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Abstract

In this paper we introduce the Gossip Network model where travelers can obtain information
about the state of dynamic networks by gossiping with peer travelers using ad-hoc communi-
cation. Travelers then use the gossip information to recourse their path and find the shortest
path to destination. We study optimal routing in stochastic, time independent networks, and
demonstrate that an optimal routing policy may direct travelers to make detours to gather
information. A dynamic programming equations that produce the optimal policy for routing
in gossip networks is presented. In general the dynamic programming algorithm is intractable,
however for two special cases a polynomial optimal solution is presented.

We show that usually gossiping helps travelers decrease their expected path cost. However
in some scenarios, depending on the network parameters, gossiping could increase the expected
path cost. The parameters that determine the effect of gossiping on the path costs are identified
and their influence is analyzed. This dependency is fairly complex and was confirmed numerically
on grid networks.

1 Introduction

Optimal routing in both deterministic and stochastic networks has been extensively studied in the
past. While the solutions for the deterministic problem are well known [BG92] and based on the
dynamic programming (Bellman-Ford) or label correcting (Dijkstra) algorithms, the solution to the
stochastic problem depends profoundly on the problem modelling. One of the main characteristic
of the stochastic problem model is how the information about the stochastic states of the network
is obtained. The introduction of ad-hoc communication presents an opportunity for a new kind of
network model – the Gossip Networks. In this paper we formulate, for the first time, the gossip
networks model in which mobile agents obtain information about the state of a stochastic network by
exchanging information with neighboring agents using peer to peer (P2P), ad-hoc communication.
Mobile agents use the exchanged information to revel information about the network state and
consequently optimize their routing.

There are variety of real life problems that can benefit from an optimal solution to the prob-
lem of routing in gossip networks. For example, airplanes or vessels finding the “best” route by
exchanging information with their peers. This paper will focus on another example from the field of
transportation. Road congestion is a known and acute urban menace with no signs of disappearing.
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There are apparently many suggested approaches to tackle this problem, one of them is to supply
vehicles and drivers with up-to-date information about road conditions.

There are two kinds of approaches to supply drivers with information that can aid them avoid
congestion. One approach is based on fixed-structure communication networks, for example cellular
networks or FM/AM radio [APG,TMC,TRM], the other approach is based on ad-hoc communi-
cation networks. Several innovative projects propose using ad-hoc networks as the communication
infrastructure, for example FleetNet [ER01], and CarNet [MJK+00].

The advance in technology in recent years helps to bring into vehicles sophisticated onboard
navigation systems at a reasonable price. Such a system contains a computing device with a detailed
road map, GPS for locating the vehicle on the map, and communication means. One can use ad-hoc
communication networks (such as Wi-Fi) to exchange information between neighboring vehicles.
When two vehicles are at communication range they can exchange their information regarding road
condition. The road condition information is thus propagated in the network without any need for
external or central infrastructure. Each time new information is obtained by a vehicle, the onboard
navigation systems recalculates the optimal route from its current location to the destination. For
example, if the navigation system receives information that one of the street in its planned path is
blocked it will plan a new path that avoids the blocked roads, the new path will be the shortest
path from the vehicles current position to the destination taking into account the blockage.

Our gossip network model was built based on research done in “ad-hoc networks” and “stochas-
tic shortest path routing”. In this paper, mobile agents acquire and disseminate information about
road conditions using wireless communication (ad-hoc networks) and use the information to mini-
mize their traveling time (shortest path problem). There are two networks in our model, the “road
network” on which the mobile agents roam and the “communication network” on which information
flow. While there is an extensive literature about routing in each of the networks, to the best of
our knowledge, this is the first attempt to formulate and solve the combine problem: shortest path
routing of mobile agents in the context of gossip ad-hoc networks. 1

There are currently several ongoing projects focusing on the idea of mobile agents (for exam-
ple vehicles) exchanging information and forming communication networks without or with a little
help from external infrastructure. Mobile Ad-hoc Networks (MANET) [MAN] is an IETF work-
ing group set to standardize these efforts. The FleetNet project [ER01] aims at the development
and demonstration of a wireless ad-hoc network for inter-vehicle communications. FleetNet is a
consortium of six companies and three universities looking into mostly the practical issues of pro-
viding drivers and passengers services over ad-hoc communication. Some of the proposed FleetNet
services are: notifications about traffic jams and accident, and providing information about nearby
available point of interest. Another project, CarNet [MJK+00] demonstrates the use of ad-hoc
scalable routing protocol (Grid) to support IP connectivity as well as providing services similar to
FleetNet. For a comprehensive overview of Inter-Vehicle ad-hoc communication see [Bri01].

FleetNet, CarNet, and similar projects aim at building communication infrastructure using
ad-hoc communication and are researching for suitable routing protocols, medium access methods,
radio modulation etc. In this paper we assume the existence of such ad-hoc network that enables
mobile agents to exchange information. However, we don’t implicity include here specification of
the ad-hoc network such as routing or multi-access communication protocols, instead we abstract
them into the gossip probability, the probability that a mobile agent will receive information about
the status of some roads in the network from another mobile agents. The gossip probability is
defined formally in Section 2.

1This paper focuses on the routing of mobile agents on the “roads networks” and not on the routing of data
packets on the “information networks”.
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Classification Description Gossip Networks

Time In time dependance problems the net-
work’s weights changes with respect to
time

Time indepen-
dent

Solution
type

In deterministic problems the shortest
path is determined a-priory while in dy-
namic problems the traveler is given a pol-
icy and adapt his path while traveling ac-
cording to the obtained information (also
known as the recourse problem)

Policy based

Information
Source

The mechanism in which travelers obtain
information about the weights of the net-
work. Most models assume knowledge of
emerged roads

Gossiping and
emerged roads

Table 1: Shortest Path Problems Classification

The problem of Shortest Path Routing was investigated extensively in the literature, for a
comprehensive summary of the various efforts in the field of transportation see [PS98]. Shortest
path problems can be classified according to several criteria as outlined in Table 1.

In this paper we assume time independence, i.e., the network doesn’t change during the course
of the travel. Some of the road conditions are known to be alternating, however, a traveler may
not know in advance the current condition of all these roads, termed stochastic roads. We assume
that no waiting at roads or junctions is allowed and once a junction is reached the weights of all
the roads that emerge from that junction become known. We investigate two different models of
weight correlation. The first is the Independent Weight Correlation model (G-IWC) where there is
no correlation between the states of different edges. The second is the Dependent Weight Correlation
model (G-DWC) where the network can be in several different states, each state determines the
weights of all stochastic edges [PT96]. Note that the G-IWC model is a generalization of the G-
DWC model with substantially more states. The rational behind the G-DWC model is that in
“real-life” transportation systems there is a correlation between roads weights, usually a traffic jam
on one road effects the roads in its vicinity.

When the shortest path model is stochastic, like in this paper, the information about the actual
state of the stochastic edges plays a crucial role in finding the optimal routing solution. Further
more, due to the dynamic nature of the problem the solution is not a path but rather a policy
that direct the traveler according to the information he obtains. In the literature there are several
papers that discuss optimal routing policies in stochastic networks where the traveler can recourse
his path according to information obtained during travel. However, the basic difference between
these models and ours is that in gossip networks the information is obtained by gossiping with
neighboring travelers thus a traveler can obtain data about the state of remote stochastic roads.
In all the other models we survey the only way to obtain information about the state of a road is
to visit the junction it emanates from. Andreatta and Romeo [AR88] assume that once a blockage
is encounter a recourse path that consists of only deterministic roads is used. Orda, Rom, and
Sidi [ORS93] investigated a model where link delay change according to Markov chains, they model
several problems and showed that in general, the problems are intractable. Polychronopoulos and
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Tsitsiklis [PT96] investigated a network where there is a correlation between the roads weights.
In their model a traveler can deduce the stochastic state by visiting enough roads. Waller and
Ziliaskopoulos [WZ02] solved a model with dependency between successor roads and a model with
time dependency for the same road.

The introduction of information exchange in gossip networks leads to unique optimal routing
policies. In this paper we will show that sometimes it is worth taking a detour to obtain more
information about the state of the stochastic edges. The extra cost of the short detour can be
compensated by the additional information gained, information that can improve the selection of
the continuing path.

The rest of the paper in organized as follows. In the next section, the formal model of the
gossip networks is introduced and an example that demonstrates the characteristics of the model
is presented. An algorithm for optimal routing in gossip networks that is based on dynamic pro-
gramming is developed in Section 3. In Section 4 we discuss the implications of traveling in gossip
networks. Then, in Section 5, we use numerical analysis to demonstrate the influence of the various
model parameters on the network behaviors. Finally in Section 6 we summarize and highlight our
main findings.

2 Model and Definitions

2.1 The formal model

The above discussion leads to the following formal model. The network2 is represented by a directed
graph G = (V, E), where V is the set of vertices, and E is the set of edges, |V | = n and |E| = m. An
edge e ∈ E is associated with a discrete random weight variable, we. Edges with degenerated weight
function that has only one value are termed deterministic, and we denote the set of these edges by
D ⊆ E. The number of edges in the network with stochastic weights (namely, non deterministic)
is denoted by δ = |E \ D|. We assume that under all weight distributions there are no negative
cost cycles in the network and there is always a path between source and destination.

In the G-IWC model the weights, we, of the stochastic edges are random variables with discrete
probability distribution that has βe states. The expected cost of an edge is

∑βe
s=1 ws

eq
s
e, where qs

e

is the probability of an edge e to have the weight ws
e. We denote by ŵe the actual weight of the

edge e. In the G-DWC model the network can be in only R realizations, each r ∈ R realization
determines the states of the network and thus the weights wr

e of all the stochastic edges.
Traveling agents (TAs) are roaming the network. Each TA stores internally the weights of

the stochastic edges in an Information Vector (IV), I{·}. For example, an information vector of
a traveler could look like this: I = {ŵ1, X, ŵ3, X, . . . , X, X, ŵδ}. For known edges, those that the
traveler visited or received information about, the weights are written down explicitly, ŵ1, ŵ3, ŵδ.
Unknown edge weights are denoted by X. The number of possible states of the information vector
in the G-IWC model, lI is given by

lI =
∏

e∈E\D
(βe + 1) (1)

and in the G-DWC model, the number of different information vector states is given by
2As mentioned above, there are two networks in our model, the “road network” and the “communication network”.

From this point on, when we say “network” we refer to the “road network”. We assume the existence of communication
network that enable mobile agent to exchange information but in this paper we don’t include it in the formal model
implicity, it is included in the gossip probability presented below.
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Figure 1: An example of the influence of gossiping on routing. We are looking for the optimal
routing policy between the vertices s and t where the edge (j, j′) is stochastic and on edge (i, s)
the traveler can obtain information about the stochastic edge.

lD =
R∑

i=1

(
R

i

)
= 2R − 1 (2)

When two or more TAs are within communication range they can exchange their IV in order
to gain missing data. The gossip probability is a function holding the probability that when a TA
traverses an edge it will obtain new information that will update his IV. We denote the gossip
probability by P (I(i), I(j), T (i, j)) where (i, j) is the edge traversed, I(i) and I(j) are the IV
before and after (i, j) traversal, respectively, and T (i, j) is the topology probability. The topology
probability is determined by aspects like the number of TAs around the traveler, the other TAs
previous paths, physical obstacles that interfere with the wireless communication, etc. It is a
characteristic of the network structure and the flows of TAs in the network. T (i, j) is a vector
of probabilities, where each element corresponds to some stochastic network edge. For example,
T (i, j) = {1, 0.5, . . . 0} means that when the TA slates edge (i, j) it will learn about stochastic edges
1,2, and δ with probability 1, 0.5, and zero, respectively. The gossip probability also depends on
the IV before and after the edge traversal, for example, the probability to change an IV element
from {ŵ} to {X} is zero – a known weight can not be changed into unknown.

In this paper we are looking for the optimal routing policy of a TA that start at the source
vertex s with information vector I(s) and traveler to a destination vertex t. We assume that the TA
knows a-priory the network structure, weights distribution, and the topology probability. We are
looking for an optimal routing policy, π∗ with minimal expected cost, C∗(s, t, I(s)), of all possible
routing policies πk ∈ π.

∀ πk ∈ π C∗(s, t, I(s)) ≤ Ck(s, t, I(s))

2.2 An Example

In the example network presented in Fig. 1, a traveler is located at vertex s and is looking for the
optimal routing policy to vertex t. In this network there is one (δ = 1) stochastic edge, (j, j′), that
has two possible states. With probability qu

jj′ = ξU the edge is in the “UP” state where wu
jj′ = 1,
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and with probability qd
jj′ = (1 − ξU ) the edge is in the “DOWN” state where wd

jj′ = 10000. The
traveler can obtain information about the state of the edge (j, j′) only when traversing the edge
(i, s), with the topology probability: T (i, s) = ξT . The gossip probability of this network is:

P ({X}, {X}, T (i, s)) = 1− ξT

P ({X}, {1}, T (i, s)) = ξT

P ({X}, {10000}, T (i, s)) = ξT

P ({1}, {1}, T (i, s)) = 1
P ({10000}, {10000}, T (i, s)) = 1

Else ∀ u, v ∈ V P (I(u), I(v), T (u, v)) = 0

The traveler has to chose between different travel options: a) The “safe” path through vertex
k which guarantee a cost of 1001 or; b) The “risky”3 path through vertex j with cost that depends
on the state of edge (j, j′), either 10002 or 3 or; c) Travel to vertex i, obtain information about the
status of edge (j, j′) and then, according to the obtained information, chose whether to go through
vertex k, j or return to vertex i.
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Figure 2: The relation between the “UP” and gossip probabilities for different wis values. The area
above the line is where C∗(s, t, {X})i < C∗(s, t, {X})kj and the traveler will cycle for information

Next we will calculate the expected cost of the different routing policies. The cost of the path
through vertex k is deterministic and does not depend on the a-priory knowledge of the state of
the edge (j, j′)

3The risky policy is taken by a traveler that must reach the destination at some specific time (for example to catch
a plane that leaves in 10 time units). If not there by that time the traveler care less about the path cost (anyway he
needs to reschedule).
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C(s, t, {·})k = 1001 (3)

The cost of the path through vertex j without any a-priory knowledge about the state of the
edge (j, j′)

C(s, t, {X})j = 10002(1− ξU ) + 3ξU (4)

If the traveler needs to choose between traveling through k or j (without first traveling to
vertex i) then his optimal routing policy depends on the value of his information vector:

C∗(s, t, {X})kj = min(1001, (1− ξU )10002 + 3ξU )
C∗(s, t, {1})kj = 3

C∗(s, t, {10000})kj = 1001

If the traveler knows that the stochastic edge is in the “DOWN” state he will travel to vertex
k; in the case he knows that the edge is in the “UP” state he will travel to vertex j; and in the case
the traveler doesn’t know the state of the stochastic edge he will decide according to the value of
ξU .

When the traveler moves to vertex i without any a-priory knowledge about the state of the
edge (j, j′) the expected cost of his routing policy assuming one trial to obtain information is:

C(s, t, {X})(1)
i = 2 + ξT [ξUC∗(s, t, {1})kj+ (5)

(1− ξU )C∗(s, t, {10000})kj ] + (1− ξT )C∗(s, t, {X})kj

= 2 + ξT [3ξU + 1001(1− ξU )] + (1− ξT )C∗(s, t, {X})kj

When the traveler routing policy is to cycle between vertices s and i until it obtains information,
the expected number of cycles he will need is 1/ξT . Therefore

C(s, t, {X})i = 2(1/ξT ) + 3ξU + 1001(1− ξU )

For the above example there is a threshold probability, ξ0, such that for ξT ≥ ξ0

C∗(s, t, {X})i < C∗(s, t, {X})kj (6)

Meaning that for ξT ≥ ξ0 the traveler’s optimal routing policy when he has no information about the
state of the stochastic edge is the one that makes a detour through node i until it obtains information
about the state of the stochastic edge. Fig. 2 illustrates this by plotting the equilibrium line of
Eq. (6) for different values of ŵis. The area above the line is where the inequality holds and the
traveler is making a detour to gather information. The minimum of the plots in Fig. 2 is when
Eq. 4 and Eq. 3 are equal, at ξU = 0.90028 in this example.

The optimal routing policy for a traveler that starts on vertex s is outlined in the EXAM-
PLE POLICY below. And the corresponding routing table for source vertex s is outlined in Table
2.
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Topological Probability(ξT ) I(s) next hop

≥ ξ0 {X} i
≥ ξ0 {1} j
≥ ξ0 {10000} k
< ξ0 {X} α
< ξ0 {1} j
< ξ0 {10000} k

Table 2: Routing table of the source vertex s. The value of α is k or j according to the value of ξU .

EXAMPLE POLICY

IF ξT ≥ ξ0

WHILE I = {X} cycle in the path {s, i, s}
IF I = {1}
Then take the path LU = {s, j, j′, t}

ELSE IF I = {10000}
Then take the path LD = {s, k, t}

ELSE IF I = {X}
Then take the path min(LU , LD)

END

3 The Routing Algorithm

3.1 Solution approach

The optimal routing policy in the gossip networks is the one with the minimum expected cost
from source to destination for a given information vector. In this subsection we will show how one
can calculate the expected cost of a routing policy in the network, in the next subsection we will
introduce an algorithm that uses these calculations to find the optimal routing policy to destination.

A traveler starts his journey on vertex s with information vector I(s) and wants to reach vertex
t. During his journey, there is a probability that he will learn, through gossiping, about the states
of the stochastic edges and accordingly update his information vector I(·). At every vertex r ∈ V
he reaches, the traveler makes a routing decision, based on his updated information vector. The
expected cost of a routing policy between a source vertex, s, and a destination vertex, t through a
neighbor vertex r is:

C(s, t, I(s))r = ŵsr+ (7)∑
I(r)∈B(I(s),(s,r)) P (I(s), I(r), T (s, r)) ·Q(I(r))

· C(r, t, I(r))

The weight of edge (s, r) is known and its value is ŵsr. B(I(s), (s, r)) is the set of all the
possible information vectors I(r) of the traveler when reaching vertex r, assuming that at vertex
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Figure 3: The relaxation process for one state of one edge.

s it has the information vector I(s). P (I(s), I(r), T (r, s)) is the probability that the information
vector will change from I(s) into I(r) on the edge (s, r). And Q(I(r)) is the a-priory probability
that the network G is in a state corresponding to the information in I(r).

3.2 Dynamic Programming Algorithm

The optimal routing policy from vertex s to vertex t in the gossip networks, C∗(s, t, I(s)), is the one
that minimizes the expression in Eq. 7. Namely, the one that selects the policy with the smallest
expected cost. Thus, we can write the following dynamic program:

C∗(s, t, I(s)) = min
r∈Ns

{ŵsr+ (8)
∑

I(r)∈B(I(s),(s,r)) P (I(s), I(r), T (r, s))
·Q(I(r)) · C∗(r, t, I(r))}

where Ni is the group of neighbors of vertex i.
The proposed dynamic programming algorithm is similar to the Bellman-Ford algorithm [BG92].

In the classical Bellman-Ford equations one finds for each vertex the shortest path to a destination.
In our gossip networks, we need to find for each vertex the shortest path for each possible state of
the vertex’s information vector I(·).

Specifically, for each vertex u ∈ V we keep a table, TBL(u), (see Fig. 3) that has l rows (l
is defined in Eq. 1 or Eq. 2 according of the model in use. Each row holds the information vector
state, sk ∈ I, the distance to destination, DD, and a pointer to next vertex, PN .

The relaxation processes for each edge (u, v) and for each information vector state sk is:
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DD(u, sk) = ŵuv+∑l
m=1 P (sk, sm, T (u, v))Q(sm)DD(v, sm)

For each source vertex state, sk, the algorithm checks what is the probability that during
the travel on the edge (u, v) the state sk will change into sm, (m = 1 . . . l), each of the possible
information vector states of the destination vertex v. Each gossip probability P (sk, sm, T (u, v))
is multiplied by the destination vertex distance DD(v, sm) and the probability Q(sm) that the
network will be in state sm.

The complete algorithm GOSSIP DP is presented below.

GOSSIP DP(G,w,T,s,t)

For k = 1 To l
DD(t, sk)← 0; PN(t, sk)← t

Cont← TRUE
For Each u ∈ V \ t

For k = 1 To l
DD(u, sk)←∞; PN(u, sk)← NIL

For count = 1 to |V | − 1 && While Cont = TRUE
Cont← FALSE
For Each e ∈ E

if GOSSIP RELAX(e) then Cont← TRUE
End

Function GOSSIP RELAX(e)
u← Source(e); v ← Destination(e)
Relax← FALSE
For k = 1 To l

tempDD ← ŵe+∑l
m=1 TRANS PROBE(sk, sm) ·DD(v, sm)

If tempDD < DD(u, sk) Then
DD(u, sk)← tempDD
PN(u, sk)← v
Relax← TRUE

Next k
Return(Relax)

End Function

Function TRANS PROBE(sk, sm)
P ← probability to move from sk to sm on e
Q← probability of the network to be in sm

Return(P ·Q)
End Function

Before the traveler starts his journey he builds his optimal routing policy by calculating TBL
for all the vertices of the network using the algorithm GOSSIP DP. During his journey the traveler
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updates his information vector and navigates on the network using the information in TBL. Every
time the traveler reaches a new vertex u ∈ V with information vector state sk = I(u) he looks for
the next vertex in PN(u, sk).

3.3 Complexity of G-IWC and G-DWC

Theorem 3.1 The complexity of the GOSSIP DP algorithm under the G-IWC model is O(nmδ(2β+
1)δ).

Proof: When there is no correlation between the edges weights we must examine all the edges
(O(|E|)); for each edge we must examine all the source vertex stochastic states (O(lI)); and for
each source vertex stochastic state we examine all the destination vertex’s stochastic state (O(lI)),
here we assume that the number of stochastic states is bounded by β. Notice however that not all
state transfers are possible and actually the number of possible state transfer we need to examine
is only (2β + 1)δ. The first β + 1 states are for the transfer from state {X} to all the available
states, the second β states are for staying in the same state when the weight of the stochastic edge
is known. In each state transfer we need to calculate the transfer probability P and the a-priory
probability Q, for that we need to examine all stochastic edges O(δ). In the worst case a vertex
has O(|V |) neighbors and the algorithm terminates either after repeating for each of the neighbors
or when there is no difference between successive iterations.

Theorem 3.2 The complexity of the GOSSIP DP algorithm under the G-DWC model is O(nmδ22R).

Proof: The complexity of GOSSIP DP algorithm under the G-DWC model is similar to the
complexity of the algorithm under the G-IWC model. The only different is that we need to examine
O(lD) transfer states instead of O(lI) states. According to Eq. 2, O(lI) = 2R.

Although the optimal solution to the gossip networks problem is intractable in general, we
presented above two special cases where the optimal solution is polynomial in respect to the network
size. In the first case a polynomial solution is obtained when the number of stochastic edges δ is
small. The second case is when the number of realizations in the network is relatively small.

4 Discussion

4.1 Gossiping and Learning

In this subsection we will illustrate the importance of gossiping by comparing the learning rates of
the gossip and non-gossip travelers. We assume the G-DWC model with R possible realizations.
When the traveler starts his journey he doesn’t know what is the current network realization
r ∈ R. Each time he gathers information about some edge weights he could eliminate zero or more
network realizations in which those weights are inconsistent. Depending on the network weights
distribution, the traveller will be able to determine the current realization of the network after
obtaining information about the state of enough edges. Since each time the traveler visits a vertex
he gathers information about the state of all the emerging roads we define information vertices as
the set of vertices the traveler needs to visit in order to find the current network realization, and
senote it by k. In the following subsection we assume that the traveler doesn’t visit a vertex more
than once and that the information vertices are distributed uniformly at random in the network.

We first analyze the non-gossip traveler which we call a Step-By-Step (SBS) traveler, he receives
information about a vertex only when he visits it. The probability that after i steps in the network
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(visiting i vertices) the SBS traveler already visited j out of the k information vertices is given by
the hypergeometric distribution.

Pr(n, k, i; x = j) =

(
k
j

)(
n−k
i−j

)
(
n
i

) where j ≤ k; j ≤ i ≤ n

The probability that after visiting i vertices the SBS traveler already visited all k information
vertices and thus found the current network realization is

Pr(n, k, i; x = k) =

(
k
k

)(
n−k
i−k

)
(
n
i

) where k ≤ i ≤ n

The expected number of steps the SBS traveler needs to take to find all k information vertices
is

n∑
i=k

iPr(n, k, i; x = k) =
n∑

i=k

i

(
n−k
i−k

)
(
n
i

)
After normalizing the above expression we get

∑n
i=k i

(n−k
i−k)
(n

i)∑n
i=k

(n−k
i−k)
(n

i)

=

∑n
i=k i i!

(i−k)!∑n
i=k

i!
(i−k)!

=
(n + 1)k + n

2 + k
(9)

Eq. 9 indicates that the number of steps the SBS traveler needs to take in order to find the
current network realization is proportional to the network size, n.

Unlike the SBS traveler that can only gather information about one new vertex in each step,
the gossip traveler has an additional probability to receive information about all the network’s
remaining unknown vertices. In his first step the gossip traveler receives information about ξT n
vertices and in the i step about ξT (1−ξT )in vertices. In each step the gossip traveler has information
about all the vertices he learned about in his previous steps. Therefore, in the i step the gossip
traveller has information about g(i) vertices:

g(i) =
i−1∑
j=0

ξT (1− ξT )jn = (1− ξ̄T
i)n

where ξ̄T = 1− ξT .
Obviously, when the traveler gathers information about all n network’s vertices he has infor-

mation about all k information vertices and knows the network current realization. Thus, an upper
bound on the expected number of steps the gossip traveler needs to take is the number of steps
needed to gather information about all the network vertices. Since the number of vertices is discrete
we are looking for the step number, r, such as

g(r + 1)− g(r) = n(ξ̄T
r − ξ̄T

r+1) < 1

Solving the above equation yield

r < − ln(nξT )
ln(1− ξT )

(10)
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In the gossip model presented in this paper r could be even smaller since the gossip traveler
gather information by both gossiping and visiting vertices. In the above analysis we took into
account only gossiping. Thus, Eq. 10, is an upper bound on the expected number of steps the
gossip traveler needs to take in order to find the current network realization. Comparing Eq. 10, to
the expected number of steps the SBS traveler needs to take, Eq. 9, we conclude that the outcome
of gossiping is higher learning rate. While the SBS traveler needs on average to visit O(n) vertices
of the network to learn its state, the gossip traveler needs to visit only O(log(n)) of them. In most
cases higher learning rate in stochastic networks will result in shortest path to destination. Once
the traveler knows the network edge’s states he can reduce his path cost, for example by avoiding
blocks roads.

4.2 Characteristics of traveling in Gossip Networks

In this section we will discuss the characteristics of optimal routing in gossip networks under the
proposed GOSSIP DP algorithm. The discussion is under the following assumptions: The network
is in the G-IWC model with one stochastic edge, and the traveler needs to traverse over the
stochastic edge on his way from source to destination. The stochastic edge can be either in the
“UP” or “DOWN” states. In the “UP” state the stochastic edge weight is similar to the weight of the
deterministic edges, in the “DOWN” state its weight is higher than the weights of the deterministic
edges. Once we analyze the parameters that influence routing under those assumptions expanding
the model to the case of several stochastic edges with several stochastic states is straightforward.

A traveler in the gossip networks that is navigating using our optimal routing policy can be
viewed as operating in three different regimes: “WIN”, “LOSE”, and “NEUTRAL”. In the “WIN”
regime the traveler reduces his travel cost by gossiping. In the “NEUTRAL” regime obtaining
information doesn’t increase or decrease the gossip traveler’s path cost. In the “LOSE” regime
obtaining information actually increases the traveler path cost. The operating regime is a result of
the following parameters: the magnitude of the difference between the values of the actual weight of
the stochastic edges (ŵe) and their expected weights (ωSE), the values of the topology probability
(ξT ), and the magnitude of the difference between the values of the stochastic edges actual state
(ξA) and a-priory probability to be in the “UP” state (ξU ) (see Table 4 for notation summary).
Next we will explain the influence of each parameter.

The magnitude of the difference between the traveler’s a-priory knowledge (ωSE) and the
actual weight of the stochastic edges (ŵe), denoted by ∆ω = |ωSE− ŵe|, determines the influence of
obtaining information on the traveler’s path cost. When ωSE and ŵe are similar, a gossip traveler
will not have an advantage over a non-gossip traveler, they both know a-priory the “correct”
stochastic state. However, above some critical difference, ∆ω > ∆C obtaining information will
decrease the traveler’s path cost. For example, when ωSE “tells” the travelers that a stochastic
edges is in the “UP” state and the actual state is “DOWN” a non-gossip traveler may include
this edge in its path while a gossip traveler will reduce his path cost by bypassing it in advance.
Similarly, when ωSE “tells” the traveler that a stochastic edge is in the “DOWN” state and the
actual state is “UP” a non-gossip traveler will not include the stochastic edge in its planned route
trying to bypassing it and therefore will increase his path cost compared to the gossip traveler.
The value of ∆C is determined by the difference that will cause the non-gossip traveler to take the
wrong path, meaning that he will bypass the stochastic edge when it’s “UP” or traveler through it
when it’s “DOWN”.

Fig. 4 illustrates the different possible types of paths a traveler can have for different values
of topology probability (ξT ). When there is no gossiping (a) the probability to receive information
is zero thus the optimal policy is determined a-priory before the start of the journey and has no
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Figure 4: The different possible paths a traveler can have for different topology probabilities. (a)
No gossiping, (b) Maximal gossiping, and (c) In between.

recourse. In this case the optimal policy is the one that minimize the expected weights. When
ξT is maximal (b) the traveler learns about the state of all the stochastic edges on the traversal
of the first edge, (s, r), and then travels to the destination t with full knowledge about ŵe and
therefore without changing his course. When ξT is in between (c) the traveler’s path is composed
of three phases, the initial phase is until the traveler obtains any information about the state of
the stochastic edges. Then, in the learning phase, the traveler may recalculate and recourse his
path according to the updated information vector – his optimal policy is a collection of different
branches. When the traveler has full information about ŵe, at some vertex u, he travels to the
destination without changing his course. The higher ξT the quicker the gossip traveler will learn
about the state of the network and therefore minimize the learning phase in his travel which leads
to decrease in the policy cost.

According to the optimal policy, stated in Eq. 8, one of the parameters that determines the
relative weight of each branch in the path is the a-priory probability of the network to be in certain
stochastic state, denoted here by ξU . The closer ξU is to ξA (small ∆ξ = |ξU − ξA|) the more
efficient the learning phase will be. Efficient learning means that the traveler is directed toward the
“right” direction by giving higher relative weight to the “right” branch. When there is a relatively
large difference between ξU and ξA the branches in the learning phase will direct the traveler to the
“wrong” direction and as a result the cost of his policy will increase. For example, when the a-priory
probability of the stochastic edge to be in the “UP” state is small (ξU ≈ 0) the optimal policy will
direct the gossip traveler to branches that detour the stochastic edge. When the stochastic edge
is actually in the “DOWN” state this direction is justify, however when the actual state of the
stochastic edge is “UP” the direction will maximize the gossip traveler learning phase and his total
traveling costs.

The parameters that influence the traveler optimal policy cost in the gossip networks are
summarized in Table 3.

The operating regime that the traveler experiences is determined by the combined values of
the parameters, ∆ω,ξT , and ∆ξ. Fig. 5 illustrates the influence of the parameters on the network
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Parameter Description

∆ω = |ŵe − ωSE | Increase in ∆ω directs the traveler to the
“wrong” direction

ξT Increase in the ξT decreases the learning phase
∆ξ = |ξA − ξU | Increase in ∆ξ increases the learning phase

Table 3: The parameters that determine the operating regimes of a traveler in the gossip network.
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Figure 5: The influence of the gossip network parameters on the network regime

regime. When ∆ω is below some threshold, ∆C , the a-priory knowledge of the network state is
close enough to the true value, and thus increasing the path length to obtain information can not
benefit the gossip traveler. As a results, in this case, the network can be either in the “NEUTRAL”
or “LOSE” regimes. The “LOSE” regime is obtained when the learning phase is relatively large
(increase in ∆ξ), however a larger topology probability shortens the learning phase and pushes
the network into the “NEUTRAL” regime. The ultimate network regime is determined by the
relation between those two parameters ξT , and ∆ξ. Similarly, when ∆ω is above the threshold,
∆C , gossiping helps the gossip traveler to reduce his policy costs. The network can be either in
the “WIN” or “NEUTRAL” regimes according to the relation between ξT , and ∆ξ. In the next
section, we will demonstrate the above discussion using the simulation results.

5 Numerical Analysis

The main purpose of the simulations was to investigate the influence of gossiping on the traveler’s
optimal policy cost under the different parameters used in the gossip networks. The performance
and behavior of the proposed algorithm on the gossip networks are examined through numerical
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Notation Description

ωD : Weights of the deterministic edges
ωSE : Expected weights of the stochastic edges
ŵe : Actual weight of the stochastic edges
ωSD : Weights of the stochastic edges in “DOWN”

state
ξA : Stochastic edges actual state
ξT : Topology probability
ξU : A-priory probability of the stochastic edges to

be in the “UP” state
θE : Expected cost of the optimal policy
θR: Relative expected cost (θE) at some topology

probability; θE(ξT )/θE(0)
θA: The average of relative expected (θR) over the

whole range of ξT

Configuration: A set of values for the above parameters
Operation Regime: Determined by the network configuration.

Can be either “WIN”, “NEUTRAL” or “LOSE”

Table 4: Notation Summary

experiments on various grid networks configurations with random generated weights under the G-
IWC model. In each network configuration the simulation derived results comparing the traveler’s
expected optimal policy cost for different topology probabilities.

First, for each random generated network configuration the optimal routing policy tables are
calculated using the GOSSIP DP algorithm. Then, using the calculated routing tables the simula-
tion computes the expected optimal policy cost from each vertex to the destination. For notation
of the parameters we use see Table 4.

5.1 Simulation design

The simulation was conducted on fully connected grid networks representing, for example, road
structure in many urban areas. Fig. 6 shows such a network for a 4 × 4 grid. The weights of
the different deterministic edges were selected uniformly randomly. Three specific edges in the grid
were chosen to be stochastic. The stochastic edges could be in two states, with probability ξU in
the “UP” state, then the edge weights are randomly selected exactly like the deterministic edges.
When the stochastic edges are in the “DOWN” state their weights are set to different values as
explain further below. The stochastic edges were selected such that they will have a significant
influence on the optimal policy to the destination vertex t. For the same reason, the weight of the
deterministic edge that is adjacent to t was set to be higher than the other deterministic edges.

The following list details the range of values we used in the simulation:

Deterministic weight (ωD) : Uniform random in [1,100].

Stochastic “DOWN” weight (ωSD) : In each configuration all stochastic edges had the same weight
which was selected uniformly at random in [0,800].
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Figure 6: A 4×4 grid network used in the simulations. The dashed lines are stochastic edges with
probability ξU to be in the “UP” state. Larger grids had the same structure.

Topology probability (ξT ) : In each configuration the same value of ξT was set to all the edges in
the network. The range of tested values was in [0,1].

A-priory probability (ξU ) : Different values in the range [0,1] were used to test the influence of ξU .
In each configuration all stochastic edges were set to the same value.

Stochastic actual state (ξA) : The actual state of all three stochastic edges was set equally to either
“UP” or “DOWN”.

Network structure (Grid Size) : Two different network grids were used with sizes of 4 × 4 and 8
× 8.

Totally we tested 21(ξT ) · 9(ωSD) · 11(ξU ) · 2(ξA) = 4158 different configuration for each grid
size.

In order to remove the influence of specific random network weights the same set of experiments
were repeated with the same network configuration for ten different random seeds. The analyzed
results are averaged over the ten different runs.

5.2 Performance Measurement

After the routing tables were build for a given network configuration the Expected Cost (θE) from
each vertex to the destination was calculated. θE is calculated by following all the possible paths
from source to destination assuming that the traveler starts his travel with no information IV =
{X, X, X}. The paths were weighted according to their probability to occur. The results are
presented using the value of Relative Expected Cost (θR), where

θR(ξT ) =
θE(ξT )

θE(ξT = 0)
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Figure 7: θR (Y axe) as function of ξT (X axis). This simulation was done with the following
parameters: grid size = 4 × 4 ; ξA = “DOWN”; ωSD = 700; ξU = 0,0.7 and 0.9.

When θR = 1 gossiping doesn’t change the gossip traveler’s θE and we are in the “NEUTRAL”
regime. For θR < 1 obtaining information leads to decrease in θE – the “WIN” regime. In the
case of θR > 1 obtaining information leads to increase in θE , contradicting the desirable outcome
– the “LOSE” regime. We are interested in the value of θR and less in the value of θE since we are
mainly interested in the influence of obtaining information on the performance of a given network
configuration.

Some of the produced results are presented using the values of θA which is the Average of θR

over all the different measured gossip probabilities for a given network configuration.

5.3 Results Discussion

The results presented in Fig. 7 demonstrates the role of obtaining information in different network
configurations. In this example ξA =“DOWN”, thus when ξU=0 obtaining information doesn’t
change the traveler’s optimal policy cost. When ∆ω = ∆ξ = 0 obtaining information will not help
the gossip traveler, both travelers are directed in the “right” direction and the gossip traveler has
a minimal learning phase, as a result the network operates in the “NEUTRAL” regime. When
ξU=0.7 obtaining information increases the traveler’s optimal policy cost – the network is in the
“LOSE” regime. In this case ωSE is such that the non-gossip traveler bypass the stochastic edges,
which is justify since ξA=“DOWN”. Therefore, the non-gossip traveler knows the “right” direction.
Obtaining information only puzzles the gossip traveler due to ∆ξ that implies that the learning
phase will be relatively large, as a result the gossip traveler will increase his optimal policy cost.
Increase in the ξT leads to shorter learning phase which leads to smaller θR. When ξU=0.9 the
network is in the “WIN” regime. In this case ∆ω > ∆C , thus the non-gossip traveler roam to the
“wrong” direction. Increase in ξT leads to reduce in θR since the gossip traveler finishes his learning
phase quicker. Fig. 7 also illustrates that the magnitude of the “WIN” effect is substantial larger
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Figure 8: θR (Y axis) as function of ξU (X axis) for different ξT . The different graphs are drawn
for ξT = 0, 0.2, 0.4, 0.6, 0.8, and 1. This simulation was done with the following parameters: grid
size = 4 ; ξA = “DOWN”; ωSD = 600.

than the “LOSE” effect.
Fig. 8 depicts the relation between ξU and θR for different ξT values. The curves move between

three regimes. When ξU is below a threshold value,an increase in ξU doesn’t change θR – the network
is in the “NEUTRAL” regime. Then, increase in ξU leads to increase of θR and the network is in
the “LOSE” regime. Further increase of ξU moves the network into the “WIN” regime. Comparing
the graphs for different ξT reveals that in the “NEUTRAL” regime the behavior of all the graphs is
almost identical. In the “LOSE” regime, the θR peak is reached at ξT = 0.2. In the “WIN” regime
increase in ξT leads to decrease in θR.

In this graph the network is in the “NEUTRAL” regime when ωSE and ŵe are similar and
the difference between ξA and ξU is small. In the “LOSE” regime the increase in ∆ξ leads to a
longer learning phase and as a result an increase in θR. In the “WIN” regime the increase in ∆ξ

increases the learning phase while an increase in ξT decrease it, however the non-gossip traveler
moves towards the stochastic edge which increases his θE significantly compare to the θE of the
gossip traveler. As a result, taking both parameters into account, the relative optimal policy cost
of the gossip traveler, θR, is reduced.

Fig. 9 illustrates the relation between ξU and ωSD for averaged ξT when the grid size is 4 X
4. Here are several observations from the results:
1) When ξU is zero, ωSE is equal to ωSD, in this case the traveler knows a-priory ŵe and there is
no benefit in obtaining information – the network is in the “NEUTRAL” regime.
2) At lower ωSD (0−200) increase of ξU leads the network into the “WIN” regime. In this case the
stochastic edges weights is similar to the weights of the deterministic edges, therefore information
helps the gossip traveler to find the optimal path in the network and decrease his θA only moderately.
3) At higher ωSD (300−) increase of ξU leads the network from the “NEUTRAL” to the “LOSE”
and then to the “WIN” regime. In the “NEUTRAL” and “LOSE” regimes the non-gossip traveler
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 Figure 9: θA for different values of ωSD (X axis) and ξU (Y axis). White cells represents the “WIN”
regime, gray the “NEUTRAL” regime and darker gray the “LOSE” regime. This simulation was
done with the following parameters: grid size = 4; ξA = “DOWN”; θA was averaged over ξT = 0
to 1.

bypass the stochastic edges, therefore in this case obtaining information doesn’t help the gossip
traveler. When ξU > 0 obtaining information actually increases the learning phase due to relatively
large ∆ξ and thus there is an increase in the θA. Then, with the increase in ξU the non-gossip traveler
tries to travel through the stochastic edges which leads to increase in his path cost and decrease in
θA of the gossip traveler that bypass the stochastic edge. The move from the “LOSE” to “WIN”
regime is not due to the fact that the gossip traveler decreases his path cost, he actually increases
it. However the non-gossip traveler increases his path cost even more due to the fact that now he
doesn’t bypass the stochastic edges.
4) At higher ωSD (300−), with the increase in ωSD there is increase in the size of the “LOSE”
regime. The “LOSE” regime ends when the non-gossip traveler decides to travel through the
stochastic edges. This is happening when his ωSE reaches ≈ 200 which is the cost of bypassing the
stochastic edges in this example.
5) At higher ωSD (300−), in the “LOSE” regime, the value of θA increases with the increase in
ξU and doesn’t change with the increase in ωSD. This phenomena is due to the parameter ∆ξ, at
higher ξU there is more probability to paths that leads to the “wrong” direction.
6) In the “WIN” regime, increase in ωSD leads to decrease in θA. In higher ωSD the non-gossip
traveler travel through the stochastic edges that have increased weights, therefore the gossip traveler
can reduce his path cost relatively more.
7) In the “WIN” regime, increase in ξU leads to decrease in θA. The change here is more moderate
and is the result of two parameters. On the one hand with the increase in ξU the difference between
ωSE and ŵe is increased which leads to increase in the non-gossip traveler path cost and decrease
in θA. On the other hand increase of ξU leads to increase in the learning phase which leads to the
opposite result of increase in θA. The outcome of the two parameters is total decrease in θA.
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Figure 10: θA for different values of ωSD (X axis) and ξU (Y axis). White cells represents the “WIN”
regime, gray the “NEUTRAL” regime and darker gray the “LOSE” regime. This simulation was
done with the following parameters: grid size = 8; ξA = “DOWN”; θA was averaged over ξT = 0
to 1.

Fig. 9 illustrates that for this network configuration gossiping helps in more than half of the
cases. In addition, the gain from gossiping is far greater, as much as 50% reduction of the expected
path cost, compare to the possible loss which is only up to 7%. However, the fact that one can lose
from trying to obtain information dictates the need to understand gossip networks behaviors.

Fig. 10 illustrates that the “LOSE” regime is less significant in larger grid sizes. The reason
is that in a small grid the number of steps to destination is small therefore even one wrong step
can lead to significant increase in the path cost. In larger networks, where the number of steps is
relatively large, the influence of wrong moves is smaller. In real life traffic applications the smaller
grid size behavior is more likely due to the small number of options the traveler have especially
when the network is in the “DOWN” state - high traffic.

6 Conclusions

This paper presented and investigated a new model for information gathering in stochastic networks,
the gossip networks. Gossiping could lead to some unusual phenomena, in our example network
the optimal routing policy directs travelers to make a detour in order to gather information and
minimize their expected path cost. The optimal traveling policy in gossip network is given by a
dynamic programming equations. Although the algorithm that solves the equations, GOSSIP DP,
is intractable in general, we presented two special scenarios where the optimal solution is polynomial
in respect to the network size. The first scenario is when the number of stochastic edges is small
(G-DWC), the second is when there are small number of realizations in the network (G-DWC). We
showed that under the network realizations model (G-DWC) non-gossip travelers on average will
need to visit almost all of the network to identify its realization while gossip travelers will identify
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the network realization after visiting only logarithmic number of the vertices. The influence of
gossiping on the optimal policy cost is determined by three parameters: the difference between the
stochastic edges actual and expected costs, the topology probability and the difference between
the a-priority and actual state of the stochastic edge. We analyzed the relation between these
parameters and concluded that it leads to three regimes of operation. In each regime gossiping has
different effect on the traveler optimal path cost, “WIN” (reduce), “NEUTRAL” (doesn’t change)
and “LOSE” (increase). Numerical studies on gossip grid networks confirmed the regime analysis.
The numerical studies illustrate that in the networks we study the ”WIN” regime is larger both in
size and magnitude and that the “LOSE” regime is more common in small networks.

Future research in gossip networks is needed to understand the influence of gossiping on differ-
ent network model such as time dependent network for example. Another possible future direction
involves developing general approximation algorithms.
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