
DIMES: Let the Internet Measure Itself
Yuval Shavitt Eran Shir

Abstract— Today’s Internet maps, which are all collected from
a small number of vantage points, are falling short of being
accurate. We suggest here a paradigm shift for this task. DIMES
is a distributed measurement infrastructure for the Internet
that is based on the deployment of thousands of light weight
measurement agents around the globe.

We describe the rationale behind DIMES deployment, discuss
its design trade-offs and algorithmic challenges, and analyze the
structure of the Internet as it seen with DIMES.

I. INTRODUCTION

As the Internet evolved rapidly in the last decade, so has
the interest in measuring and studying its structure. Numerous
research projects [1], [2], [3], [4], [5], [6], [7], [8], [9] have
ventured to capture the Internet’s growing topology as well as
other facets such as delay and bandwidth distributions, with
varying levels of success. As the Internet continues to grow,
especially far from its North American based core, measure-
ment discrepancies are growing as well. A main handicap of
current measurement projects is their rather limited number
of measurement nodes (usually a few dozens up to a few
hundreds) causing results to exhibit bias towards the core. In
order to remedy this situation, a measurement infrastructure
must grow several orders of magnitude in size and global
dispersion.

We present DIMES, a highly distributed, global Internet
measurement infrastructure, with the aim of measuring the
structure and evolution of the Internet using a large set of
interacting measurement agents. The key shift suggested in
DIMES is the move from a small set of dedicated nodes,
with measurements as their virtually sole objective, to a large
community of host nodes, running light weight low signature
measurement agents as a background process. Given the
importance of location diversity in Internet measurements, this
shift promises to enhance measurement results considerably.

Our goal is to map the Internet at several levels of gran-
ularity. At the coarse level, where each node is an AS,
there are several mapping efforts, most notably are the active
measurement Skitter project [5] and the passive collection
of BGP data done by the RouteViews project [10], but also
many of the studies mentioned above [1], [3], [6], [8], [9],
[4], [7] examine the Internet (entirely or mostly) at this level.
In the fine grain level, where each node represents a router,
the mapping task is far more challenging, and the results
achieved up to now [11], [2] are far from being satisfying. We
believe that for many purposes neither of these granularities
is appropriate. AS is too coarse a measure, where a node
can represent a network that spans a continent or a small
metropolitan ISP, while the router level is too fine to achieve
a reasonable accuracy. Thus, our goal is to generate, on top of

the other two maps, a mid-level granularity map where each
node represents a group of routers working together, such as
a small AS or a PoP of a large or medium size AS, like was
suggested in the RocketFuel project [7].

II. MOTIVATION FOR DIMES

Measuring the structure of the Internet is a daunting task.
The Internet is a highly complex, evolving system. Routing
between ASes in the Internet is governed by the Border
Gateway Protocol (BGP) and its characteristics dominate the
ability to reveal details about the AS interconnection. While
it is outside the scope of this paper to explain BGP in details
we will give one typical example that demonstrates how BGP
disrupts our ability to reveal the Internet AS topology.

BGP is a path distance vector protocol, i.e., each AS
announce to its neighbors not only the cost of its path to every
destination but also the path itself. BGP is designed to enable
Internet service providers (ISPs) to control the flow of data,
thus an AS may choose not to announce some paths it knows
due to policy which is determined by financial considerations.
Our example is comprised of two small ISPs in the same
geographic location in the Middle East. While these ISPs
have BGP connections to some larger providers say one in
North America and one in Europe (these large ISPs serve
as their providers) they may wish to have a link connecting
them directly to allow for low delay connection between their
clients. However, none of the two local ISPs would like to
serve as a transit AS for traffic destined to its peer since it has
no financial incentive for this. For this reason BGP allows the
ISPs not to broadcast to its providers its path to its peer AS.
As a result, a researcher collecting BGP announcements from
a point outside of the two local ISPs cannot learn about the
existence of the local connection. An attempt to learn about
this local peer-to-peer connection using traceroute from few
measurements points will fail as well from the same reason.
Only a presence in, at least, one of the two local ISPs will
reveal the peer-to-peer link existence.

Previous studies [6], [4] show that by adding more vantage
points, new links are revealed, and that the marginal utility
of adding new vantage points decreases fairly fast. What
escape these findings is the fact that while the marginal utility
decreases, the mass of the tail is very significant, thus if one
is using a few vantage points, say up to a few tens, there is a
small advantage to add a few more, but there is a significant
advantage to add additional thousands of points as they will
add a significant percentage of new links. Using only a few
dozens or even a few hundreds vantage points gives a strong
bias in the topology to customer-provider links and misses
many of the peer-to-peer links.



An additional problem with measuring the Internet in a non-
local manner is that such measurements are non-efficient and
non-friendly, redundantly traversing and measuring some of
the edges thousands of times. Some smart algorithms [12],
[13] were recently suggested to alleviate this problem.

These and other reasons make the case for a distributed,
global, large scale measurement infrastructure. However, en-
gineering a dedicated infrastructure with thousands of mea-
surement computers spread around the globe is a feat only
the largest of corporations can accomplish. Thus, in order
to accomplish such a task, one must move to a distributed
hosting paradigm, where lightweight measurement software is
hosted by volunteers on computers all over the globe. Recently,
the effectiveness of this approach has been demonstrated by
several projects [14], [15], [16], [17] in various contexts,
mostly related to computation intensive tasks. For Internet
measurements, the contribution of a distributed approach is
in the location heterogeneity. Using this approach, one can
envision gaining presence in thousands of ASes. This para-
digm shift has a tremendous effect on the underlying design
principles and constrains of the infrastructure.

III. ARCHITECTURE GOALS AND GUIDELINES

DIMES’s distributed architecture has three major goals:
global and ubiquitous presence, the ability to host simultane-
ous experiments, and maximum experimental flexibility. Next,
we will present these goals and describe the guidelines which
stem from each of them.

DIMES shares many of its goals with previous measurement
projects, most notably with NIMI [18], [19], which was an
attempt to deploy a large number of versatile measurement
software environments. The project suffered from the need
to manage these entities which suppressed scalability. The
DIMES distributed paradigm parts from previous attempts
exactly at this point, making it possible to effortlessly scale
up almost indefinitely.

DIMES is built to provide an accurate, timely and compre-
hensive map of the Internet, in terms of topology, latency,
routing, and possibly bandwidth in the future. From this
objective the central goal of DIMES is derived, i.e., to achieve
global presence, in at least one of each two ASes which harbor
an edge. Ideally, one would wish to have a DIMES agent in
all ASes, and most of the routable IP prefixes. Practically, this
goal puts our host set size marker on the order of several tens
of thousands.

In order to establish a sustainable large community of
users the DIMES architecture must follow several guidelines:
provide security, constrain its resource consumption, provide
incentives, and stay transparent. In addition the system must
be scalable to enable the management and coordination of
a growing community, and thus be easily paralleled and
enhanced with new features. Next we will describe the rational
behind these guidelines and their influence on the DIMES
design.

a) Security: Being a platform with high degree of flexi-
bility and remote programming abilities poses several serious

security risks, such as the potential of hijacking the platform
to perform DDoS attacks. Thus, it is of outmost importance to
guarantee that the DIMES infrastructure is secured. To do this
we do not keep the agent database on our web server, thus even
a successful penetration into our web server will not provide
the infiltrator with data about our agents. The agents do not
expose the host machine to attacks since all the communication
between the agent and the server are initiated by the agent.

b) Constrain network resource usage: As a guest in
someone’s machine, the DIMES agent must be polite in the
way it uses network resources. First, the network resources
usage should follow the well established strategy of distributed
computing projects, that is giving the agent the lowest priori-
ties and freeing resources whenever other processes need them.
However, in the case of DIMES this strategy is not sufficient,
as much of its potential measurement traffic patterns (such as
repeatable traceroute and ping packets) is also associated in
many networks’ security infrastructures as rogue traffic. Thus,
while the host computer may have abundant network resources
available for the DIMES agent, it is important to establish
strict constrains, so to not cause red flags to be risen by the
administrators of the network to which the host belongs.

c) Incentives: As a system dependent on the good will
of people, it is crucial for the success of DIMES to establish
incentives which will generate enough interest to achieve
sustainability. DIMES will incorporate two types of incentives:
user experience incentives and knowledge incentives. User
experience incentives consist of features such as dynamic vi-
sualization of Internet map segments and competition for data
contribution. Knowledge incentives will consist of relevant
information to the users, such as reports on ISP performance
measures, reports on ease of access to user’s web resources
from other parts of the globe, and interfacing with web
browsers and P2P applications to help them to optimize.

d) Transparency: To ease privacy concerns, it is impor-
tant to be as transparent as possible. Thus, the DIMES platform
is poised as an open-source platform.

An additional goal is high flexibility in the agent, allowing
the easy deployment of new types of measurements, and the
ability to create complex experiments. To fulfill this goal
DIMES implements a plug-in mechanism for secure, user-
driven auto-update of the agent. Such a mechanism allows
the easy implementation of new measurement modules and
bug fixes. In addition, we are developing PENny, a scripting
language implemented through an agent based interpreter.
PENny will enhance usual interpreted scripting languages with
strong capabilities to blocking and non-blocking operation
timing. Implementing a scripting language allows creation of
complex scripts, with codependent operations, branching, and
loops. Timed operations allow measuring consistently Internet
time dependent features such as latency and bandwidth, as
well as study routing instability.

Our third goal is to enable simultaneous experiment de-
ployment, both in the infrastructure level and in the single
agent level. We envision DIMES being used by numerous re-
searchers, each studying a different facet of the Internet, possi-



bly using different measurement modules. We must recognize
that agents differ by their capabilities (e.g., some may have
ICMP blocked), reliability, and mobility, and thus should be
matched to the experiments where they will be most useful.
Thus, the agent, the management system, and the experiment
planning software are fitted with the following features:

• The management platform maintain a queueing system
for experiments, which keeps track of agents’ work
scripts in flexible levels of aggregation, implementing
a many-to-many relationship between agents and work
scripts. There are queues for the entire system, per agents
residing in the same AS, and for each agent. The scripts
are provided to the agents bottom up, first scripts that are
specific to the agent, then to its affiliated AS and finally
to the entire system.

• There is a clear separation between experiment planning
and management. Due to security and complexity issues,
a distributed project such as DIMES needs to have a
centralized management system. However, as DIMES
is open to be used by the entire research community,
its planning tasks were separated from its management
tasks. That means that researchers are able to plan their
own experiments using data received from DIMES (e.g.,
agents profiles, previous experiment results) oblivious of
each other. The management platform is responsible for
executing the experiments in parallel.

• The agent’s scheduling mechanism receives operation
requests from each of its running experiments, prioritize,
while rigidly constraining the usage of networking and
local resources.

IV. THE DIMES ARCHITECTURE

Given the above requirements and guidelines we designed
DIMES by balancing between flexibility for future growth and
development speed.

a) Programing Language: DIMES is mostly written in
Java. The two main reasons to choose Java are its natural sand-
boxing and security mechanisms, and the ease of portability
for different operating systems. However, since Java does not
support raw sockets, one still need to implement modules such
as traceroute in native C++. Here, the modular architecture of
DIMES helped us contain the usage of native code to specific
sub-elements.

b) Data aggregation: Decisions on data aggregation for-
mats have long term consequences. To defuse these effects,
DIMES uses the MySQL relational database (RDB) to store
the measurement results and their summaries. Using an RDB,
rather than some flat file or XML formats (as is done by
many other projects) provides us with a sought for flexibility
in exporting and analyzing the data. It provides us with a way
to bypass entirely the question of standardize data format, as
once in an RDB, it is very easy to export the data in any
format. The low price of storage makes it possible to deploy
such an approach even with large amounts of data, of the order
of tens of terabytes.

n = 0
nightResults = 0
onTime
startTime local 06/05/04 01:00
while(currTime < local 01:30) {
nightResults += Ping(198.81.129.100)
n++ }

m = 0
dayResults = 0
onTime
startTime local 06/05/04 13:00
while(currTime < local 13:30) {
dayResults += Ping(198.81.129.100)
n++ }

return dayResults/m - nightResults/n

Fig. 1. PENny script example

c) Communication protocol: DIMES is using http and
https as the communication protocol for data and control,
respectively. In today’s Internet, there are many networks
where all other TCP based traffic is being blocked, making
other options impossible.

d) Timed Scripting: PENny, the DIMES scripting lan-
guage can be considered as a somewhat diluted version
of Java, implementing all of the basic branching, regular
expression, and loop management features. On top of that
PENny has substantial support for timing operations, using
three time bases: local, GMT, and relative. These time bases
allow for both local synchronization (e.g., implementing a
measurement which runs everywhere at midnight) and gross
global synchronization (e.g., starting a measurement at the
same instant all over the world). In addition it provides a fairly
accurate time dependence between measurements belonging
to the same experiment (perform ping every 1 hour). Timing
commands can be either blocking or non-blocking. PENny
also has support for IP arithmetic with support for abilities
such as prefix handling, IP incrementing, and IP mask-based
randomizing. Thus, scripts can be written in a much more
concise form, replacing IP lists with loop based scripting.
Lastly, PENny is extensible, easily registering new commands
when their respective measurement modules are installed. It
can also handle rich environments, where modules are installed
in subsets of agents.

It is important to state that PENny is designed, keeping
in mind that much of the scripts ran on DIMES will be
created automatically, rather than manually, as it is much more
efficient when one wishes to tailor specific scripts to hundreds
and thousands of agents. As such, a researcher designing a
DIMES experiment is provided with previous experiments
results, agents profiles and with an API for deploying PENny
scripts. Figure 1 illustrates a simple PENny script which aims
to identify delay differences on a specific path between night
and day time.



e) Authentication: To mitigate security worries, DIMES
is using an authentication mechanism. All communication
other than agent to server results transferring is both secured
(through https), digitally signed and verified using a public key
mechanism. This is especially important for the auto-update
mechanism which transfer runnable code, and as such poses
the largest security threat.

f) Open source: DIMES is distributed under an open
source license, and its source code is freely provided. This
is first and foremost in order to reassure any privacy worries
that may arise due to its constant usage of network resources,
but is also a part of the DIMES strategy of opening up its
capabilities to a larger community. There are DIMES modules
under development by other groups, which are using our web
based configuration control to make integration easier.

A. Processes

1) Communication with agent: In designing the agent-
center communication one needs to choose between pull,
push, or combined model. For sending command scripts and
software updates, the most natural way is for the center to
push data to the agent every time the center has a new script
for the agent or a new version release. For data collection,
the most natural implementation is for the agent to initiate
communication when data is ready. The main advantage in
having the communication initiated by the center is that it
is easy to control the communication load on the server.
However, since agents are not always activated it poses a
heavy burden of managing lists of tasks per agent. In addition,
having the agent listen on some known port makes them
vulnerable to malicious hijack attacks. Lastly, agents may be
behind firewalls that block any communication initiated from
the outside. We thus selected to have the agents initiate all
communication with the server. The inability to ask an agent
to perform a specific script is mitigated by our experiment
planning concept that assign tasks to groups of agents (say
grouped by AS or address prefix) rather than individual agents
(which is also supported). This forces us to track agent
reliability, mobility, and capability and use this information
in our experiment planning tool. To protect the privacy of our
users, we maintain only the following necessary information:

• reliability: We classify the agent reliability on daily and
weekly time scales. An agent is daily (weekly) reliable
if it performed measurements in most of the recent days
(weeks).

• mobility: We distinguish between stationary agents, that
always measure from the same IP address prefix; bi-
homed which measure from two IP address prefixes, and
mobile. For all agents, we keep the two top IP prefixes
where they measure from, since even a mobile agent is
performing a high percentage of its measurements from
one or two locations.

• capabilities: We track agents capabilities, such as ability
to perform ICMP tracerute, UDP pings, etc.

2) Data aggregation: As mentioned above, data aggrega-
tion is a bottleneck in our design. To mitigate this we use

a lightweight storing process for new incoming data files,
and use a low priority background process to parse the files
and insert their content into the database. In addition, the
raw data is stored as well. There is a trade-off between
processing data by the agent, or sending all of the raw data for
processing at the center. Processing by the agents reduces the
agent-center communication load and the center computation
load. However, the raw data can be useful for identifying
problems or features that were not part of the initial experiment
planning. These decisions should be made in the context of the
measurement module being deployed and the experiment type.
The code in Figure 1 is an example were all the processing is
done at the agent, however, currently our experiments brings
most of the data back to the center.

When an experiment is concluded, its planner may request
to receive the information, both for analysis and for subsequent
experiment planning. This allows for the creation of a feedback
loop for experiment optimization. Our future plan includes
dynamic experiment planning where automated tools analyze
the arriving results and produce new scripts ’on-the-fly’.

V. ANALYZING DIMES PERFORMANCE

A. Building the case for DIMES

The underlying claim of the DIMES approach is that
for accurately measuring the Internet’s topology one must
abundantly use distributed measurement nodes. To establish
this claim, we need to compare DIMES results to results
coming from traditional approaches, showing a significant,
qualitative difference, and to show that the agents’ contribution
distribution has a heavy tail, meaning that new agents added
to the DIMES platform contribute a considerable amount of
new information.

The Route Views project [10] gather BGP updates from
about 70 BGP speakers around the world. The BGP updates
gathered in Route Views are freely available to download
and are the largest open passive measurement database. As
such, AS topologies inferred from Route Views data are the
best yardstick against which measurement projects should
compare themselves, at least at the AS realm. Given the
dynamical nature of the Internet, one should be careful in
comparing topologies, making sure that the topologies relate to
the same time period and scope. Thus, in order to appropriately
compare the DIMES topology to BGP inferred topology, it
was necessary to take an integration of BGP updates during
the measurement period. Thus we sampled BGP updates from
Route Views, choosing one BGP update per day. Interestingly,
integrating all these updates added less than 20% additional
AS edges and less than 5% additional AS nodes in the resulting
Route Views data inferred topology (BGP topology). In fact,
the number of edges disappearing/appearing from the BGP
topology per month in the last nine months stands roughly on
1500 edges, with deviations of less than 10%. This property
of BGP topology will be used in the future to identify the
closeness of DIMES topology to steady-state, given that we
expect a similar (albeit somewhat larger) monthly variance.



Topology N E < k > γ CC
DIMES 14196 39084 5.51 -2.1704 0.598
BGP 20397 47959 4.7 -2.319 0.416
Complete 20585 60355 5.86 -2.1854 0.596
BGPinDIMES 13959 36009 5.16 -2.2481 0.419

TABLE I

Unless mentioned otherwise, below we refer only to the
undirected version of the topologies.

B. Data Collection Methodology

Up to June 1st 2005 we collected about seventy six million
measurements consisting of about sixty million traceroutes and
sixteen million pings, from over 3000 agents, spread in more
than 350 ASes. Out of these sixty million traceroutes, one can
build various AS topologies, but no matter what measurement
set we take, the first step which needs to be done is to
infer IP-AS relationships. In order to translate IP level paths
provided from the traceroutes to an AS level topology, one
needs to associate IP addresses to ASes. Our current approach
for the association process is to mimic a router’s decision
making process using a longest prefix matching algorithm,
which looks for the longest prefix in our database that matches
the IP in question. The prefix database, in turn, is built from
prefix announcements in BGP data. The resolution process
is augmented with a second tier consisting of whois data
resolution, which is performed for IP addresses for which
the main process has failed. Typically about 2-3% of the
IPs fail the longest prefix matching and are resolved using
whois. Currently, between 1-1.5% of the IPs fail AS resolution
entirely. The translation process is somewhat challenging due
to several issues surveyed in [20], [21].

The current number of discovered AS edges since project
initiation stands on more than 57000 connecting some 15000
ASes. However, to be on the conservative side, we have
decided to analyze a topology which is based on measurements
performed only between March 1st and June 1st and consider
an AS edge only if it was found by at least two separate
measurements.

C. Comparing DIMES vs. BGP Topologies

In the following, we will compare four different topologies
that were created from the set of measurements defined above:
DIMES topology, which is the AS level topology inferred
from the DIMES measurements set; BGP Topology, which is
the topology inferred from BGP updates gathered from Route
Views during the similar period of March 1st to June 1st;
Complete Topology, which is the unification of the DIMES
and BGP Topologies; and BGPinDIMES Topology, which
is the BGP Topology subgraph which spans only AS nodes
that belong to the DIMES topology. Table I shows the main
properties of the four topologies (in this order): the number
of nodes and edges; the average node degree; the power
law exponent in the degree distribution; and the clustering
coefficient.

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Nodes Degree

av
er

ag
e 

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Clustering Coefficient Distribution as a function of Degree (log−log scale)

Complete
DIMES
BGP

Fig. 2.

As one can see, the BGP topology has about 25% more
nodes than the DIMES topology. This difference is due to two
main reasons. The first reason is that many ASes (for example
military ASes and some corporations ASes) block active
probes such as traceroute with various methods. To circumvent
this issue to a certain degree the new version of the DIMES
agent, which was just recently deployed, is augmenting the
ICMP traceroute, which we used in the previous versions, with
UDP based traceroute. We also plan the introduction of TCP
SYN probes in the near future. The second reason for this gap
is due to a lack of destination coverage, where we have not
identified yet IP addresses which we can measure to in these
ASes.

There are several conclusions that can be drawn from
comparing these topologies. First, the degree distribution
power exponent remains robust and hardly changes between
the topologies, making it a poor characterizer of network
differences. Thus, we should look for deeper topological
characteristics to compare by [22].

When we compare the clustering coefficients of the DIMES
topology and the BGP inferred topology, an immense differ-
ence of more than 40% appears. The difference cannot be at-
tributed to the part of the network DIMES manage to measure
since the clustering coefficients of the BGP and BGPinDIMES
topologies is roughly the same, and it is well below the DIMES
and COMPLETE figures, which are also roughly the same.
In figure 2 we compare the clustering coefficient distribution
of the topologies, showing the large difference in clustering
coefficients of low degree nodes as well as the apparent
under-sampling of middle degrees clustering in BGP. This
property shows that many of the new links found by DIMES
are periphery peer links. Finding these rich structures in the
periphery was one of the main motivations for constructing
DIMES.

Figure 3 compares the degree of nodes in the BGP topology
vs. their degree in the Complete topology, namely with the
DIMES contribution. We observe that about one third of the
nodes has a higher degree than perceived by the BGP data.



Fig. 3.

The highest degree in the remaining two thirds of ASes is
238, which means that all high degree nodes are augmented
with edges, many of them to a considerable amount. AS 7018
(AT&T), for example, has more than 900 DIMES edges which
do not appear in the integrated BGP topology, increasing its
degree by more than 40%. DIMES data has contributed more
than 500 new AS links to UUNet, Sprint, and Level3. This
is in contradiction to the data presented by Chang et al. [23,
Fig. 2] that claims that a few vantage points manage to reveal
the complete connectivity of the highest degree ASes. Two
possible reasons for the discrepancy are BGP rules that dictates
some peering not to be announced, and peering without BGP,
namely with static entries in the forwarding tables. However,
focusing on the top 50 hubs of the network only tells portion
of the story. The other 6400 ASes with BGP degree lower
than 238 and DIMES edges not appearing in BGP constitute
the bulk of the DIMES contribution. The lower degree nodes
show sometime huge differences in degrees, which rise up to
30-fold and more.

An interesting question is how robust are the excess edges
which do not appear in BGP, where by robust we refer to
the number of ASes we see the edge from and the number of
measurements that the edge was a part of. In figures 4 and 5 we
present the edge count distribution as a function of number of
ASes from which it was measured and as a function of number
of measurements it belonged to, respectively. Remember, that
the links with only a single measurements were removed from
the DIMES topology; the remaining edges are mostly seen
more than twice. We will discuss these graphs more in the
next section.

D. Agents contribution

The DIMES platform relies on volunteers enlisting into
the system and installing the DIMES agent. As such, it
is important to quantify their contribution, and specifically
to quantify the contribution of new agents joining in the
presence of many existing agents. Several authors [4], [6],
[23] claimed that above a very low threshold (measured in

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

10
0

10
1

10
2

10
3

Edge Rank

N
um

be
r 

of
 A

S
es

 s
ee

in
g 

th
e 

ed
ge

Zipf distribution of the number of source ASes from which an edge was seen

Fig. 4.

Fig. 5.

few tens) additional agents’ return will diminish and become
unimportant. Looking into the contribution dynamics of the
last nine months, one sees that the situation is far from it,
as illustrated in figure 6. In this figure, the X axis represents
days since project initiation, and the Y axis represents the
ordered rank of the agents (i.e., agent who was 38 to join will
have index 38). A point is plotted for each AS edge discovered
according to the agent who discovered it and the date in which
it was found. As can be seen, even agents that registered
after tens of millions of measurements were performed still
contribute substantially to the AS graph.

An interesting observation from figure 4 is that about 1/6th
of the total DIMES edges have been seen only from a single
AS, and additional 1/6th of the edges from 2-5 vantage points.
Since we have measurements from only a few hundreds of
ASes, we can assume that there are still many unknown
edgeses we have not discovered, yet.1

1Indeed, additional data we have collected recently, which was not analyzed,
yet, indicate that our recent measurement increased our Internet graph
substantially.



Fig. 6.

VI. DATA ANALYSIS

In this section, we analyze and compare some of the
properties of the AS, IP, and router level graphs. Let us first
describe the way the various topologies were built. For the
AS graph we have chosen the graph which was termed above
”Complete” which is the union of the DIMES AS graph and
the BGP inferred AS graph, both inferred from data collected
between March and June. The IP graph is constructed directly
from the traceroutes, where an edge is added for every pair
of IPs which are adjacent in a traceroute path. It is important
to note that there are many cases where routers do not send
ICMP packets when they drop packets or do not answer ping
echo requests. In such cases the router is identified not by
its address (which is unknown in this case) but rather by
a combination of his closest neighboring responding nodes.
Specifically, it is defined by a triplet of two IP addresses and
an index, where the index indicates the number of hops of
the unknown router from the former closest neighbor which is
responding (similar to [20]). However, in the current analysis,
we investigate the subgraphs which consists of edges where
both terminating nodes of each edge are associated with a
known IP address.

The router graph is based on mapping one or more IP
addresses (aliases) to a single router and then merging multiple
edges between two routers. The current methodology of alias
resolution which we deploy is based on performing a large
scale UDP ping survey of all identified interfaces in our IP
graph. When we send a UDP ping probe to IP address A from
an agent a, the router will answer from an interface A’ which is
not necessarily equal to A, but in many cases is just associated
with the router’s interface which is closest to agent a or is
the default responding interface of the router. This procedure
is reproduced from many other agents distributed all over the
world, a fact that increases substantially the possibility that no
interface of the router will be left unresolved. We then group
together IP addresses which are connected through a probe-
response addresses couple and define them as a router. Up to
June 1st we have sent sixteen million ping probes from more

than 3000 agents, out of which 3.7 millions were successful.
Using these measurements we have managed to merge almost
80000 IPs that appear in the IP graph. While this is still far
from being finished, it has already caused several significant
differences between the IP and the router topologies.

In order to quantify how well our alias resolution process
is, we compare routers’ degrees to their respective alias rank,
i.e., the number of IPs which are associated with the router.
In figure 7 we present for each possible degree, the average
number of aliases for all routers with that degree. While we
are still missing many aliases, one can observe there is a
correlation between the alias rank and the routers’ degree.
This comparison, in turn, can assist us in directing our efforts
towards where we have the largest gaps in alias resolution.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Degree

N
um

be
r 

of
 A

lia
se

s

Average number of routers’ aliases as a function of routers’ degree (log log scale)

Fig. 7.

In table II we compare the properties of the IP, routers, and
Complete AS graphs. Comparing the IP and routers graph we
see that while the number of nodes has shrunken by less than
40000, the number of edges got smaller by almost 300000
edges, from which we can infer that many of the supposedly
independent edges in the IP graph are in fact measurements
of the same edge from different directions. The merging
procedure had little impact on the degree distribution of the
resulting router graph, but it had tremendous impact on other
features of the graph, most notably its clustering coefficient
and clustering distribution. Table II shows that the clustering
coefficient of the router graph almost doubled compared to
the IP graph. Investigating the entire clustering distribution in
figure 8 we see that this ratio of two is kept almost throughout
the entire distribution, signifying the importance of the alias
resolution process. Given that the process is yet to be finished,
we conjecture that quite possibly this ratio will increase as
more interfaces are joined. The ongoing gap appears not only
in the clustering distribution, but also when we investigate the
average neighbor degree distribution. In figure 9 we observe
that indeed the routers’ distribution is above (though the gap
is smaller) the corresponding IP distribution.

While indeed the clustering distribution for the routers is
larger than the corresponding distribution for the IP graph by



10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Degree

A
ve

ra
ge

 c
lu

st
er

in
g 

co
ef

fic
ie

nt

Clustering distribution as a function of degree (log log scale)

Routers graph
IP graph
AS graph

Fig. 8.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Degree

A
ve

ra
ge

 n
ei

gh
bo

r 
de

gr
ee

Average Neighbor Degree Distribution as a Function of Degree (log log scale)

AS Graph
Routers Graph
IP Graph

Fig. 9.

about two times through almost the entire scope of degrees,
the two distributions are very similar in shape and structure.
This cannot be said when we compare the AS distribution
and the routers distribution. As we can see, again, from
figure 8, the two distributions are very different qualitatively,
especially in the low degrees where the mass of the graphs
is situated. This difference can be stressed even more if we
compare their corresponding average neighbor degree distri-
bution (figure 9). For the most part, the routers’ clustering
distribution is confined to one order of magnitude, while the
AS distribution is spread over two. In addition, while the
AS neighbor degree distributions show clear dissasortativity,
exhibiting a monotonic descend, the routers’ distribution does
not show the same characteristic and in fact in some range
even shows an opposite behavior as observed and discussed
previously [24], [25].

Comparing the clustering coefficients of the router, and AS
graph, we see that the AS graph has a clustering coefficient
that is three times larger than the corresponding coefficient
for the router graph. This large gap is maintained also for
the entire distribution. This fact is somewhat in contrast to the

Topology N E < k > CC
IPs 577127 2060079 7.1 0.097
Routers 539222 1774914 6.6 0.188
AS-Complete 20585 60355 5.86 0.596

TABLE II

fact that the AS graph is less, not more, dense than the routers
graph. One potential explanation which we propose is hidden
in the microscopic behavior of the nodes, mostly the low
degree ones. We conjecture that two patterns govern small ISPs
behavior. The first pattern consists of trying to reach as close
to the core as possible. Thus, many ASes which have only
two links to the world, will prefer to connect both these links
to providers which reside in the core of the network. These
providers, in turn, being in the core, have a high probability
of being connected through a peering relation, which closes
a triangle. The second pattern that is heavily deployed is the
creation of local cliques or almost-cliques of peering relations
between geographically neighboring ISPs. These constructs
save the local providers resources, and thus are very frequent,
increasing again the clustering rate for the low degree nodes.
For the router graph, however, we claim that triangles (i.e.,
cycles of size three) have little routing significance, as the
router network is a geographically localized network, and a
triangle can be usually substituted better by a single router.
Triangles do exist in the router topology, e.g., in PoPs where
all the customer routers are connected to two backbone routers,
but here one cannot find nodes that participate in hundreds of
triangles like in the AS graph. Larger cycles will be relatively
more prevalent in the router level graph since they save
resources in connecting geographically distributed routers of
the same AS.

In the AS graph there is a clearly distinguished core which
functions as a hub that reaches all parts of the graph. In the
IP and even in the router graphs, however, the core plays
a relatively insignificant role, and in fact the highest degree
nodes do not belong to the core of the graph. We elaborate this
point by comparing the k-core [26], [27] decomposition of the
graphs which is performed in the following way. In each step,
starting with k = 1, we iteratively remove all the nodes whose
degree in the residual graph is k or below. The nodes which
are removed at step k belong to the k-shell, and the remaining
nodes are the (k+1)-core. Plotting node degrees and shell sizes
vs. shell index one identifies the source of difference between
the AS and routers graphs.

In the AS graph (Figure 11), it is obvious that the graph has
a very significant core, with nodes in the topmost shell having
degrees which are more than 10 times higher than the degrees
of the largest nodes in lower shells. Looking at the distribution
of shell sizes it is clear that these high degree nodes must be
heavily connected to the lower most shells (which we verified
to be true), since the higher shells do not posses enough mass
to account for the degree of the core nodes. The deep drop in
the router and IP clustering coefficient graphs in figure 8 for



Fig. 10.

Fig. 11.

Fig. 12.

the high degree nodes, is another indication to the lack of real
core in these graphs. In [26] this issue is further investigated
and it is shown that the AS topology is composed out of three
distinct sections, one being the inner most core, the second
being almost the entire first shell and the last being all of
the middle shells, where the second and third segments are
connected only through the first segment, namely, the inner
core filling the topmost shell.

In the case of the router graph (figure 12), however, the
situation is strikingly different. Two points can be easily
observed. First, there are large gaps between shells 50 and 80,
split by shell 66. Secondly, unlike the case of the AS graph,
the highest degree nodes do not populate the topmost shell, but
rather are spread over all shells. What can be inferred from
this observed phenomena is that unlike the case of the AS
graph, the top shells in the router graph do not play the role
of central hubs, but rather are situated as bridges between a
relatively small set of very large sub-networks.

VII. CURRENT PROJECT STATUS

DIMES was launched on September 2004, and grew in
its first nine months of operation to over 2300 users with
over 3600 agents. The agents are spread in more than 70
countries mostly in N. America and Europe, but also in Asia,
S. America, Africa, and the Middle East. Every day there are
over 850 different agents performing measurements from over
350 different ASes. The current measurements rate performed
by the DIMES platform exceeds 2.5 Million measurements per
day, which entails a rate of more than a Billion measurements
in the coming year.

The current version (Ver. 0.4) supports both ICMP and UDP
traceroute, and ping. Future version will include TCP SYN
probes. The agent supports Windows 2000 and XP, a Linux
version will be released in the near future.

VIII. FUTURE WORK

Looking further ahead, we intend to enhance DIMES in
several directions. Obviously, we think of adding other types of
measurements modules such as one for bandwidth estimation.
We are planning to allow correlated measurements between
two or more agents, and are looking at the security risks and
technical difficulties (such as penetrating firewalls) that are
associated with such tasks.

ACKNOWLEDGEMENTS

We would like to thank Sorin Solomon and Scott Kirk-
patrick for many insightful discussions. The DIMES project is
part of the EVERGROW integrated project which is supported
by the EU 6th framework, IST Priority, Proactive Initiative
Complex Systems Research. It is also supported by a grant
from the Israel Science Foundation (ISF) center of excellence
program (grant number 8008/03).



REFERENCES

[1] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in ACM SIGCOMM 1999, Boston, MA,
USA, Aug./Sept. 1999.

[2] R. Govindan and H. Tangmunarunki, “Heuristics for internet map
discovery,” in IEEE Infocom 2000, Tel-Aviv, Israel, Mar. 2000, pp. 1371–
1380.

[3] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos, “A simple conceptual
model for the internet topology,” in Global Internet, Nov. 2001.

[4] P. Barford, A. Bestavros, J. Byers, and M. Crovella, “On the marginal
utility of network topology measurements,” in ACM SIGCOMM IMW
’01, San Francisco, CA, USA, Nov. 2001.

[5] A. Broido and K. Claffy, “Internet topology: connectivity of IP graphs,”
in SPIE International symposium on Convergence of IT and Communi-
cation ’01, Denver, CO, USA, Aug. 2001.

[6] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “The origin of power-laws in internet topologies revisited,” in
IEEE Infocom 2002, New-York, NY, USA, Apr. 2002.

[7] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in ACM SIGCOMM ’02, Pittsburgh, PA, USA, Aug.
2002.

[8] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie, “Sampling biases in ip
topology measurements,” in IEEE INFOCOM ’03, San Francisco, CA,
USA, Apr. 2003.

[9] S. Bar, M. Gonen, and A. Wool, “An incremental super-linear preferen-
tial internet topology model,” in PAM ’04, Antibes Juan-les-Pins, France,
Apr. 2004.

[10] “University of Oregon Route Views Project,”
http://www.antc.uoregon.edu/route-views/.

[11] H. Burch and B. Cheswick, “Mapping the internet,” IEEE Computer,
vol. 32(4), pp. 97–98, 1999.

[12] B. Donnet, T. Friedman, and M. Crovella, “Improved algorithms for
network topology discovery,” in PAM ’05, Boston, MA, USA, Mar./Apr.
2005.

[13] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-
rithms for large-scale topology discovery,” in ACM SIGMETRICS, June
2005.

[14] “SETI@Home,” http://setiathome.berkeley.edu/.
[15] “Distributed.net,” http://www.distributed.net/.
[16] M. Dharsee and C. Hogue, “Mobidick: A tool for distributed computing

on the internet,” in Heterogeneous Computing Workshop ’00, Cancun,
Mexico, May 2000.

[17] J. Charles Robert Simpson and G. F. Riley, “Neti@home: A distributed
approach to collecting end-to-end network performance measurements,”
in PAM ’04, Antibes Juan-les-Pins, France, Apr. 2004.

[18] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture
for large-scale internet measurement,” IEEE Communications Magazine,
vol. 36, no. 8, pp. 48–54, Aug. 1998.

[19] V. Paxson, A. Adams, and M. Mathis, “Experiences with NIMI,” in PAM
’00, Hamilton, New Zealand, Apr. 2000.

[20] A. Broido and k. claffy, “Internet topology: connectivity of ip graphs,”
in Proceedings of SPIE, 2003.

[21] Z. Mao, D. Johnson, J. Rexford, and R. K. J Wang, “Scalable and
accurate identification of as-level forwarding paths,” in INFOCOM,
2004.

[22] L. Li, D. Alderson, W. Willinger, and J. C. Doyle, “A first-principles
approach to understanding the internet’s router-level topology,” in Pro-
ceedings of ACM Sigcomm 2004, 2004.

[23] H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger, “To-
wards capturing representative as-level internet topologies,” Computer
Networks, vol. 44, no. 6, pp. 737–755, Apr. 2004.

[24] M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E, vol. 67,
no. 026126, 2003.

[25] R. Pastor-Satorras, A. Vázquez, and A. Vespignani, “Dynamical and
correlation properties of the internet,” Phys. Rev. Lett., vol. 87, no.
258701, 2001.

[26] S. Carmi, S. Kirkpatrick, and E. Shir, “K-core analysis of the internet.”
[27] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,

“k-core decomposition: a tool for the visualization of large scale
networks.” [Online]. Available: http://arxiv.org/abs/cs/0504107


