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On Multicast Trees: Structure and Size Estimation
Danny Dolev, Senior Member, IEEE, Osnat (Ossi) Mokryn, and Yuval Shavitt, Senior Member, IEEE

Abstract—This work presents a thorough investigation of the
structure of multicast trees cut from the Internet and power-law
topologies. Based on both generated topologies and real Internet
data, we characterize the structure of such trees and show that
they obey the rank-degree power law; that most high degree tree
nodes are concentrated in a low diameter neighborhood; and that
the sub-tree size also obeys a power law.

Our most surprising empirical finding suggests that there is a
linear ratio between the number of high degree network nodes,
namely nodes whose tree degree is higher than some constant, and
the number of leaf nodes in the multicast tree (clients). We also
derive this ratio analytically. Based on this finding, we develop the
Fast Algorithm, that estimates the number of clients, and show that
it converges faster than one round trip delay from the root to a ran-
domly selected client.

Index Terms—Internet topology, multicast group size estimation.

I. INTRODUCTION

THERE are several inhibitors to the commercial use of mul-
ticast protocols. While it is clear that multicast is beneficial

for transmitting the same information to large groups, its exact
gain over unicast has not yet been determined [1]–[3]. Network
suppliers lack a fast and efficient way to estimate the size of
large multicast groups, and the research community lacks reli-
able tree models.

We present here a thorough investigation we performed on
the structure and characteristics of multicast trees cut from
generated power law topologies and the Internet. While the
exact nature of the Internet topology is in debate [4], our results
show that the partial views we have from the Internet obey the
power laws found by [5]. These results were also verified by
[6]–[8], who conducted further investigations. Moreover, trees
cut from the Internet and from the generated topologies had
similar characteristics.

We found that trees cut from such topologies and the Internet
obey a degree-rank and sub-tree size-rank power law distribu-
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tions.1 We also found that the distance distribution of nodes from
the root node resembles a Gamma distribution, as shown pre-
viously for the Internet [8]. We observed that nodes with de-
gree higher than five tend to be rare in the resulting trees. These
high degree nodes can always be found in several adjacent rings,
which reside typically at the core of the network, and in the near
vicinity of the tree root.

Our most intriguing result finds a linear ratio between the
number of high degree nodes in the tree and the number of
clients.2 The result is shown to be valid for trees cut from
scale-free topologies that were generated with various param-
eters, as well as for experiments conducted on the Internet
itself. We further verify this ratio analytically for power law
trees. Based on the tree topological characteristics we found,
we suggest the Fast Algorithm for estimating the size of large
multicast groups. We analyze the algorithm’s expected delay
in the Internet, which sums up to less than the round trip delay
from the root node of the tree to a random client at the edge of
the network.

Estimating the population size of large multicast trees can
improve the performance of feedback mechanisms of protocols
such as RTP [9] and SRM [10]. Current feedback supression
solutions for RTCP use timers at the receivers [11], [12]. Our
sender based estimation produces a much faster estimation that
can be propagated to the receivers and eliminate the need for
such timers. Often, feedback suppression protocols are based
on similar techniques as polling based estimation algorithms
[13]–[15] and thus can use our faster estimation instead. Fast
estimation may also be beneficial to forward error correction
protocols [16].

Our suggested estimation algorithm offers an alternative ap-
proach by using the topological characteristics to obtain an es-
timation on the number of receivers (rather than a specific pop-
ulation count). It does not aggregate information at the router
level, but rather polls the high degree routers in the multicast
tree. Our results show that paths from the root of the tree to its
receivers are very likely to pass through the core of the network;
We also observed that high degree routers tend to reside within
the core or in its close vicinity. Hence, the polled high degree
nodes will be closer to the root than the receivers they connect.
The algorithm adapts itself to dynamic topological changes, and
can therefore reflect changes in the session size, as does the pop-
ulation sampling algorithm suggested in [17].

To the best of our knowledge, this is the first time that the
existence of a power law in the underlying topology is leveraged
to construct an algorithm. We believe that more such algorithms
can be developed in the future for a variety of purposes.

1Note that rank-degree and frequency-degree power laws can be derived from
each other [8].

2We denote by clients the group of routers that directly attach clients.
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TABLE I
TYPE OF UNDERLYING TOPOLOGIES USED

The paper is organized as follows. Section II discusses
our topological findings on trees cut from power law topolo-
gies. In Section III we outline our found receiver group size
estimation method and prove it both empirically and analyt-
ically. Section IV suggests two algorithms that leverage the
found method for session size estimation and analyzes their
performance. Additionally, we outline simulation results of
the Fast Algorithm. Section V discusses the accuracy of the
found method in details. We conclude with our conclusions and
discussion of future work.

II. EMPIRICAL CHARACTERISTICS OF MULTICAST TREES

This section details our findings on the structure of multicast
trees cut from generated power law topologies, as well as the
Internet. These findings are the basis for the estimation method
we present in Section III, and are of interest in their own right.

Little work has been done on modeling and characterizing
multicast trees. Chalmers and Almeroth [3] investigated the
branching characteristics of Internet multicast trees on the
MBone and their impact on multicast efficiency. They found
that multicast trees tend to have low average internal degree
that grows logarithmically with the number of receivers in the
tree, and a maximum height of approximately 23 nodes. They
also found a high frequency of “relay” nodes that have a degree
of two throughout the tree. In previous work, Pansiot and Grad,
who constructed trees from a graph based on true routing paths
in the Internet, also showed a high frequency of relay nodes
in the tree graphs [18]. Chuang and Sirbu [1] found a power
law between the number of links in a multicast delivery tree
connecting a random source to random and distinct network
sites; Philips et al. [2] developed a mathematical explanation
for the Chuang–Sirbu scaling law, for networks with an expo-
nential reachability function.

A. Topology and Tree Generation

Our method for producing trees is the following. First, we
generate power law topologies based on the Notre-Dame model
[19] which has been shown to reflect the Internet topology quite
well despite its limitations [20]. The model specifies four pa-
rameters: , , , and ,3 where is the initial number of de-
tached nodes, and is the initial connectivity of a node. When a
link is added, one of its end points is chosen uniformly, and the
other with probability that is proportional to the node degree.
This reflects the fact that new links often attach to popular (high

3The notations in [19] are m , m, p and q, respectively.

degree) nodes. The growth model is the following: with proba-
bility , new links are added to the topology. With probability
, links are rewired, and with probability a new node

with links is added. The rewiring parameter, , is intended to
corporate local events and increase the small world effect. An
analysis of the rewiring parameter effect showed that the degree
distribution approaches an exponential distribution for large
values [19]; our measurements showed that small values do
not affect any of our results and measurements. Hence, for sim-
plicity, we take in the generated topologies. Note that ,

and determine the average degree of the nodes. We created
a vast range of topologies, but concentrated on several param-
eter combinations that can be roughly described as very sparse
(VS), Internet like sparse (IS) and less sparse (LS). Table I sum-
marizes the main characteristics of the topologies used in this
paper.

From these underlying topologies, we create the trees in the
following manner. For each predetermined size of client popula-
tion we choose a root node and a set of clients. Using Dijkstra’s
algorithm we build the shortest path tree from the root to the
clients. To create a set of trees that realistically resemble Internet
trees, we defined four basic tree types. These types are based on
the rank of the root node and the clients nodes. The rank of a
node is its location in a list of descending degree order, in which
the lowest rank, one, corresponds to the node with the highest
degree in the graph. For the case of a tree rooted at a big ISP site,
we choose a root node with a low rank, thus ensuring the root
is a high degree node with respect to the underlying topology.
Then, we either choose the clients as high ranked nodes, or at
random, as a control group. Note, that due to the characteristic
of the power law distribution, a random selection of a rank has
a high probability of choosing a low degree node. The next two
tree types have a high ranked root, which corresponds to a mul-
ticast session from an edge router. Again, the two types differ
by the clients degree distribution, which is either low, or picked
at random.

The tree client population is chosen at the range [50,4000] for
the 10 000 node generated topology, [50,10 000] for the 100 000
node generated topology, and [500,50 000] for the trees cut from
real Internet data. For each client population size, 14 instances
were generated for each of the four tree types. All of our results
are averaged over these instances. The variance of the results
was always negligible.

There are two underlying assumptions made in the tree con-
struction. The first, is that the multicast routing protocol delivers
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TABLE II
LINEAR FIT OF DEGREES AND FREQUENCIES

Fig. 1. Frequency of degrees for a 10 000 node topology with a = 6, a = 1,
p = 0:3, q = 0.

a packet from the source to each of the destinations along a
shortest path tree. This scenario conforms with current Internet
routing. For example, IP packets are forwarded based on the
reverse shortest path, and multicast routing protocols such as
Source Specific Multicast [21] deliver packets along the shortest
path route. In addition, we assume that client distribution in the
tree is uniform, as has been shown by [2], [3]. In addition, all
trees were tested and validated for the Chuang–Sirbu law [1].

B. Tree Characteristics

1) Degree-Rank and Size-Rank Power Laws: Our results
show that trees cut from a power law topology obey a similar
power law. Specifically, we compared the degree-frequency
power law found by [5]. Fig. 1 shows in log-log scale the degree
frequency plot for 10 000 nodes topology generated with the
parameter set , , , . The dotted
lines here, and in the rest of the linear fit figures, mark the 95%
confidence interval.

Fig. 2 shows the same plot for a multicast tree with 500 low
degree clients and a root with a high degree. In Table II we

Fig. 2. Tree with 500 low degree clients, high degree root. Cut from topology
a = 6, a = 1, p = 0:3, q = 0.

summarize the best linear fit parameters in a log-log scale for
all trees generated for the topology set , , ,

. It can be seen that the power law holds even for very
small trees, e.g., for a tree with 50 multicast clients that has on
the average around 200 nodes. The same phenomenon appears
in all the trees cut from all topologies, regardless of the way the
root and the client nodes were chosen.

These findings conform with the findings of [3] and [18] who
found a very large frequency of relay nodes in the trees, i.e.,
nodes with a degree of two. In a power law relationship of fre-
quency and degree, the frequency of two degree nodes is the
highest in the tree. Leaf nodes are determined by clients, and
are a subset of the clients.

We also found that the distribution of degrees at a specific
distance from the root, i.e., in a certain depth ring, also showed a
power law distribution of degree-rank, but with different slopes.

Given the above findings, it is important to note the following.
Cohen et al. [24] showed that the maximal node degree in a
graph of nodes is proportional, for Internet-like topologies,
to approximately the square root of the number of nodes. More
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Fig. 3. Sub-tree size CCDF distribution, for a 2000 node tree cut from topology
a = 6, a = 2, p = 0:1, q = 0.

precisely, , where is the exponent of the
degree-frequency power law of the topology. Hence, all resulted
degree-frequency graphs of finite sizes exhibit a cut-off at the
tail. This holds true for partial views taken from the Internet,
with the cut-off being a result of the partiality as well as from
the finite size of the Internet itself.

The second power law we found for the trees is of frequency
and size of the sub-trees in each tree. Namely, the self similarity
holds not only for the degree distribution in the tree, but also for
its inner structure. Fig. 3 shows the excellent fit of the comple-
mentary cumulative distribution function of the sub-tree sizes of
a 2000 node tree. The tree, with a high degree root, is cut from
a 10 000 node topology with the parameter set , ,

, . The size distribution differs from the degree
distribution in that the big sub-trees, although almost similar in
size, may differ by one or two nodes, which is negligible com-
pared to their overall size. Thus, we give the CCDF graph, which
plots the probability that the observed values are greater than the
ordinate. It can be seen that the fit to a power law is over 99%.
The slope computed for the PDF graph without the tail, resem-
bles the one of the degree distribution.

2) Per Degree Distance Distribution: Cheswick et al. [8]
found that the distribution of the number of nodes at a certain
distance from a point in the Internet is similar to the Gamma dis-
tribution. Our results show that the distribution of distance from
the root of nodes of a certain degree seems close to a gamma dis-
tribution, although we did not determine its exact nature. Fig. 4
shows the distribution of the distance of two to five degree, leaf
and high degree nodes, where high degree nodes are nodes with
a degree six and higher. In this case the root is a low degree node,
and the tree has 1000 low degree clients. As can be seen, the high
degree nodes tend to reside much closer to the root than the low
degree nodes, and in adjacent rings. In this example, most of
them are in the second to forth depth rings around the root.

Fig. 4. Distribution of the distance of high degree, two to five degree and leaf
nodes in a tree cut from topology a = 6, a = 1, p = 0:3, q = 0.

This phenomenon was even more obvious when the root was
a high degree node. We found the following observation with re-
gard to power law generated topologies. The high degree nodes
seem to form a “core” with a low diameter (around five hops for
trees cut from the generated topologies, and seven for trees cut
from Internet data) and most of the other nodes in the network
are not distanced more than three to five hops away from this
core. Subramanian et al. [25] observed a similar phenomenon at
the Internet AS topology, although obtained from directed BGP
routing tables.

The distribution of client distances from the tree root is given
by the leaves distances in Fig. 4. Note that the longest path to a
client is the tree height. Our results show that the less connected
the underlying topology, the taller is the average tree cut from
the topology.

3) Empirical Results From Internet Data: We verify the
above findings with results obtained from real Internet data.
Our results are verified on two different data sets. The first is
an Internet partial view at the routers level, obtained from the
Lucent Internet Mapping Project [23]. We used this data set as
the underlying topology, from which we cut trees in the same
manner described in Section II-A. We denote this topology by
LC.

For the second data set, we use the client population of http://
www.bell-labs.com, which is a medium size web site. This may
represent the potential audience of a multicast of a program with
scientific content (such as the livecast of the INFOCOM con-
ference). From this set two lists of clients were obtained, and
traceroute was used to determine the paths from the root to the
clients. It is important to note, that the first three levels of the
tree consist of routers that belong to the site itself, and there-
fore might be treated as the root point of the tree, although in
these graphs they appear separately. We denote this tree as the
BL tree.
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Fig. 5. Frequency of degrees of a 10 000 node tree cut from the LC Internet
data.

Fig. 6. Frequency of degrees of the BL Internet tree.

Fig. 5 shows the frequency of degrees for a 10 000 node tree
cut from the LC topology. The tree, which is an average of 14
instances, exhibits a clear degree-frequency power law with a
good fit.4 The tree was chosen with a high degree root, and low
degree leaf nodes. The variance of the instances of each tree
was negligible, and the same result was obtained for each of
the generated trees, with as low as 1000 clients and as high as
50 000. Fig. 6 shows the frequency of degrees for the BL tree.
The linear fit of the log-log ratio is excellent, with a correlation
coefficient of 0.9829.

4We fit the data for the points above the line Y = 0 which capture all the
degrees that appear on average, at least, once in every tree. To extend the fit
below this line we need more trees. If we want to get rid of the noisy tail all
together we need to generate, at least, an order of 10 trees as our fit predicts
that the highest degree points will appear on the average in less than one of every
10 trees.

Fig. 7. Size distribution of a 7000 clients tree cut from the LC data.

Fig. 8. Distance of two, high degree and leaf nodes from the root of a 15000
client tree cut from the LC Internet data.

Fig. 7 shows the CCDF of the sub-tree sizes of a tree with
7000 clients cut from the LC data. The root is a high degree
node, and the clients are low degree nodes. Note that every point
in the graph is the result of an average of 14 instances therefore
the tail was omitted from the fit. The size-rank power law ap-
pears in all the trees cut from this data.

Fig. 8 shows the distribution of the distance of two degree,
leaf and high degree nodes, for a 15000 client tree, cut from the
LC data. The majority (90%) of the high degree nodes reside
within a distance of eight hops from the root, while the clients
are distanced up to 18 hops from the root.

III. RECEIVER GROUP SIZE ESTIMATION METHOD

While all of the above observations are interesting and help in
our understanding of multicast trees, we were intrigued whether
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Fig. 9. Clients versus frequency of high degree nodes. Cut from a 100 000
nodes topology with a = 6, a = 1:5, p = 0:1, q = 0.

we can use any of this knowledge to evaluate the size of a mul-
ticast tree. We compared the degree of the nodes in the tree to
their degree in the topology, and focused on the high degree
nodes. Interestingly, we found that while some nodes had a tree
degree that is significantly smaller than their degree in the un-
derlying network topology, other nodes seemed to have a tree
degree close to their network degree. We then compared the fre-
quency of nodes with degree and above (high degree nodes) to
the number of clients in the tree, and found a linear ratio with a
correlation coefficient of not less than 0.99. We term this ratio
the HCN ratio (hubs-to-client number ratio).

Next, we outline our findings on HCN ratio for both sim-
ulated trees and trees cut from the real Internet. We proceed
by giving a mathematical analysis of our results for power law
trees.

A. Empirical Findings

We have found that an HCN ratio of 1:16 is a very good pre-
dictor for trees cut from the Internet, and most generated topolo-
gies. Fig. 9 shows the HCN ratio in trees cut from a 100 000
node topology. The topology parameters are , ,

, , and the root node of all trees is a high degree
node. The linear ratio is obtained after gathering the informa-
tion from not more than five depth rings around the root. We
plotted the frequency of high degree nodes obtained after scan-
ning three, four, five, six and nine depth rings around the root.
As can be seen from the graph in Fig. 9, the entire information
was obtained until the sixth depth ring—the following rings did
not add any more information. The HCN ratio was found to
be 16. Fig. 10 shows the excellent fit of the HCN ratio with a
correlation coefficient of 0.9998. When we plotted the data for
trees cut from this topology with a low degree root, we obtained
very similar results. The ratio was again 16, with a correlation
coefficient of 0.9996. However, another depth ring was needed
to obtain accurate results, since the root was not as close to the
core of high degree nodes as in the previous case.

We verified our results using actual Internet data on the client
population of the Bell Labs web site described in Section II,

Fig. 10. Linear fit of Clients versus frequency of high degree nodes. Cut from
a 100 000 nodes topology with a = 6, a = 1:5, p = 0:1, q = 0.

Fig. 11. Clients versus high degree nodes and the HCN predictor for the
BL[1,2] trees.

and on trees cut from the data from Cheswick’s Lucent Internet
mapping project, noted LC, also described there. The Bell Labs
client population data contains two log files. The first, denoted
BL1, has 10897 clients and the second, BL2, has 7356. We cre-
ated subsets of clients by randomly selecting entries from the
log files, and cut the corresponding trees for these subsets from
the original trees. Fig. 11 shows the ratio between the 16 pre-
dictor and the actual number of clients in the generated trees.
For BL1 the ratio was 1:16 with a fit of 99.75%, for BL2 the
ratio was 1:16 with a fit of 99.72%. For client populations
larger than roughly 1500 clients the predictor of 16 gives an ex-
cellent estimate—within 9% of the actual number of clients.

The LC data gives a partial view of the Internet at the router
level with more than 110 000 routers. From this topology, we
cut trees in the same manner described in Section II. Again,
each result is averaged over 14 instances. Fig. 12 shows the ratio
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Fig. 12. Clients versus high degree nodes and the HCN predictor for the trees
cut from the LC topology.

between the number of clients and high degree nodes, compared
with the predicted value from the simulations, 16. The average
value of the ratio is 15.89, with a standard of deviation of 0.9.
Hence, a 16 predictor for the ratio gives a very good estimation
for this data also.

For the generated topologies and the Internet experiments,
our results are less definite for very small trees. We found that
HCN ratio 16 is accurate when client population is at least
0.1% the size of the underlying topology. Nevertheless, for the
Internet, our experiments yielded very good results for group
sizes of 1500 clients and more. Note that when the group size is
small enough, exact counting of the clients can be done with a
reasonable cost.

While a predictor of 16 was shown to be a very good predictor
for large groups, it becomes less scalable when the group size
is extremely large. For example, in the case of a multicast tree
with a million clients, the expected number of high degree nodes
is 62500. A good solution for this problem is to increase the
degree of the sample nodes. For example, in the case of very
large groups, counting the number of nodes with degree higher
than nine will produce an accurate prediction, with a ratio of
1:48, namely HCN ratio 48. Note that sampling nodes with
a larger degree gives us a coarser estimation. Our experiments
show that when we sample nodes of degree ten and above the
estimation is accurate only for group sizes of at least 1.5% the
size of the underlying topology. Remember that sampling nodes
of degree 6 and above yields a good estimation for trees as small
as 0.1% of the network.

B. Analytical Derivation of HCN Ratio

In this section, we derive the HCN ratio for trees in power
law topologies. Our experiments have shown that the group of
leaf nodes of a tree closely approximates the tree’s client pop-
ulation. For simplicity we take the exponent of the underlying

topology degree probability instead of the tree’s, but these are
fairly close.

Given a tree with nodes, we denote by the number of
leaf nodes and by the number of non leaf nodes. Let be the
group of non leaf nodes. The average internal degree is defined
by: where is the degree of node . But
by its definition it also holds that

, and . Given all the
above, we can write

(1)

which holds for any tree.
Given that is the probability to find a node with degree in

the tree, we can rewrite the above expression for :

(2)

and the probability conservation equation

(3)

Substituting (1) in (2) and (3), and given that the degree dis-
tribution obeys the power law , we get that

(4)

where and .
The HCN ratio is defined by

HCN (5)

Plugging (1) and (4) in (5) yields

HCN (6)

where .
Fig. 13 shows how the HCN ratio in (6) changes with .

For the HCN ratio changes between 14.5 and 19.
Hence, a precise value for the tree’s will yield an excellent
evaluation of the number of leaf nodes in the tree, and hence
a good estimation to the client population (see Section V for
a discussion on how to obtain a more accurate value). Nev-
ertheless, our results show that for the shortest path trees cut
from the Internet, as well as from most of our generated topolo-
gies, HCN ratio 16 gives a very good estimation. Under-
standing the precise correlation between our empiric and ana-
lytical results may lead to a deeper understanding of the Internet
topology, and is the subject of our next work.
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Fig. 13. Change in HCN ratio with �.

Fig. 14. Formal description of the basic algorithm for the root node.

IV. ESTIMATION ALGORITHMS

A. A Basic Algorithm

The findings in the previous section give rise to an algorithm
for estimating the number of clients in a multicast tree, in which
the number of nodes with five or more child nodes is counted.
The main idea, given formally in Fig. 14, is that the root mul-
ticasts a feedback request, , along the multicast tree. The
request carries the parameter , which indicates the minimal
node degree that needs to report back. Such a node, upon re-
ceiving the request, replies with a UDP packet sent directly
to the root. The root waits for a time long enough to ensure that
most replies are accepted. The root then counts the number of
different replies it receives, and by multiplying with the appro-
priate coefficient produces the estimate.

Note that for the Internet, , the time the root waits for the
replies to arrive, should be quite large. Specifically, needs
to be long enough such that the vast majority of slow responses
due to round trip and processing delays are not lost. (We assume
that of several seconds satisfies these requirements.)

B. Fast Algorithm

The Fast Algorithm, formally presented in Fig. 15, is moti-
vated by the need to obtain a fast estimation on the client popu-
lation. We would like to determine the termination rule in a way
that guarantees that a significant portion of the messages
has already arrived. In the basic algorithm we achieve this by

Fig. 15. Formal description of the Fast Algorithm for the root node.

setting a very large timeout. Here, we monitor the message
arrival process to achieve this goal.

We start the algorithm with an initial sampling period, ,
whose purpose is to enable responses from the high degree
nodes in the -neighborhood of the root to arrive back at the
root. If by the end of the initial sampling period the root receives
no replies, it assumes the group is either very small or inactive.
If the root receives messages, a shorter sampling period
termed the iterative sampling period is activated repeatedly
until the termination condition is satisfied. The purpose of the
iterative sampling period, noted , is to enable the algorithm
to converge to a good estimate within a short time.

There are several options to determine a termination condi-
tion based on the message arrival process. We can choose
a threshold and stop when the message arrival rate drops below
it. This solution, however, is not immune to network jams, and
is very sensitive to the threshold’s value. Another option is to
stop when the rate keeps dropping for several successive itera-
tive sampling periods. In this case, the algorithm is very sensi-
tive to the length of the iterative sampling period. If it is too short
the algorithm might terminate too early with a large estimation
error. On the other hand, a long iterative sampling period might
cause the algorithm to be less practical.

Thus, we devised a termination rule (see line 12 in Fig. 15)
that can self-tune according to the arrival process. Under rea-
sonable conditions it will guarantee termination within a preset
estimation error. The algorithm terminates when the number
of replies received at the root during one of the iterative sam-
pling periods does not improve the estimation by more than ,
where is the estimation error. For example, setting the itera-
tive sampling period to the average two-hop delay and the initial
sampling period to , causes the algorithm to terminate when
the replies gathered from the th depth ring, at the th iter-
ative sampling period, do not improve the estimation by more
than . Under reasonable network conditions, about half of
the replies from this depth ring reach the root node by the end
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TABLE III
FAST ALGORITHM TIME AND PREDICTION

of the th iterative sampling period. Thus, the termination con-
dition enables the algorithm to stop when it identifies the end of
the adjacent depth rings around the root.

1) Performance Evaluation of the Fast Algorithm: In this
section we estimate the delay of the Fast Algorithm and de-
fine the average values for and . The delay of a packet
traversing a single link, , is comprised of two components:

, where is the fixed minimum link delay and
is a random variable representing the queueing delay, which is
exponentially distributed. We would like to derive the distribu-
tion of the queueing delay of a packet traveling links. The
density function of the delay, , is a convolution of the den-
sity functions of , times:

(7)

Let us define, for simplicity

(8)

Thus, is a gamma random variable with parameters and
. Namely

(9)

where is the average queueing delay. Assuming that all high
degree nodes reside within hops from the root node of the
tree, and let the probability of a high degree node to reside at
distance from the root be , from (7) and (9) we get that
the probability distribution function of the total delay is

(10)

where is the incomplete gamma function [26, sec. 1.2.11].
Plugging back (8) in (10) we get that the final form of the total
delay probability distribution function is

(11)

The values of and need to be established in a way
that will ensure that the majority of the replies are gathered. For
example we can select to be the value of that minimizes

, meaning that ensures that on the average we wait
for half of the replies to be done waiting at queues.

Alternatively, we should choose to be long enough for
each node to at least reach the core, preferably its center. Let us

define by the estimated radius of the core, in which we have
established that most high degree nodes reside. Let us define by

the average distance from an edge node to the core. Then

(12)

thus ensuring that is sufficient for the request to reach the
core vicinity and for some of the replies of high degree nodes to
arrive back to the root. In the same manner, setting

(13)

yields an iterative sampling period of one hop round trip delay,
thus enabling the algorithm to obtain most of the information
from the next hop. From our experiments, as described in Sec-
tion II, we discovered that the values of and are
sufficient for today’s Internet.

In Table III, we summarize the simulation results of the Fast
Algorithm. We denote by the average one hop delay. The hop
delay is either normally distributed (ND) or exponentially dis-
tributed (ED). The length of the initial sampling period is ,
and the length of the iterative sampling period is . The results
in this table are obtained for trees cut from topology ,

, , , and the Fast Algorithm was exe-
cuted with an estimation error of . All the high de-
gree nodes in the generated trees reside within five depth rings
from the root. Time units are in . Note that due to the long
tail of the exponential distribution, an iterative sampling period
of is shown to be too short, since the exponential case rep-
resents a bursty network. However, when the delay is normally
distributed with variance , the algorithm counts all of the high
degree nodes in the tree within less than time units, which is
less than the measured average clients’ round trip delay of
for these trees.

V. DISCUSSION

Our results, which show a strong correlation between the
number of high degree nodes and the number of clients, hold
for all tree types over all tested power laws topologies. As stated
before, all of the results obtained from the simulations as well
as the LC data were averaged over 14 instances. When degrees
6 and higher are chosen (i.e., ), we found that 16 is a very
good predictor in the average case. In this section, we discuss
the accuracy of this result for specific trees.

We examined the specific predictors of the 14 instances of
a 7000 clients tree cut from the LC data. The smallest ratio
was 15.52 and the largest 16.78, yielding a maximal error of
5%. Fig. 16 shows our results for 14 trees that were cut from
a 100 000 node topology. The root is a randomly chosen high
degree node and the clients are chosen uniformly. The figure
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Fig. 16. Clients versus high degree nodes for each of the 14 instances of the
tree.

legend details for each of the trees its specific slope, i.e., its av-
erage ratio between the number of clients and the high degree
nodes over all points. It also specifies for each tree the maximal
and minimal deviation points, i.e., the ratio at the points which
are furthest from the average for that tree. We can see that the
slopes of most of the trees are within 10% of the average pre-
dictor. This phenomenon can be seen throughout the different
tree types. The worst deviation from the average predictor of a
slope was 12.5%. A few points diverge up to 30% from the esti-
mation, yet this should be expected, given the statistical nature
of the estimation method.

We found that the reliability of the prediction increases with
the group size. According to our findings, described in Sec-
tion III, the found predictor is accurate only for medium to large
groups. When group size exceeds 1000 clients, the average pre-
dictor yields very good estimations, with not more than a 10%
error. For the general case, for all group sizes, the vast majority
of the individual test points are within a marginal limit of 15%.
For our analysis on Internet logs the estimation error was no
more than 15% in almost all cases. The single exception was for
a group of size 1153, which exhibited a 22% estimation error.

We have found that instances of a tree with the same root node
tend to have a more stable behavior. Thus, a root can calibrate
the estimator for its trees by counting the number of clients and
the number of high degree nodes when the trees are reasonably
small, and use the more accurate estimator when the trees grow.
Fig. 17 demonstrates this for 14 trees that were generated with
the same root. It is clear that the best estimator for these trees
is around 15 and the deviation is less than 4% (compared with
12.5% for the general case). The individual point estimates here
are also much better—within 16% of the calibrated estimate, 15.

VI. CONCLUSION

We presented our findings on the characteristics of shortest
path trees cut from power law topologies. We base our con-
clusions on extensive simulations, and real Internet topologies
from two different sources: The Bell Labs web site logs, and the

Fig. 17. Clients versus high degree nodes for each of the 14 instances of the
tree.

Cheswick–Burch Internet mapping project. All of the empirical
and the simulation reuslts agree. Our results may not hold, how-
ever, in cases where the group of receivers was generated with
different affinities (clusteredness) [27] or with a client popula-
tion from a specific region of the Internet.

Our findings may improve our understanding of multicast
trees and therefore may help theoretical and practical research
done in this area. We have shown that the structure of such trees
follows power laws of rank-degree and rank-size, and that high
degree nodes tend to reside in a low diameter neighborhood. We
found a linear ratio between the number of high degree nodes
and the number of multicast tree leaves. We also proved this
ratio analytically, and devised the Fast Algorithm that uses this
ratio to estimate the tree client population in less than the In-
ternet round trip delay.

The Fast algorithm, when used as an initial estimator to
polling based counting algorithms such as [13] and [15],
enables these algorithms to converge much faster, especially
for medium and large groups. Note, that these algorithms
performance is improved significantly with a tight initial group
size estimation. It is also beneficial for transport layer feedback
suppression algorithms and control algorithms which need to
know the session size such as RTCP [11]. Finally, the Fast
Algorithm can be used by network providers in calculating the
gain from multicast with metrics such as the one suggested by
Chuang and Sirbu [1]. As part of our future work, we intend
to include an addition to the Fast Algorithm that enables the
root to receive online updates on the changes of the branching
characteristics of the trees. These online updates sent by nodes
going in or out of the high degree nodes group, enable efficient
tracking over time of the multicast group size.

In general, we have found only a few examples where the
estimator was off by more than 15%. When the estimator was
calibrated to a specific root node the accuracy was a factor of
four better.

This work presents a novel way for leveraging topological
characteristics of a tree to obtain important knowledge such as
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its size. A further understanding of the exact ratio between the
trees and the underlying topology characteristics is the subject
of our future work.
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