artist is less than 3%. However, noting that there are over
100k artists in the dataset, it is still quite high.

3.2.6 Meta-data Overlap

We counted the number of clusters in which each of the
10 most dominant genres (Rock, Rap, Latin, Pop, Blues,
Metal, Chanson, Country, R&B and j-Pop) appear as dom-
inant. As can be expected by looking at the very generic
genre names, we found that a few genres are dominant in
many different clusters, having “Rock” being dominant in
37% of the clusters. This reinforces the claim that there can
be many “flavors” of the same genre which are not properly
tagged but are successfully identified using cluster analysis.
The distribution of dominant artists is, as expected, much
broader than genres, where only a few artists appear as dom-
inant in more than one cluster. For example, although Lil
Wayne’s songs are tagged with 4 genres (Rap and Hip-hop
in our database and Rock and Pop-Rap in Wikipedia), he
appears in more than 10 different clusters.

4. VALIDATION
As a real world application, the song clusters are used for

creating a recommendation system that provides users with
songs that are related to the ones they already share. Since
people are assumed to have a defined taste in music, it is
expected that the songs of each user will reside in a small
number of clusters with a large fraction of the songs in one
of the clusters (the dominant cluster). Using the original
user-to-song network, we count, for each user, the number
of songs in each cluster. Fig. 2(f) plots the CDF of the
percentage of clusters that each user has songs in and the
CDF of the percentage of songs (prevalence) each user has in
the corresponding dominant cluster. The figure shows that
11% of the users have all their songs in a single cluster and
almost 70% are mapped to less than 10 different clusters.
The median value of songs in the dominant cluster is almost
70%. The steep jumps in the 100th percentile and in 50%,
67% and 33% are mostly due to users that have only a few
songs (less than 10).

Once clusters are obtained, creating recommendations to
a user is achieved by suggesting the songs that are near-
est to her known songs within her dominant cluster. On
each iteration, the algorithm recommends the nearest song,
and repeats this process until no more recommendations are
needed. Unlike collaborative-based recommendations sys-
tems that find like-minded users, this technique maps a user
to a cluster using information spread in all users in the net-
work. This global information leads to more accurate results
than standard approaches.

Evaluating the correctness of the results is done using a
training set of 30% of the songs of each user. Then, the
recommender system attempts to recommend exactly the
remaining 70% of the songs the user has. We evaluate by
resolving the artists and see how many of the artists in the
evaluation set appear in the recommendation.

Evaluation using TR20 and k=100 results in a median
precision (i.e., how many were correctly recommended out
of the recommended set) of 12.1% and recall (i.e., how many
were correctly recommended out of the real data) of 12.7%.
These results are quite good considering the vast amounts
of songs that exist and shared by p2p users. For example,
one user in our dataset had songs tagged with “Bob Dy-
lan ft. Van Morrison”, “Chuck Berry” and “Bob Dylan”.
Given only one song which was tagged with “Bob Dylan ft.
Van Morrison”, our algorithm recommended songs that are
tagged with “Van Morrison”. Although this is clearly a good
recommendation, this recommendation was not counted as
a “hit”, since none of the recommended songs matched the
evaluation set. This shows that it is possible, yet not trivial,
to recommend songs or even objectively assess the recom-
mendations.

5. CONCLUSION
This paper aims to bridge the gap which exists in using

large-scale p2p data for building recommendation systems.
We propose two methods for improving recommendation
systems – estimating file distance without heavy calcula-
tion, and content clustering. The observations made on the
coherency of the clusters enable us to develop a straight-
forward recommender system that captures the complete
network “knowledge” by utilizing the clusters. Evaluation
performed on data from Gnutella, using data from over 1.2
million users, shows that the proposed methods can leverage
p2p data for building efficient recommender systems.

Acknowledgment. This research was supported in part by
the Israel Science Foundation (ISF) center of excellence pro-
gram (#1685/07) and by the Ministry of Trade and Indus-
try, MAGNET program through the NeGeV Consortium.

6. REFERENCES
[1] G. Geleijnse, M. Schedl, and P. Knees. The Quest for

Ground Truth in Musical Artist Tagging in the Social
Web Era. In ISMIR, Vienna, Austria, Sept. 2007.

[2] L. Kaufman and P. J. Rousseeuw. Finding groups in
data: An introduction to cluster analysis. Wiley
Interscience, 1990.

[3] D. Knuth. The Art of Computer Programming, volume
3: Sorting and Searching. Addison-Wesley, 1973.

[4] P. Resnick and H. R. Varian. Recommender systems.
Communications of the ACM, 40(3), 1997.

[5] M. Ripeanu. Peer-to-peer architecture case study:
Gnutella network. In First International Conference on
Peer-to-Peer Computing, 2001.

[6] Y. Shavitt, E. Weinsberg, and U. Weinsberg.
Estimating peer similarity using distance of shared files.
In International Workshop on Peer-to-Peer Systems
(IPTPS), 2010.

[7] M. Steinbach, G. Karypis, and V. Kumar. A
comparison of document clustering techniques. In
KDD, 2000.

[8] M. A. Zaharia, A. Chandel, S. Saroiu, and S. Keshav.
Finding content in file-sharing networks when you can’t
even spell. In IPTPS, 2007.

