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Abstract—Inter net Sewice Providers and infrastructural companiesof-
ten employ mirr ors of popular content to decreaseclient download time
and server load. Dueto the immensescaleof the Inter net and decentralized
administration of the networks, companieshave a limited number of sites
(relative to the sizeof the Inter net) where they can place mirr ors. Mirr ors
of popular contentare usually replicated on every site to maximize reacha-
bility to clients. In this paper, we study the performance improvementsas
the number of mirr ors increasesunder differ ent placementalgorithms sub-
ject to the constraint that mirr ors can be placed only at certain locations.
Although there are extensve theoretical studieson center placementand,
more recently analytical and empirical studieson web cacheplacement,we
are not aware of any published literatur e on mirr or placementespeciallyin
the caseof constrained mirr or placement. Our resultsshow that increas-
ing the number of mirr or sitesunder the constraint is effective in reducing
client download time and reducingserver load only for a surprisingly small
range of valuesregardlessof the mirr or placementalgorithm.

|. INTRODUCTION

Thereis a growing numberof frequentlyaccessedveb sites
thatemploy mirror senersto increasehereliability andperfor-
manceof their services. Mirror seners (or simply “mirrors”)
replicatethe whole or the mostpopularcontentof awebsener
(the “server” henceforth). Clientsrequestingthe sener’s con-
tentareredirectedto the mirrors. Sinceeachmirror seesonly
a portion of thetotal requestsglientscanbe senedfaster Fur-
thermore|f clientsareredirectedo mirrorscloserto themthan
the sener, downloadtime canbereduced In this paper mirrors
referto locationsinsteadof senermachinesin otherwords,we
considerco-locatecsenersto beasinglemirror.

At first glance,web cachessene the samepurposeas mir-
rors. We differentiatemirrors from cachesn thatclient access
to a mirror alwaysfinds the requestectontent. A clientis re-
directedto amirror only whenthemirror hastherequesteaon-
tent. Mirrors canalsosene someformsof dynamiccontentand
contentcustomizedor eachclient.

Thereis a costto keepingmirrors’ contentconsistentwhen
the contentof the sener changes.Variousalgorithmsto keep
web cachesonsistenhave beenproposedn theliteratureand
are applicableto mirrors. We categorize thesealgorithmsas
basedon time-to-live, e.g.[1], or sener invalidation, e.g. [2].
Without going into the detailsof the algorithms,we note that
the costof keepingmirrorsconsistentin termsof theamountof
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traffic seeratthesener (in thecaseof [1]) orin thetotalamount
of traffic seenon the network (in the caseof [2]) increasedin-

earlywith thenumberof mirrors. Thusevenif oneassumeshat
larger numberof mirrors provides further reductionin sener
load and client download time, simply increasingthe number
of mirrorswith impunity will resultin higherconsisteng cost.
Certainly onewould bewilling to paythe costassociatedvith

larger numberof mirrors if it is outweighedby the reduction
in overall systemcost. We show in this paper however, that
on Internet-like settings,increasingthe numberof mirrors be-
yonda certainnumberdoesnot significantlyreducesenerload
nor clientdownloadtime. Obviously we arenot consideringhe
casewherethereis amirror on every clienthostor LAN.

Given a finite numberof mirrors, we are theninterestedn
whethertheir placemenbn the Interneteffectsthe overall sys-
temperformanceln Sectionll we look atvariousmirror place-
mentalgorithmsandheuristics.ldeally, a mirror canbe placed
wherethereis a large concentratiorof clientsinterestedn the
contentof a sener [3]. In this paper however, we only con-
sider a modelin which thereis a fixed numberof candidate
machineswheremirrors can be placed. We call this the Con-
strainedMirror Placemen{CMP) problem. An ISP (Internet
ServiceProvider) or an Internetinfrastructurecompary, for in-
stancemay have a large numberof machinesscatterecaround
the Internetcapableof hostingmirrors. A contentprovider with
a busyweb sener canrentresource®n thesemachinego host
theirmirrors. Thequestioris thus: onwhich subsetf thecandi-
datemachineshallacontentproviderputmirrorsof its content?

Beforewe look atthe effectsof increasinghenumberof mir-
rors and of the placementalgorithms,we first presenta more
formal definition of the CMP problemin thenext section.

Il. CONSTRAINED MIRROR PLACEMENT

We modelthelnternetasagraph,G = (V, E), whereV isthe
setof nodesandE C V x V thesetof links. We defineH C V
to be the setof candidatehostswheremirrors can be placed,
M C H thesetof mirrorsof aparticularsener S, andB C V
the setof S’s clients. The objective of the CMP problemis to
placethe setof mirrors on the setof candidatehostssuchthat
someoptimizationconditionO(M, p) (definedbelow) is satis-
fied for the client set. How well the optimizationconditionis
satisfieddepend®n thesizesandtopologicalplacement®f the
candidatehostandclients. We denotethe sizesof the candidate
host,mirror, andclientsetsas|#|, | M|, and|B|, andtheir topo-
logicalplacementssP (), P(M), andP(B) respectiely. We
usethenotation?, M, andB to denoteaspecificsizeandplace-
mentof the sets.We only consideithe casewhere| M| < |H|.
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In this paperwe studytheeffectof changing M| andP (M)
while holding |#| constantwith X N B = §,andHUB C V.
We experimentwith uniformly distributed”(#) andby placing
candidatehostson nodeswith the highestoutdegreegoutgoing
links) first. We alsoexperimentwith bothuniformly distributed
andtrace-base®(B).

A. Optimization Condition O(M, p)

We identify two goalscommonlyassociatewvith placingmir-
rors on the Internet: reducingclient downloadtime andallevi-
atingsener load. In the previous sectionwe presentedhe cost
of keepingmirrors consistentasa limiting factorin deplgying
large numberof mirrors. We further statedthat even discount-
ing consisteng cost,we will shav in this paperthatincreasing
thenumberof mirrorsbeyonda certainnumberdoesnot signif-
icantly reducesenerloadnor clientdownloadtime. Hence for
the remainderof this paper we will assumezerocostto keep
mirrors consistentWith zeroconsisteng cost,we cantreatthe
sener itself as simply one of the mirrors. Assumingone can
add a mirror with no cost, we askby how much doesadding
onemoremirror reduceclientdownloadtime andalleviateload
atexisting mirrors (includingthe sener). Clientdownloadtime
is effectedby load at mirrors and network lateng (in termsof
round-triptime).* Hencewe canrephrasethe two goalsof mir-
ror placementsreducinground-triptime betweena clientand
the closestmirror andalleviating load at mirrors.

Oneway to alleviate load at mirrorsis to run aload balanc-
ing algorithm by which clients are directedto the mirror with
the leastload [4]. In this paper we take a differentapproach
andconsidemreducinground-triptime asour sole optimization
condition,O(M, p). A heaily loadedmirror canalwaysbebet-
ter provisionedto meetthe load requirementse.g. by forming
a sener cluster[4], whereasjn thelimit, it may not be techni-
cally or administratvely possibleto bringthe mirrorsary closer
to the clients. In this study we alsoignore the time it takes
for the client to find its closestmirror; any mechanisnto im-
provethistransactiorcanbeequallyappliedto otherredirection
schemesA majorconsideratiorthatinformsourdecisionto use
round-triptime asthe sole optimizationconditionis that TCP
(TransmissiorControl Protocol) thetransportprotocolthatun-
derliesthe large majority of Web download, has well-known
biasesagainstconnectionswith long round-triptimes (RTTS)
[5]. TCP usesdroppedpaclets as a signal of network con-
gestion.Upon detectionof network congestion,TCP backsoff
its transmissiorwindow sizeandslowly increaseshe window
againbasedon successfullyacknavledgedtransmissionsCon-
nectionswith longer RTTs thus experiencelonger congestion
recovery periods.In this paperwe studyin turn the useof max-
imum, 95%-tile,andmeanclients’ RTTs to their closestmirrors
astheoptimizationcondition,denotecasO (M, 1), O(M, .95),
andO(M, u) respectiely.

In orderto direct clientsto the closestmirrors, we needto
know thedistancedetweereachclientandall of themirrors. If
the network topologyis known, the mirror closesto ary partic-
ular clientcanbeidentifiedby computingthe shortespathfrom

I Network round-triptime captureghe paths bottleneckbandwidth o thefirst
degreeof approximation.

Algorithm 1 (2-approximate minimum K-center[8])

1. ConstructG?,G2,...,G2,

2. ComputeM; for eachG?2

3. Findsmallest suchthat|M;| < K, sayj
4. Mj isthesetof K centers

Fig. 1. Two-approximatelgorithmfor the minimum K -centerproblem.

theclientto all mirrors,usingDijkstra’s shortespathfirst algo-
rithm, for example.Whennetwork topologyis notknown, such
asin thecaseof thelnternet clientre-directioncanbedoneran-
domly. In [6], the authorshave shown thatclosestmirror selec-
tion usinga distancema? invariably givesbetterperformance
thanrandomselection.In this paperin comparingvariousmir-
ror placementalgorithms,we assumehat network topologyis
known andtheclosesimirror to aclientcanbe deterministically
computedIn Sectionlll-C we presenamethodologyby which
a virtual topology can be computedon the Internetwherethe
physicaltopologyis notknown.

B. Mirror Placement Algorithms and Heuristics

We now presenttwo graph-theoreticalgorithms and one
heuristicswe usein placingmirrors. In the subsequendiscus-
sion,we usetheterm“center”to mean“mirror”.

Min K-center: Thisis a graphtheoreticalgorithmthatfinds a
setof centemodesto minimizethe maximumdistancebetween
a node and its closestcenter Given this definition, the min
K-centerproblemis relevant only in the caseof optimization
conditionO(M, 1). Themin K-centerproblemis known to be
NP-completd7], howevera2-approximatealgorithmexists[8].
With the 2-approximatealgorithm, the maximumdistancebe-
tweena nodeandits nearestenteris no worsethantwice the
maximumin the optimalcase For easeof referenceweinclude
hereour summaryof the 2-approximatealgorithmpresentedn
[6]:

The algorithm receives as input a graphG = (V, E) where
V is the setof nodes,E = V x V, andthe costof an edge
e = (v1,v2) € E, c(e), is the costof the shortestpath be-
tweenwv; andws. All the graphedgesare arrangedin non-
decreasingorderby cost, c: c(e1) < cle2) < ... < clem),
letG; = (V, E;), whereE; = {ej,es,...,e;}. A squaregraph
of G;, G? is the graphcontainingV’ andedges(u, v) wherever
thereis apathbetween, andv in G; of atmosttwo hopsu # v.
An independent set of agraphG = (V, E) isasubsetl’”! C V/
suchthat, for all u,v € V', theedge(u,v) isnotin E. An in-
dependensetof G7 is thusa setof nodesin G; thatareat least
threehopsapartin G;. We alsodefinea maximal independent
set M asanindependensetV’ suchthatall nodesin V' — V'’
areatmostonehopaway from nodesn V.

2By “distancemap” we meana virtual topologyof the Internetconstructedy
tracingpathsonthe Internet.In [6], the authorsproposeanarchitectureo build
suchadistancemap.
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Algorithm 2 (¢-Greedy|[9])

L it (M| < 0)
Chooseamongall setsM’ with [M| = [ M|
thesetM” with minimal O(M", p)
return setM'’
end
. SetM’ to beanarbitrarysetof size/
while ((M'] < |M))
Amongall setsX of £ elementsn M’
andamongall setsY” of £ + 1 elements

©CONOORAWN

10. inV — M’ + X, choosehesetsX, Y
11. with minimal O(M’ — X + Y, p)

122 M =M -X+Y

13. end

14. return setM’

Fig. 2. Algorithm ¢-Greedy.

The outline of the minimum K-centeralgorithm from [8] is
shavnin Fig. 1. Thebasicobsenrationis thatthe costof theop-
timal solutionto the K -centemproblemis the costof e;, wherei
is thesmallesindex suchthatG; hasadominatingsef of sizeat
most K. Thisis true sincethe setof centernodesis a dominat-
ing set,andif G; hasadominatingsetof size K, thenchoosing
this setto bethecentergjuaranteethatthedistancdrom anode
to the nearestenteris boundedby e;. The secondobsenation
is thata startopologyin G;, transfersinto a clique (full-mesh)
in GZ. Thus,amaximalindependensetof size K in G7 implies
thatthereexistsa setof K starsin G, suchthatthe costof each
edgein it is boundeddy 2¢;: the smallerthes, thelargerthe K.
The solutionto the minimum K -centerproblemis the GZ with
K stars. Note thatthis approximationdoesnot alwaysyield a
uniquesolution.

We have to make further approximationsn applyingthe mini-
mum K -centeralgorithmto the CMP problem.In the construc-
tion of the minimum K -centeralgorithmabove, ary nodein G
may be selectedo actasa “center”. In CMP, only nodesin H
canhosta mirror. Thusto apply the min K-centeralgorithm,
wefirst runthealgorithmon G with V- = # U B. Shouldanode
in B be selectedasa center we substituteit with a nodein A
thatis closesto it. Recallthatwe assumeH{ N B = 0.
£-Greedy: This algorithm placesmirrors on the network iter-
atively in a greedyfashion. First it exhaustizely checkseach
nodein A to determinghenodethatbestsatisfieghe optimiza-
tion condition(seeSectionll-A) for givenB. For ¢ = 0, after
assigninghefirst mirror to this node the algorithmlooksfor an
appropriatdocationfor the next mirror, etc. until all | M| mir-
rorsareplaced.For general, the algorithmallows for £ step(s)
backtrackingit checksall the possiblecombinationf remov-
ing £ of thealreadyplacedmirrorsandreplacingthemwith £+1
new mirrors. Thatis, £ numberof thealreadyplacedmirrorscan
bemovedaroundto optimizethegain. Figure2 summarizeshe
algorithm.

Transit Node: The outdegreeof a nodeis the numberof other
nodesit is connectedo. Assumingthatnodeswith the highest
outdeggreescanreachmorenodeswith smallerlateng, we place
mirrorsoncandidatédostsin descendingrderof outdegree . We
call this the Transit Node heuristicsunderthe assumptiorthat

3 A dominatingsetis asetof D nodessuchthateveryv € V is eitherin D or
hasaneighborin D.

nodesin the core of the Internetthat act as transit points will
have the highestoutdegrees.

Random Placement: Underrandomplacementgachcandidate
hosthasa uniform probability of hostinga mirror.

C. Performance Analysis

In this section,we presentan analysisof the performanceof
unconstrainednirror placemento illustratewhat could be ex-
pectedof mirror placemenin the ideal setting. In particulay
the analysisshaws that, underoptimal mirror placementthere
is a diminishing returnin client-mirror distancé with respect
to the numberof mirrors. Despitethe diminishing return, the
ratio of expectednaximumclient-mirrordistancebetweeropti-
mal andrandomplacementncreasesogarithmically However,
underrandomplacementmostclientsarestill closeenoughto
their closestmirrors,andonly a smallportion of the clientsare
actuallyvery “far” from their closesmmirrors.

To abstracthe unconstraineanirror placemenproblem,we
canpicturethe network asa continuousplaneon which clients
canbeuniformly spreadbvertheinfinitely mary points(R). We
wantto placea givennumberof mirrorssuchthatthe maximum
distanceof ary client to its closestmirror is minimized. This
measureof quality translatedo finding a placementsuchthat
the radiusof the largestcircle one candraw in the planethat
doesnotincludeary mirror is minimized.

Solving this problemanalytically is cumbersometo make
the presentatiorclearerwe studythe sameproblemin onedi-
mension. We can transformthe probleminto one dimension
by distributing the clients uniformly on the segment(0,1) and
placing mirrors on the samesggment. Clearly, the optimal al-
location of mirrors given the maximumdistancecriterionis to
separatehe mirrors by the samedistanceapart. Thus, if one
needdo placen — 1 mirrors,theoptimallocationis atlocations
%, 1 < i < n — 1, andthe maximumdistancefrom ary client
to its closesimirror is %.5 It is clearthatthe gainin reductionof
client-mirror distanceis diminishing asthe numberof mirrors
increases.We can also seethat eachmirror site will have ap-
proximatelythe samenumberof clientsif eachclientis directed
to its closesmmirror.

The optimal placementcould be difficult to achieve in real
life. Hence we would like to quantify how goodrandomplace-
mentis comparedo the optimal placemenin termsof the ex-
pectedmaximumclient-mirror distance.Underrandomplace-
ment,n—1 points(mirrors)arerandomlydistributedin theinter-
val (0,1). Usingknown resultsfrom orderstatistic§10, Section
5.4],we have

Privi >t = X 07 (Ha-art @

1—iy>0,i>1

The expectedvalue of the maximum segment betweentwo
neighboringpointsis thusgivenby

4client-mirrordistancealwaysmeanghedistancebetweerclientandtheclos-
estmirror.

5The actualoptimal locationsfor n. mirrors shouldbe at ﬁ + %, but the
importanceof this boundaryconditiondiminisheswith n. For aseof analysis,
we consideronly thelimit casewith n goingto infinity.
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whereY(,, is therandomvariableof thelongestseggment, fy,,
thedensityfunction,andFy(") thecumulative distributionfunc-
tion.

Figure 3 depictsthe computedexpectedmaximumsegment
lengthtogetherwith numericalsimulationresults. Eachpoint
in the simulationrepresentshe meanof 1000 experiments;in
each,n — 1 pointsareuniformly placedon the unit interval and
the maximum segmentis computed. The confidenceinterval
is nggligible in mostcases. It is clearthat the simulationand
the numericalcalculationarealmostidentical. The detaileden-
largemenin Figure4 (alsoin Figure5) shavsthatsomeoutliers
areobsenablein differentscales.Thereis a clearkneearound
n = 60 after which the returnfrom addingadditionalmirrors
diminishes.

Comparingthe segmentlengthto the optimal length shovs
that for a large range,n < 150, the differenceis substantial.
Figure5 shaws the ratio of expectedmaximumsegmentlength
betweenthe random placementand the optimal for both the
simulateddataandthe calculateddata. Surprisingly it seems
thattheratio increasesogarithmicallywith the numberof mir-
rors (we sawv beforethatthe absolutedifferencediminishes).To
checkthiswefitted theexponentof theratiowith thebest(mean
square)inearfunctionof theform a + gn. Theresultingfitted
cuneis 2.675 + 1.78n. Plotting thefit for the expectedmax-
imum lengthin Figure 3, In(2.675 + 1.78n)/n, we could not
distinguishit from the calculatedonein all but the microscopic
scale.

One might be temptedto discountrandomplacementalgo-
rithm basedon the above result. However, we showv next that
randomplacements really not all that badby examiningwhat
portionof the client populationis within a“good distance’from
its closestmirror givenrandomplacement.Let ¢ be the stretch
we allow in the distancefrom the optimal placemendistance,
which is 1/2n, we calculatethe portion of clientsfartheraway
from theirclosesmirror by morethanafactorof ¢ from optimal,
i.e., by morethant/2n. Thisis doneby looking at the proba-
bility thatfor arandompoint no mirror is placedat a segment
of lengtht/n aroundit (atwo dimensionaball of radiust/2n),
whichis givenby

Pr{distance > t/2n} = (1 —t/n)" 2

expected maximum distance

300 400 500 600 700 800 900
number of mirrors

0 100 200 1000

Fig. 3. Theexpectedmaximumsegmentlengthontheunitintenal.

maximum distance between mirrors (details) maximum distance between mirrors (details)

0.2

0.015

0.15}
0.01

0.1

0.005

0.05

expected maximum distance

expected maximum distance

0 0
0 20 40 60 80
number of mirrors

920 940 960

number of mirrors

980

Fig. 4. Theexpectedmaximumsegmentlengthon theunitintenal (details).

As n growswe canwrite

lim Pr{distance >t/2n} = lim (1—t/n)" =e~t (3)

n—oo n— o0
Thus, as the numberof mirrors grows, a fixed portion of the
clientsareaway by a certainstretchfrom optimal. Specifically
1/e of the clientsareat distancefartherthanthe worst caseof
theoptimaldistance Figure6 shavstheresultof anexperiment
we conductedo testthe above analysis. As one cansee,the
probability corvergesto e~ for n valueswell belov 100 (the
limit valuesare plottedin Figure 6 assmall symbolsatn =
900).

The above analysisshavs that, under the optimal place-
ment, the reductionin client-mirror distancehas a diminish-
ing return with a well-defined“knee” as the numberof mir-
rorsincreasesWhenclientsareuniformly distributed,the opti-
mal placementanachieve goodload balancingwhile directing

ratio of random/optimal maximum distance between mirrors
T T T T

o
00 @

random/optimal ratio

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900
number of mirrors

1000

Fig.5. Theratio of therandomplacemenbver the optimal placement.
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random placement cover percentage
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It

ozsw

expected uncover distance
o

L L L L L L L L L
[ 100 200 300 400 500 600 700 800 900
number of mirrors

1000

Fig. 6. Theprobabilityaclientunderrandomplacements fartherthana stretch
t of thedistanceboundin the optimalplacement.

clientsto the closestmirrors. Furthermorethe optimal place-
mentincreasinglyoutperformsrandomplacementin terms of
expectedmaximumclient-mirrordistanceasthe numberof mir-
rorsincreaseshowever, extremelylong client-mirror distances
occurveryrarelyunderrandomplacement

I1l. PERFORMANCE EVALUATION

Ourgoalin conductingperformancevaluationis to studythe
effect of changing|. M| andP (M) on the optimizationcondi-
tion O(M, p). For ourperformancevaluation we conductboth
simulationsonrandomtopologiesandexperimentsonthe Inter
net. For eachsetof experimentsye vary either| M| or P(M)
while holdingall the othervariablesconstantWe now describe
our simulationsetupandscenariosfollowedby a descriptiorof
our Internetexperimentsetup.

A. Smulation Setup

Therandomtopologiesusedin our simulationsaregenerated
usingthe Inet topologygeneratar The Inet topology generator
generatesandomtopologiesfollowing the obsered character
isticsof the Internetreportedn [11]. A morethoroughdescrip-
tion of the Inet topology generatois presentedn [6]. For this
study we generateseveralrandomtopologieswith 3,037nodes
each® Eachgeneratedetwork is a connectedjraphon a plane,
with nodegepresentingnAutonomousSystem(AS); alink be-
tweentwo nodesrepresent®\S connectvity, andits Euclidean
distancethe lateny betweenthe two connectechodes. In our
simulationswe placeonly a singleclient pernetwork node.

In eachsimulation,we first selects0 nodedo actascandidate
hosts. We experimentwith two candidatehostselectionmeth-
ods: (1) uniform selectionwhereeachnodehasan equalprob-
ability of beingselectedand(2) selectionbasedon outdeagree,
wherethe nodeswith thelargestoutdegreeis selectedirst. Af-
ter the candidatehostsareselectedwe randomly with uniform
probability, selectl,0000f theremainingnodego actasclients.
For eachmirror placementlgorithm,we computedO(M, 1),
O(M, .95) andO(M, u). We computeeachO(M, p) for | M|
rangingfrom 3 to 50. Client redirectionto the closestmirror is

6This wasthe sizeof the Internetin November1997; our resultswith larger
networks indicatethatobserationsmadein this paperalsoapplyto larger net-
works.

Location Numberof Hosts | Percentage
North America 58 65.2
WesternEurope 15 16.8
Restof Europe 6 6.7
Australia 6 6.7
Israel 1 1.1
Korea 1 1.1
Mexico 1 1.1
S. Africa 1 11

TABLE |

TRACEROUTE GATEWAY POPULATION BREAKDOWN

doneby bothshortest-patfirst computatiorandrandomlywith
uniform probability.

We presentesultsof the simulationsin SectionlV.

B. Internet Experiments

In additionto studyingCMP on randomtopologies we also
evaluateit with atrace-basedxperimentonthelnternet.Iln par
ticular, we studythe effect of optimizingthe numberandplace-
mentof mirrorson client downloadtime whenCMP is applied
to theBell Labswebsener.

B.1 CandidateHostSet

We do not have accesgo 50 machinedistributedacrossthe
Internetwhich canactascandidatehosts. Given our optimiza-
tion conditionof minimizing the lateny obsenedby the client
set, we obsened that for purposesf performanceevaluation,
CMP canbe emulatedon the Internetaslong aswe candeter
minethedistancebetweer|#| sitesonthelnternetandourclient
set. We decidedto use89 TracerouteGatavaysto serne asour
candidaténostsites. Traceroutesatavaysarewebsenersmade
availableto the public for measuremerpiurposesy volunteers
aroundthe world. Givena hostnameor addressa Traceroute
Gatavay runst r acer out e to thathostandreportsthe result
backto the client. TracerouteGatavayscanbe accessedrom
http://www.tracert.com/Tablel lists thegeographicalocations
of the TracerouteGatavaysusedin this paper Thetablereflects
areasonableliversity of the geographidocationsof the Tracer
outeGatevays.

The Transit heuristicswe usein placing mirrors placesmir-
rorson candidatéhostsin descendingrderof outdeyrees Since
we do not know the outdegreesof the TracerouteGatavays,we
associatevith eachTraceroutéGatavay the outdegreeof the AS
they residein. Wefirst mapthelP addres®f a TracerouteGate-
waytoits AS usingatool pr t r acer out e, whichis partof the
Routing Arbiter projecttoolkit (www.irrd.net). Thento deter
minethe AS’s outdegree,we usethe AS summaryinformation
availableat NLANR (moat.nlanmet/AS/),which lists the out-
degreeof eachAS. If the destinationtraceroutegatavay’'s AS
hasa single connectionto the restof the Internet,we assignit
theoutdegreeof its closesupstreanAS thathasoutdegreemore
than1.
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C: Client

T: Traceroute
Gateway

‘ -mm ’
between
Traceroute Gateways

_—

between Traceroute
Gateways and Clients

Fig. 7. ExperimeniSetup

B.2 ClientSet

For this experiment,we collectedone week (in November
1998)worth of the Bell Labsaccesdog. During this week,the
websenersav onaverage?6,346.%its perday. Of thesethere
were 15,561 unique domainnames,which resohed to 10,115
uniqueIP (InternetProtocol)addressesDue to the natureof
dial-up connectionsmary of the dial-up clientsin the log file
wereno longerreachableTo preventclientsthatareno longer
reachabldérom beingtracedby thet r acer out e gatavays,we
usethefollowing procedurdo obtainallist of reachablelients.
We attemptedo openTCP connectiongo eachlP addresgrom
two differentsites(onein Michiganandtheotherin California),
andeliminatedthe onesthatwerenot reachabléy at leastone
of them(thisis to reduceghenumberof hostsunreachabléy the
Traceroutésatavaysbelov). Of the10,115uniquelP addresses
we obtainedfrom the Bell Labsweb sener logs, 4,980canbe
reachedhroughTCR Finally, we hadeachof the 89 Traceroute
Gatavay conductt r acer out e to all of theselP addresses.
Sincet r acer out e usedCMP (InternetControlMessagé°ro-
tocol) insteadof TCR, andsomenetworksor hostsdo notaccept
ICMP pacletsfor administratve reasonsthe TracerouteGate-
wayswereonly ableto trace3,1300f theselP addressesThe
client setB in this experimentthus consistsof these3,1301P
addressesTablell liststhe domainsthe clientsin our client set
belonggo (andthe percentag¢hereof).

C. Distance Estimation

The virtual network on which we conductour CMP experi-
mentsthusconsistf 89 TracerouteGatavaysasour candidate
hostsand3,130IP addresseasourclients. The“edges’of these
virtual network consistsof round-triptime (RTT) lateng mea-
surementdrom eachTracerouteGatavaysto all of the other
TracerouteGatavaysandto all of the clients. For illustrative
purposeskigure7 shavs a samplevirtual network consistingof
four TraceroutéGatevaysandtwo clients. The TracerouteéGate-
ways measureRTTs betweeneachotherand RTTs to the two
clients. The RTT measurementsetweenTracerouteGatavays
arebidirectional while thosebetweenTraceroutéGatavaysand
clientsareunidirectional asindicatedin thefigure.

Someof the mirror placementalgorithmswe study require
knowledgeof distancedetweerclients.n ourvirtual topology

Location Numberof Hosts | Percentage
.net 585 18.82
.edu 566 18.53
.com 568 17.96

Germay 121 3.82

Canada 113 3.57
.uk 89 2.81

Japan 80 2.53

Australia 59 1.86

United 38 1.2
France 38 1.2
Sweden 32 1.01
Spain 29 0.91
.org 29 0.91
Italy 25 0.79
Switzerland 22 0.69
.gov 22 0.69
Netherlands 19 0.6
Malaysia 19 0.6
Korea 19 0.6
Hong 18 0.56
India 17 0.53

Denmark 16 0.5

Russian 15 0.47

Finland 15 0.47

Brazil 15 0.47

Belgium 15 0.47

Taiwan 14 0.44

Singapore 14 0.44

Ireland 12 0.37

Greece 12 0.37

Austria 12 0.37
.mil 12 0.37

S. Africa 11 0.34

New Zealand 10 0.31

Mexico 9 0.28

Turkey 6 0.18

Thailand 6 0.18

Portugal 6 0.18

Poland 6 0.18

Israel 6 0.18
China 6 0.18
Argentina 6 0.18
Others 31 0.98
Failedlookup 338 10.69
Total 3161 100
TABLE 1l

BELL LABSWEB CLIENT SET BREAKDOWN

we estimatethe distancebetweenwo clientsasthe sumof the
distancedrom eachclient to the closestTracerouteGatevay,

andthe distancebetweenthe two TracerouteGatevays. This
methodis usually called “triangulation” in the literature[12],

[13]. In [14], the authorsevaluatedits efficacy on estimating
distancebetweertwo pointsonthelnternet.

IV. EXPERIMENT RESULTS

Recallfrom Sectionlll-A, in all of our simulations,we use
a network of 3,037 nodes,of which |#| = 50 areselectedas
candidatehosts. The choiceof which hostbecomesa candi-
datehostsP(#) is determinedeither randomlywith uniform
probabilityfor all nodesor by the outdegreeof the nodes.The
client setconsistsof 1,000nodesrandomlyselectedwith uni-
form probability, from the remainingones. Recallalsothatwe
definethreeoptimizationconditions:O(M, 1), O(M, .95), and
O(M, ). For eachoptimizationconditionwe runasetof simu-
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lations. In eachsetof simulation,we first pick | M|, thenumber
of mirrors. For the givennumberof mirrors, we run onesimu-
lation for eachmirror placementlgorithm, P(M): minimum
K-center 0-greedy1-greedy2-greedyandTransit. Sinceran-
dom placementf mirrors givesdifferentresultsbasedon the
sitesselectedfor randomplacementve run 10 simulationsfor
a given mirror setsize and computethe meanof the obsened
O(M, p). Thenwe repeatall simulationsfor the next | M|. In
our simulationswe experimentwith | M| rangingfrom 2 to 50,
steppingby 2 up to 26, andsteppingby 5 afterwards. We then
repeakachsetof simulationson 10 differentinetgeneratedet-
works of 3,037nodeseach. We do the above on 50 randomly
selectedcandidatéhosts. Thenwe repeatverythingagainon 50
candidatehostsselectedbasedon decreasinghumberof outde-
greesgexceptthatwe do not simulatethe 1-greedyand2-greedy
algorithmsasthey do not shav marked improvementover the
0-greedycasein the former scenarios.Hencein total we ran
7,350 simulationson randomly selectedcandidatehosts, and
6,630simulationson candidateselectionbasedn outdegree.

For the Internet-base@xperiment,we repeatthe above sce-
nario except using the 89 TracerouteGatevays as candidate
hosts. Mirror setsizesrangefrom 3 to 89, steppingby 3 up to
45, andsteppingdy 5 afterwards.Sincethereis only onevirtual
network, we do not repeatthe setof simulations10 times; we
do, however, still repeatheexperimentlOtimesfor eachmirror
setsize whenthe mirror placementalgorithm usedis random

placementThis meanswve run 1,014experimentson thevirtual
network.

A. Optimization Condition O(M, p)

We first considerthe optimizationcondition O(M, p). Fig-
ures8a, 8b, and9a shav the maximumclient-mirror RTTs for
O(M,1). Thex-axisof eachfigurelists the numberof mirrors,
andthey-axisthemaximumRTT betweerclientsandtheir clos-
estmirrors. The x-axesfor the simulationresultsrangefrom 0
to 50, while thosefor Internetexperimentsangefrom 0 to 90.
The y-axis in the variousfigureshave differentranges.In the
simulationresults,the “distance”betweerntwo nodesis the Eu-
clideandistancebetweenthem on the simulatedplane. In the
Internetexperimentsdistanceis in milliseconds.The numbers
for all placementlgorithms,exceptfor randomplacementare
averagedover simulationson 10 randomtopologiesto obtain
the mean,the maximum,and minimum. For clarity, we only
shaw the statisticsfor randomplacementin the figures. Recall
thatfor eachof the 10 randomtopologieswe simulaterandom
placemenbf n mirrors 10times. Fromthesel0 placementsye
getameanworstcaseclient-mirrorRTTs. Eacherrorbarshows
themean the maximumandthe minimumvaluesof thesemean
valuesoverthelOrandomtopologies.We seethatthemaximum
andthe minimumvaluesaretypically within 20% of themean.

From thesefigures, we obsene that optimizing O(M, 1)
yields very little improvementas the numberof mirrors in-
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creasespoth in simulationsand actual Internet experiments.
In constrainedmirror placementthe distancebetweenclients

andmirrorscannotbeimprovedincrementallyatfiner andfiner

granularitybecausenirrorscannot continuouslybe placedpro-

gressvely closerto the clients. Both candidatesite placement
andmirror placementancontribute to this problem. First, the

optimal mirror placementis very “location-sensitie” in that

it hasvery specificrequirementon wherethe candidatesites
shouldbe, i.e., separatedby an equaldistance.Also, the opti-

mal solutionsfor differentmirror valuen have very little over-

lap soit is unlikely all O(n?) optimallocations(at {1/2}, {1/3,

2/3}, {1/4,1/2,3/4}, .. .) would beincludedif n mirror candi-

datesitesarerandomlyselected.Second addingmore mirrors

cannotimprove the minimumdistancebetweera client andits

closestcandidatesite (thereforethe client’s closestmirror) fur-

ther, oncethe candidatesite is selectedfor mirror placement.
This problemcanbe exacerbatedvhenthe numberof candidate
sitesis smallrelative to the client population.

Figure 10 shavs the meanand 95%-tile of client-mirror dis-
tanceswhen candidatesitesare selectedbasedon outdeyrees,
andmirror placements by the 0-greedyalgorithm. Recallthat
solutionto the min K -centerproblemis applicableonly in the
caseof optimizationconditionO(M, 1). Hencefor optimiza-
tion conditionsO(M, p) and O(M, .95) we consideronly the
l-greedyalgorithm, in particularO-greedy Both the 95%-tile
and meanclient-mirror graphsshav diminishingreturnanda
well-defined'knee”, which confirmsthetheoreticabnalysisand
our intuition. We obsene very similar performancebetween

the two curves, reflectingO(M, .95) and O(M, u) optimiza-
tion conditions,and attribute this to the potentially long, but
nonethelessot heavy tail of the client-mirror RTT distribution
in our setupgwhich meanghatthe 95%-tileis notthatfarfrom
themean).In theremaindeof this paperwe useO(M, .95) as
our optimizationcondition.

B. Effect of | M| and P(M) on O(M, p)

Figures9b, 11a,and11b showv the obsened 95%-tile RTTs
betweenclients and their closestmirrors when O(M, .95) is
used.Notethatin mostcasesgespeciallywhenthe 0-greedyal-
gorithmfor mirror placements used thereis little improvement
in 95%-tileRTT beyond 10 mirrors.

Oneimportantobsenationwith regardto P (M) is thatplace-
mentis very importantwhenthe numberof mirrorsis small. In
all casesywhen| M| is small, thereis a significantdifferencein
obsenredlateny betweerusingthegreedyplacemenalgorithm
andrandomplacement. WhenP(H) is uniform, non-random
P(M) outperformsrandomplacement. Even when P(H) is
non-randomasin the caseof outdegree-basedandidateselec-
tion, using greedyplacemenimproves O(M, .95) by 10% to
20%asshavnin Figurell (notethedifferencen y-axisranges).

We concludethatincreasinghe numberof mirrors beyonda
small portion of the candidatesites(10, in our examples)does
notnecessarilymprove clientto closesmirror lateng. Further
more, careful placementof mirrors on a small candidatesites
canprovide thesameperformanceainasplacingmirrorsonall
candidatesites. Thesepreliminaryresultsseemto suggesthat
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candidatesite placementanbe just asimportantand possibly
moreimportantthanmirror placemenitself. We notethatprac-
tically candidatenhostsitesare often decidedby administratve
andfinancialconstraintgatherthantechnicalones.

C. Mirror Load Distribution

We now show thatusingO(M, .95) asthe optimizationcon-
dition, mirror loaddistribution is notimprovedwith largernum-
berof mirrors. Figure12 plotsclientdistribution amongmirrors
whenthe numberof mirrorsis increasedrom 2 to 50 (3 to 89,
in the Internetexperiment).The x-axisis the popularityrank of
eachmirror, andthey-axisis thenumberof clientsredirectedo
a particularmirror, with the mostpopularone gettingthe most
redirections.Eachcurve in the graphsrepresent specificmir-
ror setsize. For the simulations the candidatesetsare chosen
basedon decreasingutdeayrees. In all casesthe optimization
conditionis O(M, .95), andthe mirror placemenglgorithmis
0-greedy In thesimulation,only a smallnumberof clients(less
than 1% mirrors) getredistrituted with eachadditionalmirror
oncethe numberof mirrorsis above 15 mirrors. Client redistri-
butionis alsoveryinfrequentin our Internetexperiments.

Again, we point to our analysisin Section II-C, where
we showved that the optimal placementproducesgood load-

balancingamongmirrors as the numberof mirrors increases.

We have alreadyshawn thatit is difficult to reproduceheideal
settingwhenmirror placements constrainedoperhapst is not
surprisingthatwe alsolosetheability to load-balanceHowever,
we wantto pointoutthatonecanstill achiese load-balancingf
therequirementhateachclient be directedto the closestsener
isignored.

D. Effect of Redirection Methods

Up to now we have assumedhat client-mirror distancesan
bedeterministicallycomputedisingDijkstra’s shortespathfirst
algorithm. In this sectionwe considerthe casewhereonly 10
of the highestoutdegree TracerouteGatavays are able to do
t r acer out e. Hencedistancedetweenthe other Traceroute
Gatavaysandbetweena TracerouteGatavay, otherthanthese
10, to a client mustbe estimatedoy doing triangulationon the
distancesneasuredby thesel0 TracerouteGatavaysonly. This
simulatethe casewherethe underlyingnetwork topologyis not
known (suchasthe casewith the Internet)anda “distancemap”

of the underlyingtopology mustbe estimatedy placingmea-
suremenboxeson the network. We have shavn by simulations
in [6] thatwhenthe underlyingnetwork topologyis notknown,
nearestmirror redirectionusing someform distancemap out-
performsrandomredirection.We now shawv thatsimilar results
canalsobeobsenedonthelnternet.Figure13 shovs the 95%-
tile of client-mirror RTTs underO(M, .95) whendistancesre
known, with randomredirection,and with redirectionusinga
distancemap. The resultswere obtainedfrom Internet-based
experimentswhenmirrors are placedusingthe 0-greedyalgo-
rithm.

V. RELATED WORK

Therehave beensomerecentworks on mirror performance
and closestsener selection. In [15], the authorsmeasure®
clients scattered¢hroughoutthe United Statesretrieving docu-
mentsfrom 47 Webseners,which mirroredthreedifferentWeb
sites. They presentedindings that revealedgood stability of
mirror rankingsaccordingto downloadtime. In [16], the au-
thorspresenta sener selectiontechniqueshatcanbeemployed
by clientson endhosts. The techniqueitself involvesperiodic
measurementsom clientsto all of themirrors. The authorsof
[17] proposedsenerselectiorscheméasedn sharedassie
end-to-engperformanceneasurementsollectedfrom clientsin
the samenetwork. Thereare alsorelatedworks that focuson
maintainingconsisteng amongcacheseners,which canbeap-
plicablein keepingmirrorsconsistentin [2] and[1], theauthors
studieddifferentscalablevebcacheconsisteng approacheand
shavedvariousoverheadf keepingcachesonsistent.

Therehasnot been,however, any studywe areawareof that
givesspecificson how to do mirror placemenbn the Internet.
In [6], two graphtheoreticalgorithms k-HST [18] andMin K-
center[8], areusedto determinegthe numberandthe placement
of instrumentation boxes for the purposeof network measure-
ment. While the authorsof the paperusenearesmirror selec-
tion asa motivating problem, the 3 mirrors they considerare
manuallyplacedon arbitrarily selectedocations. In this paper
we take a closerlook at mirror placemenbn the Internetunder
arealisticsettingwherethe numberof mirrorsis small,but gen-
erally largerthan3, andthe placements restrictedo agivenset
of hosts.
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VI. CONCLUSION

In this paper we take a detailedlook at the problemof plac-
ing mirrorsof Internetcontenton arestrictedsetof hosts.Using
bothsimulationandreallnternetdelaydata,we examineanum-
berof placementndredirectionalgorithmsfor placingvarious
numbersof mirrorsandtheir effectsin clientresponsdime and
mirror load distribution. We obsened that thereis a rapid di-
minishingreturnto placingmoremirrorsin termsof bothclient
latengy andsenerload-balancingWe hypothesizehatthepres-
enceof thelocality constrainthaseliminatedsomeof theneces-
sary conditionsfor obtainingthe optimal solutionandthe sub-
sequentperformancebenefits. Even underthe more elaborate
placementschemessimply increasingthe numberof mirrors
yields very little performancemprovementbeyond a relative
smallnumberof mirrors.
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