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Abstract The maximum concurrent multi-commodity flow (MCMCF)

Given a set of demands between pairs of nodes, we exanfifblem introduces fairness to the maximum flow problem. In
the Traffic Engineering problem of maximal flow routinghis MCF LP formulation, we are given a set Af demands
and fair bandwidth allocation where flows can be split t¢fém:, one per each commodity pafk;,t;) and require to
multiple paths (e.g., MPLS tunnels). In the past we presm»[esatisfy the maximum equal fractianof all demands and seeks
polynomial solution for this problem but its complexity gk & routing that maximizes network flow. However, the achieved
it hard to implement for large problem sizes. Thus, this papéolution under-utilizes the network, sometimes satugatinly

presents a fully polynomial epsilon-approximation (FPYAS Small fraction of it. _ _ _
algorithm for the max-min fair allocation problem which is The max-min fair allocation strikes a balance between fair-

based on a primal-dual alternation technique. In additioa w"€ss and the need to fully utilize the network. An allocatén
present a fast and novel distributed algorithm where eadndwidths, or rates, to connection is said to be max-miffai
source router can find the routing and the fair rate allocatio it iS not possible to increase the allotted rate of any cotimec
for its commodities. We implemented the centralized aliyori While decreasing only the rates of any connections which

to demonstrate its correctness, efficiency, and accuracy. have larger rates. The Max-min fairness criterion bandwidt
allocation was mostly defined in the context of a single fixed

|. INTRODUCTION path per session, where a session is defined by a pair of

Traffic engineering is a paradigm where network operatorsrminals.
control the traffic and allocate resources in order to aghiev This work focuses on an extended version of the max-min
goals, such as, maximum flow or minimum delay. One chdhir allocation where the flow between two terminals may be
lenge is to allow different flows to share the network, seplit among several paths. Furthermore, the solution wk see
that the total flow will be maximized while fairness will beneeds to find the set of the paths that achieve such maximal
preserved. fair allocation chosen out of all possible paths. In additiwe

We consider as input a network topology and directionake the weighted max-min fair version of the formulation to
links capacities, a list of ingress-egress pairs, and per-paccount for the demands.
traffic demand. This list of demands may represent aggregateThe WMCM (Weighted Max-min fair Concurrent MCF)
of (e.g., TCP) connections, such as client traffic (unitgrsialgorithm, developed in our previous work [1] finds the
campus, business client, client ISP), ATM VPs, or MPLS turextended max-min fair rate vector in a polynomial number of
nels, and will typically be expressed by average or maximusteps. It solves iteratively the maximum concurrent LP lunti
required rate. Thus, traffic between ingress-egress pairbma network saturation is achieved where each iteration pegor
split arbitrarily among different paths without causingcket the MCMCEF LP over the residual capacity of the network with
reorder in the connections comprising each demand. Our gt commaodities whose net flow can still be increased.
is to fulfill clients’ demands while keeping a fair sharingtbé However, while the WMCM algorithm can be calculated in
allocated bandwidth, to lay the set of paths to be used betwgmlynomial time, its running time depends on the LP solver
each pair in the network, and to allocate them bandwidth inim use, which may make it impractical for large inputs.
maximal way. The fairness criterion is defined by the weighte In this paper, we present a centralized and a distributed
max-min fairness. FPTAS approximation algorithms, called WMCMApprox and

One way to maximize the network flow is to formulate th&®VMCMApproxDist, for calculating the rate vector of the
problem as a maximum multi-commodity flow (MCF) problenweighted max-min fair problem. The centralized algorithm
which can be solved using linear programming (LP). While therovides a faster way to solve the more complex version (as
solution will maximize the flow, it will not always do it in a presented above) of the max-min fair allocation. As befoee w
fair manner. Flows that traverse several congested links wembed the MCMCF solution into the process of finding the
be allocated very little bandwidth or none at all, while flowsate vector of the max-min fairness flows. However, here the
that traverse short hop distances will receive a large afloc  algorithm is different as it runs over the dual problem to the
of bandwidth. MCMCF and enables a more efficient centralized algorithm



and consequently, the distributed algorithm but they do not discuss the max-min fairness in conjunction
Our WMCMApprox algorithm embeds and extends thaith maximum throughput as the WMCM algorithm dées
variable-size increments techniques (which appear in @adg A few directions for building approximation algorithms for
Konemann [2] and Fleischer [3]) to achieve a new solutidche MCF problem were suggested in the past. Young [15]
to the max-min fair. The original form of these algorithmslescribed a random algorithm that computes the flow by
do not deal with explicit net flows per path, thus, to achiev&olving a shortest path problem (on the dual LP) and pushing
network saturation using the dual problem, we extend theine unit of flow over it, at each step. Garg anéremann
technique using deeper understanding of the trade-offderiw [2] using detailed analysis extended Young’s algorithm and
the network saturation and links length assignment. improved its time complexity by pushing enough flow so
Finally, our novel distributed algorithm, WMCMApprox- as to saturate the bottleneck link of the path. Fleischer [3]
Dist, provides a mechanism where each source node can maxd Karakostas [16] improved the Maximum multicommodity
imally and efficiently allocate bandwidth to its own clientsapproximation algorithm by partitioning their techniquaa
supply them a routing and still guarantee global fairness. phases and by re-calculating a set of shortest paths for all
The rest of the paper is orgenized as follows. Section the commodities with the same source node, instead of per
presents the related works. Section Ill states definitiomd acommodity as done before, and reduced the dependence of
explains the max-min fairness criteria in our context; goal the running time on the number of the commoditié&s, to a
describes the primal MCMCF problem and its dual problenpgarithmic factor. Our algorithm extends these techrsofoe
Section IV describes our new algorithms, the centralized dde used for the max-min fair allocation algorithms.
gorithm and its implementation results using simple examnpl
and the distributed algorithm. Section V summarizes thepap Il. DEFINITIONS AND MODEL

A. Max-Min fairn
Il. RELATED WORK ax arness

The Max-min fairmess bandwidth allocation was mosl To clarify the difference between the different fairness

) . . . Yriteria and algorithms, consider the example in Figure 1,
defm_ed n the_context of one fixed path per session, Wh.erewﬁich depicts a line network with four nodes 1,2,3, and 4 and
session Is defined by a pair of terminals. A simple algorlthrgne unit capacity links. Four flows demands are depicteden th
that finds the max-min fair allocation where routing is give )

. ﬂgure each with a unit demand. Note that in this examplegther
appears in [4]. :

- . . . . _is only a single path between each pair of nodes, thus only
Many other distributed glgo_nthms de‘?" W'Fh dynamic adj_us andwidth allocation is considered. The maximum MCF prob-
ments of flow rates to maintain max-min fairness when sing

routes are given [5], [6], [7]. The above algorithms differ b &m results in an allocation vector (0,1,1/2,1/2) starvilogy

the assumptions on the allowed sianaling. and available. d since it passes through two congested links. The total flow
P . 9 9, "ab'®. 0gt,is allocation achieves is the maximum possible, 2 unite T
Bartal et al. [8] find the total maximum flow allocation in a

work for ai ¢ a distributed tationthas max-min fair [4] vector in this case is (1/3,2/3,1/3,1/3)iak
network for given routes using distributed computation achieves a flow of 5/3. A weighted max-min fair algorithm as
input to the global MCF LP problem.

The max-min fair problem with an unknown set of routege WMCM and WMCMapprox algorithms treats each flow in
h ; . : ) i I I iff t i ith dE
was rarely discussed. Kleinbeegjal.[9] provide an interesting is example as belong to a different commodity (with dfer

) . : . X source-destination pair). It will result, in case of equaights

|ntr.oduct|on regarding the rela.tlonshlp between the way r demands) for all commodities (1/3,2/3,1/3,1/3), thesa

which onebse'lect: pathr? for rOLIJt.mg and th? afmpur:lt of throu s the max-min vector given above. In case pair 1 is given a

fhuefs%ne (:hta'_?_‘; rom t %resu tmg max-min f.“r iloi?t'an ICI)V\{eight double than the rest of the nodes, the concurrent MCF
S€ paths. They provide a maximum unsp lttable flow a roblem will allocate it double the bandwidth allocated tioe

capon for single source commod!tles. M.egldo [10] addrdss ows in its bottleneck link (link(2,3)) and the result wetgh

th!s problem_for a single commodny maximum flow where t.h%ax-min vector is (1/2,1/2,1/4,1/4).

fairness achived among multiple sources and multiple sinks

flows.
Chen and Nahrstedt [11] provide max-min fair allocation ~ Pair 1 s

________________________

routing. They present an un-weighted heuristic algorithat t Q N L SN O

selects the best single path so the fairness-throughput is | \/
maximized upon an addition of a new flow. Their algorithm Sz N TR T Ny
searched this route out of the possible paths for each new flow
Maximum Concurrent MCF problem. Most of the studies
that combined the LP formulation for the traffic engineering
design chose an MCF formulation that considers the demands, jassical max-min fair definition is stated for the

1An approximation scheme is a family of algorithms that computes gase where each flow takes a smgle path [4]’ the followmg
solution within a factor ofl — € of the optimal for any constart> 0. The
approximation scheme is a fully polynomial time approximatioRTAS) if 2Relevant mathematical and algorithmic background on maximurouren
its running time is polynomial in both /e and the problem input size. rent MCF problem and its complexity can be found in [12], [13}].

Fig. 1. Example of flows assignment



definitions (See detailed description in [1]) extend it te@ thproblem can be stated as finding the minimum cost of shipping
case where a flow may be split among several paths. dem(k) units fromsy, to ¢, wherel(a) is the price of shipping

Definition 1 The Commodity Rate Vector, is a vector one unit along linka. Thus, the dual objective is to minimize

whose elements are the rates which were assigned to {ﬁs functlonD(l_) - EPGA c(a)l(a). Leta(l) = 3, dem(i) -
commodities. 15t; (1) wheredist; (1) is the shortest path length between the

: - ; _ ir (s;,t;). Minimizing D(l) is equivalent to computing the
From this definition we can writ®_", _, fi; = cr; where pair (s : . L

P; is the set of all the paths that argljggéigéed to commod‘ gthi(a) per egch link wh|ch minimize® (1) /(1) such that
i. P;; and f;; are thej—th path and net flow of commodity t %SZ?_I talrg'eﬁ. |st'equ3:3t0mm,» D)/ ().
The weighted max-min fair algorithm finds a commaodity rate mlmmzﬁﬁzlgr})(l) o Z c(a)l(a)
vectorcer® and a flow rate vectof; per each commodity rate o =
cry. ¢
Definition 2 The vectorer is said to be(weighted) max-min
fair if it is feasible and if each of its elements; cannot be
increased without decreasing any other elemefntfor which

K
(cri/dem; > cry/demy) cr; > cry Zdem(i)z(i) >1 4)
=1

subject to

Vi=1...K,YP€ P, Ia)> 2(i) (3)
a€P

The two definitions above also hold when traffic may be split ) ]
to several paths. Va € A l(a) >0,Vi=1,...,K,2z(i) >0
B. Maximum Concurrent Problem IV. WEIGHTED MAX-MIN FAIR ALGORITHMS

The Maximum Concurrent flow problem is stated as A. Weighted Max-min Centralized Approximation Algorithm
follows. Let G=(V,A) be a directed graph with nonnegative The contributions of this section is a fast centralized ap-
capacitiesc(a),Va € A. If a ¢ A c(a) = 0. There are proximation algorithms (FPTAS) for the WMCM which we
K different commoditiesCy, ..., Cx where commodityi is term WMCMApprox. WMCMApprox (see Figure 2) is based
specified by the tripleC; = (s;,t;,dem;). The pair(s;,t;) on our optimal algorithm ideas but uses completely differ-
are the source and the sink of commodityespectively, and ent techniques. It embeds previous approximation algorith
dem, is its rate demand. Each pair is distinct, but vertices ma&pggested for the maximum concurrent problem. Specifically
participate in different pairs. The objective is to maximiz we use the variable-size increment technique (which iseclos
so all thei = 1,..., K, z x dem; units of the respective in spirit to the primal-dual techniques) and iterate on the
commodities can be routed simultaneously, subject to fladwal variables until all the shortest paths are saturatethée
conservation and link capacity constraints. The objectite WMCM algorithm we suggested to check the residual graph
the equal maximum fraction of all demands. The path floafter each maximum concurrent stage (as done for single path
formulation of the following linear progranPR assigns the max-min flow algorithms [4]). Here we do not need to check
maximum commodity flow taP;, the set of all paths betweenthis condition in the primal problem, and instead suggest a
s; andt; that belong to the same commodityestricted by the new saturation test (which also serves as a connectivity tes
fairness criterion. The assigned net flow per arns the sum that enables us to stay in the dual problem. This provides us a
of the net flows of the paths passing this aR’s solution faster runtime with an easy proof of the approximation ratio
is composed of the assigned net flofy,>;;) VP;; € P;, i = Another advantage of sticking with the dual problem is the

1,..., K, and the maximal fair fraction. reflection of the fairness among the commodities, which is
PRIMAL LP PR: Path Flow Formulation our primal objective, using the dual objectives and vagabl
maximize z In addition to the fairness, we show that these variables can
subject to be used to determine the saturation of a path.
K The WMCMapprox approximation algorithm receives as in-
Va € A, Z Z f(P) < cla) (1) putthe list of commoditied COM M, the vector of demands
i=1 PeP; dem, the graphZ ande, the maximum allowed approximation
Vi, Z F(P) > = - dem, @) error. It starts by assigning the length of each liiik) to be

d/c(a), whered is a pre-computed value chosen to achieve the
desired approximation value. The algorithm alternatewéen
primal flow variables and dual length variables to fulfill the
This problem can be solved optimally in a polynomiatapacity-length constraint (primal Eg.1 and dual Eqg. 3). It
number of steps; further discussion can be found in [1]. proceeds in stages (see line 3 in Fig. 2). In each stage
The following is a description of the LP that is dual to théhe algorithm solves the maximum concurrent problem (using
Maximum Concurrent flow problem. Thi¢a) variable holds approximation algorithm taken from [2], [3], [16]) and finds
the link length which is dual to each primal capacity coriatra the dual-primal £ and D(1)) solution. Part of the commodities
The z(i) variable holds the shortest path per each commoditecome saturated during each stage and should be omitted
and is dual to the demand portion constraint. The minimorati in the following stages. This is an important contribution

Pep;
VP e P gf(P)>0,2>0



purpose, we note that as long &%() < 1, the length of

WMCMApprox( KCOMM, dem, G. ¢) eac_h link can not _expeeﬂ/c(a), which @mplies tha_t number

1. /* Initialization stage */ of tllmes. the flow is |ncr.easeq over this link (dur|'ng a stage

2. Va € A,l(a) = §/c(a) period) ISlog1+6(1+§K5) times its real flow. By scaling down

3. while (KCOMM # NULL) do /* STAGE*/ this flow by a factor oflog, , 15<, a feasible flow will be

4. stageCounter + +, phaseCounter =1 achieved. The scaling is done after the termination of al th

g: wﬁﬁgée:w%za_”ﬁitgfg)l) do /* PHASE */ phases (line 30). Since the scaling factor is known in advanc

7. for (i = 1 to |S]) do MITER: S group of diff srcs*/ the scall_ng can be done at any point within the step and thus

8. Build shortest path tree for the sourSge the feasible value of the flow can be followed.

9. VC, sk = Si, demrterres(Cr) = demc, Iterating over|S| is more efficient than iterating over the
10.  while newDL-lastDL < 1 and commodities since the entire shortest path tree is cakullat
1L demiterres(Cr) > 0 for somek do *STEP*/ once instead of one shortest path calculation at a time. We wi
12. If Va € Pc,,l(a) > 1/c(a),l,Ck € S; then L - o - :
13. Pc, is not a shortest path use this |mp_ro_vement [16] in the dlstr|put_ed |mplemeptat|q
14, if NO connectivity forC), then The connectivity test per each commodity is done at thistpoin
15. KCOMM = KCOMM \ {C} as well, by checking the unsaturated shortest path per the
16. for ¢ =1tor do participating commodities. Only the commodities that pass
17. ¢ = minacrg, c(a) connectivity test participate in this stage. Note that thieck
12: J{(Clgé:)nf}((dliggt:;;:/c*)Update Curr patf 1S done while building the shortest path tree and thus naextr
20. demproniies = demisongios — fo running time is needed_for this test.

21. end for ! The primal-dual solutions are found when the functio()
22. Va € Pc,,l(a) :l(a)(l—&—e*ch:aepc %) is I_arg.er thanl. In_our WMCMAppr_ox each stage is an
23 newDL = D(l) ‘ activation of the primal-dual alternation. During stageve
24, end while /* end of step */ achieve a primal-dual solutighy andz; which are found when
25.  end for /* end of iteration */ the function D(1) is larger than 1. In order to saturate the
26. phaseCounter + +; . network, we continue to increase the length variablés),
%: le:;l‘;vg'li éezrgLof phase */ but each stage termination conditioR({) > 1 in the original
29. end while /* end of stage */ primal problem) should consider only the additional lenigth
30.Vk=1...K,YP € P, f(P) = bglf(ipfi the last stage. Thus, th¢a) variables hold the accumulatlvg
31 Vk=1...K, f(P) = 3 f(P)) < length values and are_use_d for the_ _shortest path calcutation
32. Returns per commodityk: But for the stage termination condition we consider only the
33.  setof paths?, and flows¥ ; f) incremental values, namely,ewDL — lastDL (lines 6 and

' 11), wherelastDL is the D(l) value at the beginning of

Fig. 2. Approximation algorithm for the Max-Min fairness

the stage anchewDL is the current value ofD(l) (line

23). At each stage at least one commodity is saturated and
removed from the listKCOMM since, at least, one link
values is increased by a factor @f + ¢)/c(a). This ensures

of our algorithm that promises the reduction in the numbegke algorithm convergence.

of the participating commodities at each stage and thus thea|gorithm correctness and complexity Past analysis [2],
convergence of the algorithm. [3], [16] showed the correctness of the maximum concurrent
The stage proceeds in phases (line 6). Each phase is cdisw approximation algorithm and proved the dual-primal

posed of|S| iterations, wheré' is the group of all the sourcessolution ratio, 3/z, to be less tharl + ¢ for any ¢ > 0.

(some commodities can have the same soufgelteration: In addition, the following theorem was proved.

of phase;j considers the commoditieS,,q = 1...r starting

from the same sourcs; (see line 7) and routetem(C,) units Theorem 1 (Lemma3.2 and Theoren8.1 in [16]) There is

in a number of steps. an algorithm that computes @ — ¢)~3-approximation to the
Each step (see line 11) calculates the shortest path traaximum concurrent flow in tim@(¢~2m?log m) wherem

starting from source, using the last calculated lengthatdes is the number of edges.

I(a). It iterates over theg commodities and in each step

either saturates the current shortest path per commadjty

or allocates the remainedern(C). For everyc(a) units of - peqrem 2 The WMCMApprox algorithm computes (& —

flow sent over the link, its Imk_length varlablé((_z) is updated ¢)~3-approximation to the max-min fair flow in time

by a factor of at most + Ke_(llne 22). The entire sta}ge endsO(engmg log m) wherem is the number of edges.

as soon adD(l) > 1 according to the dual constraint Eq. 4

and produces a vector of lengthis, The corresponding per Proof: The analysis and proof in [2], [3], [16] hold

commodity net flow vectorf(P;),k = 1... K is infeasible for one stage of the WMCMApprox algorithm. The analysis

for the primal LP, as thus need to be scaled down. For tHigdlows the ones in the above mentioned references, but here

Based on above theorem we provide the following analysis:



we examine the number of phases in all the stages. Let N Pair 3 ~
D(l;) = >_1U(a)-c(a) anda(l;) = 3°, dem(q)-disty(l;) where
disty(1;) is the shortest path length between the gair, ¢,)
for the length assignmerit at phasei. The D({) function is
increased at each phase as follows:

D(li) < D(li-1) + ea(ls) 5)

Considering the dual resulty, = min; D(l;)/«(l;) during
stagek, 3 = ), B, and substituting these values in Eq. 5,

the following holds D(li_1) Fig. 3. Algorithm Iteration Example
D(l;) < ==L (6)
L- G/ﬂ comm. | path | infeasible | feasible | per comm.| path
Since it holds for any stage th@(l;,) > 1, wheret, is the ID ID_| flow ﬂsct’e"l"ge n flow length
total number of phases per this stage, we can assume that 1 > 0.0362 | 0.3438
D(l;) > K, wheret is the total number of phases over all the| 1 2 17 0.3077 0.0019
stages andy is the number of commodities. 2 1 18 0.3258 | 0.3258 0.6627
. . 3 1 19 0.3438 | 0.3438 0.9562
US|ng D(l()) = m5, ﬂ >1 and D(lt) > K, the f0||0W|ng 3 2 0 0.0 0.9562
holds mo  <t-1) 4 1 18 0.3258 | 0.3258 0.7963
K < D) < 7—eP0= (7)  [[Tength ={0.552 1.145 0.001 0.266 0.2562 = 0.326, lastDL = 1.151
. . . . . stage 2
and a simple Algebraic manipulation yields 1 1 32 05791 | 1.4297 0.4602
1 2 47 0.8506 oo
et —1) ® |2 1 |18 0.3258 | 0.3258 o0
T (1-¢n K-(1—¢) 3 1 19 0.3438 | 0.3438 0
md 3 2 0 0.0 oo
; ; g 1 18 0.3258 | 0.3258 0
)|
Using the claim from [16] for each of the stages, summing length ={1.145 1.145 0.001 0.552 0.552 = 0.326, lastDL = 2.231

up, and substituting in Eq. 8 we get

€ In LEKe TABLE |
ﬁ/z < (1 — 6) In (1 + e) K : In K(lge) 9) SUMMARY OF THE EXECUTION
By settingd to be
5— 1 K(l1—¢) M=ty 10 0.3258 4 0.3438 + 0.3258 = 0.9954. The calculated for this
- (1+ Ke)% ' m (10) stage is0.3258 and the stage terminate whén(l) = 1.1510.

Path 2 of Commodity 3 does not get any flow due to the
The 3/z ratio, which is the primal dual ratio calculated bysaturation of link 2. The other path of commodity 3 gets its
the WMCMApprox algorithm, becomes less théh— ¢)=2 fair share. At the second stage the algorithm discovers that
and anye can be selected. commodities 2, 3, and 4 are saturated and delete them from
Now it is left to show that the resulted rate vector iCCOM M. In the following stage, the algorithm iterates for
indeed max-min fair. This can be done by noticing the analogpmmodity 1 between its two shortest paths till the satanati
between the operation of WMCM and WMCMApprox, andf both. The final maxmin vector rate for commodity 1 (path

the proof of the correctness of WMCM in [1]. The proof carl and 2) commodities 2, 3 (path 1 and 2) and 41s6469

be found in the full version of this paper [17]. m 0.3258 0.3438 0.3238 The final maxmin vector rate, when
lqorith | . running the algorithm witke = 0.1 is {1.6585 0.3317 0.3317
B. Algorithm Implementation 0.3317 for commodity 1 (path 1 and 2) commodities 2, 3

We implemented the WMCMApprox algorithm using MAT-(path 1 and 2) and 4. Note that when thedecreases the
LAB. To illustrate the way the algorithm iterates, we pravidvalues are approaching the optimal weighted max-min vector
the simple example of Figure 3. The capacity of each link is {5/3,1/3,1/3,1/3).

There are four commodities, each with 1 unit of demand. All ) ) ] o S

the links and paths are uni-directional. Commodities 2 and& Weighted Max-min Fair - Distributed Approximation Algo-
has one path and its path ID is 1. Commodities 1 and 3 ha/@m

2 paths with IDs 1 and 2. The distributed implementation of our algorithm is shown

Table | presents the two stages of the algorithm operationFigure 4 for a source node. The code for the intermediate
for ¢ = 0.2. We can see that in the first stage all theode or the destination node is omitted because of lack of
commodities receive an equal portion of their demands. lirdpace. We assume that each source router is familiar with the
2 is the bottleneck link of their paths and its length aftés thnetwork topology, links capacities, the commodities forickh
stage becomes.1451 > 1/¢(2) = 1. It means that this link it is serving as a source, and the ids of all other sources. In
is saturated. We can verify it by observing its flow which isddition, the sources need to synchronize at the end of each



SOURCE-CODE(@mny_id, MySrcCOMM, dem, G, €)

can reduce its length and divide it by a factor lof- ecf(c—fl)
for this specific flow. Since the algorithm is performed over
the dual variables, this will be enough to reset the state

1. Va € A l(a) =6/c(a)
2. while (MySrcCOMM # NULL) do [* STAGE */
3. stageCnt + +, phaseCnt = 1
4. lastDL = 0;newDL = D(1)
while (newDL — lastDL < 1) do /* PHASE */
VCk, Sk = Sl dem“rReS(Ck) = dem(Ck)
while newDL — lastDL < 1 and
demurRes(Ck) > 0 do
BldShrtPthTree
(Pc,,,Va € Pg,,l(a) < 1/c(a),l,Cy € S;)
VC} wino connectivity
MySrcCOMM = MySrcCOMM \ {Ci}
Parallel for ¢ =1 to r do ]
SndSRC Alc(natInPc, , my-id, demirres(Ch), Pék)
WaitDestMsg(P, f(Péq)7 1)
demItTRES = demlt'rRes - qu
newDL(l) = _, c(a)l(a)
end PAR for

5.
6.
7.
8

end while /* end of step */ (1
SndAI2AIS RC M sg(my-id, 1, phaseCnt, stageCnt)
21. GtAISRCSY N M sg(l, phaseCnt, stageCnt)
22, mewDL(l) =", _, c(a)l(a) 2]
23. phaseCnt + +;
24. end while /* end of phase */ 3]
25. lastDL = newDL;
26. end while /* end of stage */
27. Yk =1... K,VP € Py, f(P) = - O [4]
logiye T
28. szl...K,f(Pk):Zf(Pg) [5]
29. Returns per commodity k: set of paths P, and flows
Vpicr, F ) [6]
(7]
Fig. 4. Distribute Max-min fair routing Algorithm (source de)
8]

phase as explained later. By having all source nodes regjiste
to a multicast group, one can simplify the synchronizationo]
process.

During a phase each source independently perform H%]
procedure, iterating over the steps. In each step, the sourc
sends an allocation request message over the pre-cattuldtél
shortest path tree. This message passes all intermedidés no
towards the destinations and collects the information atf@ 5
bottleneck link over each shortest path. The destinatiateno
upon source message arrival, sends Destination Acknowled
message with the appropriate bottleneck link informatio{%]
Each intermediate router gets the destination messagatagd
its length and flow variables, and forwards it towards thes]

of network bandwidth allocation. After this adjustmentg th
network becomes unsaturated for at least some of the sources
and the algorithm continues until saturation. The incretaen
algorithm for the case of adding a commodity is left for ftur
research.

V. CONCLUDING REMARKS

We presented a centralized and distributed approximated
algorithm, which routes and allocates demands such that the
max-min fairness criterion is achieved. However, it shdugd
noticed that the provided solution is a local maximum for
the max-min fair allocation rate vector. In a sequel work we
provide the global solution for this problem.
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