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Abstract

In highly distributed Internet measurement systems distributed agents periodically
measure the Internet using a tool called traceroute, which discovers a path in
the network graph. Each agent performs many traceroute measurements to a set of
destinations in the network, and thus reveals a portion of the Internet graph as it is
seen from the agent locations. In every period we need to check whether previously
discovered edges still exist in this period, a process termed validation. To this end
we maintain a database of all the different measurements performed by each agent.
Our aim is to be able to validate the existence of all previously discovered edges in
the minimum possible time.

In this work we formulate the validation problem as a generalization of the well
know set cover problem. We reduce the set cover problem to the validation prob-
lem, thus proving that the validation problem is NP-hard. We present a O(log n)-
approximation algorithm to the validation problem, where n in the number of edges
that need to be validated. We also show that unless P = NP the approximation
ratio of the validation problem is Ω(log n).
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1 Introduction

Our problem arises in the context of highly distributed Internet measurement systems [7,8].
In this type of systems, distributed agents periodically measure the Internet using a tool
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called traceroute, which discovers a path in the network graph 3 . Each agent performs
many traceroute measurements to a set of destinations in the network, and thus reveals a
portion of the Internet graph as it is seen from the agent locations. While some edges can be
seen from many measurement locations, others can be seen only from a handful of locations
[7,8,1], which is the major reason for distributing this process. We create a periodic map by
unifying the measurements made by all the agents over this period.

There are many possible heuristics to direct agents to destinations in order to find as many
graph edges as possible. However, one thing we have to do in every period is to check whether
previously discovered edges still exist in this period, a process termed validation. To this end
we maintain a database of all the different measurements performed by each agent 4 . Our
aim is to be able to validate the existence of all previously discovered edges in the minimum
possible time.

A solution to the validation problem is to model each tracroute measurement as a set of edges,
and then look for the smallest group of traceroute measurements (the sets) that covers the
known graph, e.g., using a set cover logarithmic approximation algorithms [4]. However, this
solution may end up finding many groups which are measured by one agent while leaving
other agents with little or no measurements to perform. Since all agents measure at roughly
the same rate, the termination time of the validation task is determined by the time it will
take the agent with the largest number of measurements to complete its task. Thus, our aim
is not to minimize the number of measurements that cover the graph, but to minimize the
maximal number of measurement which is assigned to the agent with the most measurements.
Therefore reducing the validation problem to the set cover problem will not necessarily give
us the best solution, so we describe the validation problem as a generalization of the set
cover problem.

Our Results. We define a new generalization of the set cover problem that is equivalent
to the validation problem, and give an O(log n)-approximation algorithm, where n is the
number of edges in the validation problem, and show that our approximation ratio is tight,
namely that our generalization of set cover cannot be approximated in polynomial time to
within a factor of o(log n).

Organization: In Section 2 we give notations and a formal definition of the problem. In Sec-
tion 3 we present an O(log n)-approximation algorithm for the generalized set cover problem,
and prove that this ratio cannot be asymptotically improved.

3 The path can be expressed at various levels of abstraction. The most common level in use is the
autonomous system (AS) level, where each node in the graph (and thus in the path) represent an
AS (or a network) in the Internet.
4 The list is kept at the abstraction level we are interested in, e.g., at the AS level.
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2 Preliminaries

For an algorithm A, denote the objective value of a solution it delivers on an input I by
A(I). An optimal solution is denoted by opt, and the optimal objective value is denoted by
opt as well. The (absolute) approximation ratio of A is defined as the infimum ρ such that
for any input I, A(I) ≤ ρ · opt(I).

Given a universe U = {u1, ..., un} and a family of its subsets, S = {S1, ..., Sk} ⊆ P (U),⋃
Sj∈S Sj = U , set cover is the problem of finding a minimal sub-family S̄ of S that covers

the whole universe,
⋃

Sj∈S̄ Sj = U . Set cover is a classic NP-hard combinatorial optimization
problem, and it is known that it can be approximated to within ln n− ln ln n+Θ(1) [9,5,10].
By [6,2] it follows that unless P = NP , there exists a constant 0 < c < 1 so that set cover
cannot be efficiently approximated to within any number smaller than c log2 n. Feige [3] has
shown hardness of approximating set cover in (1− o(1)) ln n.

We formalize the validation problem discussed in the introduction in the following manner:
every edge in a traceroute is an element in a universe U . Each traceroute is modeled as a
set of elements in U - its edges. Each agent is modeled as a family of sets, indicating the list
of traceroutes it can perform. Moreover, each agent has a weight, indicating the number of
traceroutes it can perform at a time period. Thus we get the following problem:

Problem 2.1 Validation Set Cover - VSC Given a universe U of n elements, a collection
of subsets of U , S = {S1, ..., Sk}, a partition of S π = {A1, ..., Am} where Ai ⊆ S, and a
weight function ω : π → N, find a subcollection S̄ of S that covers all elements of U such

that max1≤i≤m

⌈ |Ai∩S̄|
ω(Ai)

⌉
is minimum.

Note: the Validation Set Cover problem is indeed a generalization of the set cover problem –
if m = 1 then the Validation Set Cover problem is exactly the set cover problem. Thus the
Validation Set Cover problem is also NP-hard.

3 An O(log n)-Approximation Algorithm

In this section we give an approximation algorithm for the VSC problem with an approx-
imation ratio of O(log n). We then show that this is the best ratio possible by showing a
lower bound of Ω(log n) on the approximation ratio.

The greedy strategy applies naturally to the VSC problem: iteratively for each 1 ≤ i ≤ m pick
ω(Ai) sets in Ai that cover the maximum number of elements in U that are still uncovered.
The algorithm stops when all the elements in U are covered, and outputs the number of
steps preformed.

Algorithm 1 Greedy VSC algorithm

(1) ` ← 0
(2) C ← φ
(3) while C 6= U
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(a) ` ← ` + 1
(b) for 1 ≤ i ≤ m

(i) repeat ω(Ai) times
(A) find a set Sj such that Sj ∈ Ai and Sj ∩ (U \ C) is maximum.
(B) pick Sj

(C) C ← C ∪ Sj

(4) output `

Theorem 1 Algorithm 1 gives an approximation ratio of O(log n).

We next prove Theorem 1. We first define the `-residual VSC problem. The input to this
problem is the input to the VSC problems after ` steps of the algorithm, with the same
objective function:

• Let n` be the number of elements in U that remain after ` steps of the algorithm. For
` = 0 n` = n.

• let C` be the set of elements in U that are covered until step `,
• for all 1 ≤ j ≤ k = |S|
· let S`

j = Sj \ C`,
· for all 1 ≤ i ≤ m let A`

i = Ai \ {Sj ∈ Ai|Sj has been picked until step `},
· let S` = {S`

j |S`
j 6= φ}.

• for all 1 ≤ i ≤ m let ω(A`
i) = ω(Ai).

• let opt` be the optimal solution of the residual input after ` steps. 5

Then opt` = minS̄` max1≤i≤m

⌈
|A`

i∩S̄`|
ω(A`

i)

⌉
where S̄` is a subcollection of S` that covers all

elements of U \ C`.

Thus we get the following claim:

Claim 3.1 At step ` ≥ 1 of Algorithm 1 at least n`−1

opt`−1
elements in U are covered.

Proof: The main observation is that any optimal algorithm covers all the elements in opt
stages. Obviously, there exists a stage in which at least n/opt elements are covered. Since
the order of the stages does not change opt, assume w.l.o.g that at stage 1 any optimal
algorithm covers at least n/opt elements. Thus, if ` = 1 then, since Algorithm 1 picks a set
that covers the maximum number of elements, it holds that at least n

opt = n`−1

opt`−1
elements

are covered at step `. If ` > 1 then an optimal algorithm covers all the n`−1 remaining
elements of U \C`−1 in opt`−1 steps. Since Algorithm 1 picks a set that covers the maximum
number of remaining elements, it holds that at least n`−1

opt`−1
elements are covered at step `.

2

Using the above claim and the observation that for all ` opt` ≤ opt, we get the following
lemma.

Lemma 3.2 n` ≤ n
(
1− 1

opt

)`−1

5 Recall that opt is the optimal solution
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Proof: By induction on `:

n1 ≤ n− n

opt
= n

(
1− 1

opt

)

n2 ≤ n1 − n1

OPT1

= n1(1− 1

OPT1

) ≤ n1(1− 1

OPT
) ≤ n(1− 1

OPT
)2

Assume that for all i < ` it holds that ni ≤ n
(
1− 1

opt

)i
. Then

n`≤n`−1 − n`−1

opt`−1

≤ n
(
1− 1

opt

)`−1

− n`−1

opt`−1

≤n
(
1− 1

opt

)`−1

−
n

(
1− 1

opt

)`−1

opt
= n

(
1− 1

opt

)`

(1)

2

Proof of Theorem 1. In the worst case the algorithm stops after ` + 1 steps for the

minimal ` such that n` ≤ 1. Since by the above lemma n` ≤ n
(
1− 1

opt

)`
, for that ` with

n
(
1− 1

opt

)` ≤ 1 it holds that n` ≤ 1.

n
(
1− 1

opt

)`

≤ 1 ⇔
(
1− 1

opt

)`

≤ 1

n

⇔ ` ≤ log(1/n)

log
(
1− 1

opt

) =
log n

log
(

opt
opt−1

)

⇔ ` ≤ log n

log
(
1 + 1

opt−1

) . (2)

We now prove that log n

log

(
1+ 1

opt−1

) ≤ log n · opt. It holds that

log n

log
(
1 + 1

opt−1

) ≤ log n · opt ⇔ 1 +
1

opt− 1
≥ e1/opt.

According to the Taylor series we have that

f(x) =
n∑

i=0

f (i)(0)
xi

i!
+ Rn(x),

where

Rn(x) =
f (n+1)(c)

(n + 1)!
xn+1,
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for some 0 ≤ c ≤ x. For f(x) = ex we get that

ex =
n∑

i=0

xi

i!
+ ec xn+1

(n + 1)!
,

for some 0 ≤ c ≤ x. For x = 1/opt and n = 2 we get that

e1/opt = 1 +
1

opt
+

1

2opt2
+

ec

6opt3
,

for some 0 ≤ c ≤ 1/opt. Now,

1 +
1

opt− 1
≥ 1 +

1

opt
+

1

2opt2
+

ec

6opt3

⇔ 1

opt− 1
− 1

opt
≥ 1

2opt2
+

ec

6opt3

⇔ 1

(opt− 1)opt
≥ 1

2opt2
+

ec

6opt3

⇔ 1

opt− 1
≥ 1

2opt
+

ec

6opt2

⇔ 6opt2 ≥ (opt− 1)(3opt + ec). (3)

The last inequality is valid since ec < 3 (as c ≤ 1/opt). Thus 1 + 1
opt−1

≥ e1/opt, so
log n

log

(
1+ 1

opt−1

) ≤ log n · opt. Therefore the number of steps used by Algorithm 1 is at most

1 + log n · opt, and the theorem follows. 2

By [6,2] it follows that unless P = NP the approximation ratio of the set cover problem is
Ω(log n). Since for m = 1 and for 1 ≤ i ≤ m ω(Ai) = 1 the VSC problem is exactly the set
cover problem, we get that unless P = NP the approximation ratio of the VSC problem is
Ω(log n).
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