Information
Processing
Letters

1N
Y _JAM‘J! =

ELSEVIER

Information Processing Letters 54 (1995) 111-119

Message terminating algorithms for anonymous rings
of unknown size

Israel Cidon !, Yuval Shavitt *

Electrical Engineering Department, Technion - Israel Institute of Technology, Haifa 32000, Israel

Communicated by S. Zaks; received 13 August 1992; revised 12 November 1994

Abstract

We consider a ring of an unknown number of anonymous processors. We focus on message terminating algorithms, i.e.,
algorithms that terminate when no more messages are present in the system but the processors may lack the ability to detect
this situation. This paper addresses the design of deterministic and probabilistic algorithms that message terminate with
the correct result. For this model we show: (i) A deterministic ring orientation algorithm that employs symmetry breaking
link markings and requires O(nlog® n) bits for communication and O(n) time. A probabilistic Las-Vegas version of this
algorithm (that requires no link markings) has the same average communication and time complexities. (ii) A probabilistic
Las-Vegas algorithm for partitioning an even size ring into pairs that requires O(nlogn) communication bits and time. (iii)
The impossibility of computing (via a Las-Vegas algorithm) most functions (the class of nonsymmetric functions) including:
leader election, XOR and finding the ring size. The same technique can be applied to prove the impossibility of partitioning

an odd size ring into a maximal number of pairs.

Keywords: Algorithms; Anonymous rings; Message terminating algorithms; Orientation

1. Introduction

Ring networks have traditionally been used as sim-
ple frameworks for evaluating distributed computation
and communication systems. The ring topology can be
used to demonstrate the implication of symmetry on
the performance and feasibility of certain distributed
tasks.

In this work we consider rings of an unknown num-
ber of indistinguishable processors that communicate
by messages sent over bidirectional links (anonymous
rings). We use an asynchronous mode] in which mes-

* Corresponding author. Email: shavitt@tx.technion.ac.il.
! Currently with Sun Microsystems Labs, Mt. View, CA 94043,
USA.

sage delivery time over a link is arbitrarily long but
finite. Algorithms for such asynchronous systems are
generally message driven in the sense that a processor
acts (changes its state, sends messages, performs com-
putations, etc.) only upon the reception of a message.
At all other times the processor is idling. We focus
on message terminating algorithms, i.e., the algorithm
terminates when no more messages are present in the
system (within buffers or in transit at the transmis-
sion lines) and no processor is at a state from which
it may initiate a message. As was shown in [9,10],
the processors may lack the ability to recognize the
termination of the algorithm and it might be detected
only by an outside observer. The stronger property
of processor termination (PT) where at least one of
the processors can detect the termination of the algo-

0020-0190/95/%09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI0020-0190(94)00237-1

112 I. Cidon, Y. Shavitt/Information Processing Letters 54 (1995) 111-119

rithm is not achievable for most non-trivial problems
in anonymous rings of unknown size. Attiya, Snir, and
Warmuth [5] prove that no (deterministic) PT algo-
rithm exists even for “simple” functions such as OR
and AND. In fact, their proof can be easily extended
for probabilistic PT algorithms as well.

Most of the algorithmic work in the area of anony-
mous networks has concentrated on models where
some knowledge of the size of the network is known in
advance (see [4,1,12]). In the absence of the ring size
knowledge it was shown in [10] that functions such
as computing the size of the ring or leader election can
be computed by a probabilistic message terminating
algorithm with some (arbitrarily small) error prob-
ability (Monte-Carlo algorithm). These results were
extended in [17] for general topology networks.

In this paper we focus on message terminating al-
gorithms for anonymous rings of unknown size that
terminate correctly, either deterministically or with
probability 1, while the average communication and
time complexities are kept bounded. To the best of our
knowledge this is the first time that non-trivial prob-
lems are solved under this model. However, most prob-
lems can not be solved under this model. We prove
impossibility results for a large class of problems (the
class of nonsymmetric problems). It is interesting to
observe that if the model is changed to a known ring
size, then some of the problems which are unsolvable
in our model (such as XOR) can be solved as effi-
ciently [5] as the problems we solve here (such as
orientation). In other words, there are cases where the
partition between solvable and unsolvable problems
(in our model) completely vanishes (even in terms of
different solution complexities) under the known ring
size model.

We present a deterministic orientation algorithm for
a ring of unknown size that uses link markings (sim-
ilar to [8]) to break symmetry and has a commu-
nication complexity of O(nlog2 n) bits (O(nlogn)
messages) and time complexity of O(n). Pachl [13]
shows a matching lower bound for the message com-
plexity for rings of unknown size with distinct identi-
ties. For the link marking we assume the existence of a
daemon that marks each link with “1” on one side and
“0” on the other side. We show how this daecmon can
be replaced by coin tossing to yield a Las-Vegas ori-
entation algorithm, i.e., an algorithm that terminates
correctly with probability 1 and maintains bounded

average communication and time complexities. Inter-
estingly, the Las-Vegas orientation algorithm has the
same average bit and time complexities as the de-
terministic one. Another Las-Vegas algorithm is pre-
sented here for partitioning an even size ring to neigh-
boring pairs (maximum matching).

Itai and Rodeh [9,10] present a message terminat-
ing Monte-Carlo algorithm that computes the ring size
in O(rn®) messages of O(logn) bits, and an error
probability of O(27""/2). Note, that if the error prob-
ability is taken to zero (or r is taken to infinity) the
message and time complexities approach infinity for
any n. Other distributed Monte-Carlo algorithms can
be found in [4,11].

We present an impossibility result for a class of
tasks, termed nonsymmetric problems, by showing that
they cannot be solved under the Las-Vegas model. Two
of the problems in this class were shown to be un-
solvable in the past: finding the ring size by Itai and
Rodeh [9] and solitude detection (leader election) by
Abrahamson et al. [2]. Other examples of nonsym-
metric problems (which are the majority of the prob-
lems) are XOR and partitioning an odd size ring into
a maximum number of pairs (maximum matching).

2. Orientation algorithms

Consider a ring of unknown number of anonymous
processors. Each processor (node) has a local notion
of a left and a right link which is termed the orien-
tation of the node. Two neighboring nodes have the
same orientation if the link connecting them is con-
sidered to be right at one of them and left at the other.
Throughout the paper when we use directions, left or
right, they are given according to the local orientation
of the node we refer to or according to a common lo-
cal orientation of a referred group of nodes. Our aim
is to coordinate all the processors to have the same
orientation. The fact that processors are anonymous
creates a symmetry that prohibits a deterministic so-
lution (see [3]). We overcome this impossibility by
employing symmetry breaking link markings that en-
able neighboring processors to act deterministically.
In section 2.4 we show how the link markings can be
avoided and replaced by coin tossing.

In the course of the algorithm each node i is a mem-
ber of a segment of consecutive nodes with the same

1. Cidon, Y. Shavitt/ Information Processing Letters 54 (1995) 111-119 113

orientation and keeps a local variable called length;
that specifies its relative position (left to right) in the
segment. The leftmost node in the sequence (the tail)
has length = 1, its right neighbor has length = 2, etc.
Therefore, a segment is a sequence of adjacent nodes
with the same orientation that satisfies: (1) The tail
has length = 1. (2) If length, #+ 1 then length, =
lengthlqﬁ(i)+1. (3) For the right most node (the head):
length,; ;) # length; + 1 OR orientationign iy +
orientation;. The size of a segment is defined as the
length of its head.

2.1. General description

When a node wakes up, it determines an arbitrary
orientation, forms a single node segment by setting
length = 1, and sends the message RIGHT(1) over its
right link. Upon the reception of a RIGHT (k) message
from the left neighbor, the node does nothing except
for recording the value k+ 1 in the variable [_from_left.
Consequently, if all nodes initially decide on the same
orientation, each node will receive a RIGHT(1) mes-
sage over its left link and the algorithm terminates.
However, if a node (which is in general the head of
a segment) receives a RIGHT message over its right
link, it learns that the node on its right has a conflicting
orientation, and one of them must flip its orientation.
A contest to resolve which node changes orientation
(the loser) will be described shortly. The node that
lost the contest reverses its orientation and joins the
new segment by setting its variable length to be one
higher than that of the winning node. After joining the
new segment, the loser becomes the new head of the
segment and spear-heads the algorithm by sending a
RIGHT message with the new length to its new right
neighbor.

The winner of the contest is the node heading the
longer segment. In case of a tie, a symmetry breaking
marking for each link dictates the winner. One excep-
tion for this procedure is when the node has length =
1. As was previously described, a node with length =
1 that receives a RIGHT (k) message on its left link,
saves the length (k + 1) of the segment on its left
in the variable /_from_left. In this case (only), if a
segment from its right will try to capture it, the node
might join the segment on its left (and will become its
head). The decision which segment to join depends

on the length of the two conflicting segments. > The
algorithm eventually stops when all RIGHT messages
arrive over left links.

2.2. Formal description

Each node uses the following variables: length
- a node’s position in a segment (from the left).
I_from_left — used only when length = 1, and records
the potential position of the node in the segment on
its left, in case it will join it. state — the state of the
node, asleep or awake.

Messages that are sent by the algorithm: WAKE_UP
- an initialization message received from a higher
level. RIGHT(/) - a message sent by a node over
its right link, that contains its position in its segment
(from left).

The algorithm is given in Fig. 1. Initially, all nodes
have state = asleep.

2.3. Correctness and complexity

First, we show that the algorithm always terminates
with a complete orientation of the ring. Then we an-
alyze the message and time complexities of the algo-
rithm. In order to save space we only state the main
theorems and lemmas and omit some of the proofs.
The missing parts can be found in [6].

Theorem 1 (Cidon and Shavitt [6]). The algorithm
terminates within finite number of messages. Upon
termination, all nodes are awake and have the same
orientation.

Lemma 2 (Greene and Knuth [7]). Let F(m) be a
discrete function with the following recursive defini-
tion:

F(l)=1,
F(m) = [max {F(i) + F(m — i) + min{i,m — i}}
= max {F()) + F(m — i) +i}.
1<i<m/2

2This can be viewed as if the node queues the message from
the left until it is captured by the segment from the right and then
changes orientation and reacts to the message from its new right
that causes it to change orientation again. In this scenario one
extra message is sent. We term this version “the basic algorithm”
and use it in some of the following proofs.

114

L Cidon, Y. Shavint/Information Processing Letters 54 (1995) 111-119

for WAKE_UP

(W.0) set state — awake; | from_left «— —1
(W.1) set length — 1

(W.2) Send RIGHT (/ength) on right link

for RIGHT(/) /* A message is received with parameter [*/

(R.0) if state = awake then
(R.1) if received on right link then
(R.2) if (I > length) OR (I = length AND NOT SYM_BREAK (right link)) then
(R.3) if ((length=1) AND (l_from_left > 1 OR
(Ifromdeft =1 AND SYM_BREAK (right link)))) then
/* join the long segment at your left */
(R.4) length — I from_left
(R.5) Send RIGHT (length) on right link
(R.6) end
(R.7) else /* the contest is lost - join the segment at your right */
(R.8) change orientation
(R.9) length — 1 + 1
(R.10) Send RIGHT (length) on right link
(R.11) end
(R.12) else /* A message is received on left link */
(R.13) Ifromleft — [+ 1
(R.14) else /* node is asleep */
(R.15) set link on which the message is received to be the left one
(R.16) length «— 1 + 1
(R.17) Send RIGHT (length)
(R.18) end

Fig. 1. The orientation algorithm - A formal description.

Then form > 1

m m
2F(— —

(2)+ >
for even m,

Fm) =)
P rm L L

2
for odd m.

Lemma 3 (Cidon and Shavitt [6]).

(a) Forall natural k, F(m) = m(1+1 log, m) where
m =2k,

(b) F(m) < m(1+ Llog, m) forallm > 2.

Lemma 4. F(m), as defined in Lemma 2, is the max-

imum number of messages 3 that may be sent for cre-

3 All the messages that are sent by the nodes of the segment from
the moment they wake up until (and including) the RIGHT (i)
message is sent are counted.

ating a segment of size m.

Proof. Let G(m) be the maximum number of mes-
sages sent while a segment of size m is formed. Clearly
G(1) = 1, since segments of size 1 are only formed
when a node wakes up and sends a single message.

A segment of size m, m > 1 can be formed in one
of the following three ways.

A segment of size m — 1 sends a RIGHT message
that wakes up a node which is asleep. That node sends
one message as it joins the segment. The number of
messages sent in this scenario is at most G(m—1) +1.

A segment of size i and a segment of size m — i
exchange RIGHT messages and the bigger one cap-
tures the other. The number of messages sent in this
scenario is at most G(i) + G(m — i) +min{i,m — i}.
This is true since each processor in the captured seg-
ment changes orientation and sends a single message

1. Cidon, Y. Shavitt/Information Processing Letters 54 (1995) 111-119 115

(lines (R.8)—(R.10) in Fig. 1). Note that if a segment
of size m + 1 — i captures a segment of size i except
for its leftmost node (which joins its left side segment
instead), the number of messages for forming a seg-
ment of size m takes only G(m+1—i) +G(i) +i—1.
However, this situation should be viewed as if the seg-
ment grows to length m + 1 and shrinks back, and in-
deed, the segment will eventually be captured by the
bigger one from the left.

A segment of size m — 1 is growing when the tail of
the segment to its right (that has the same orientation)
decides to join him (instead of joining the smaller
winning segment on its right), i.e., a segment of size
one with the same orientation merges with it. The
number of messages sent in this scenario is at most
Gm—-1)+G(1) + 1.

Therefore, we can bound G(m) by the maximum
of the above results:

G(l)=1
G(m) < max{[G(m— 1) + 1],
]rga<x {G(i) + G(m—i)

+min{i,m — i}},
[G(1)+G(m—1)+1]}

which yields

G(m) < [max {G(i) + G(m — i) + min{i,m — i}}.

Therefore, G(mm) < F(m). O

Theorem 5. The algorithm for a ring of size n termi-
nates after no more than n{ 1+ % log, n) messages are
sent.

Proof. By Lemma 4, F(m) is an upper bound for the
number of messages exchanged to form a segment of
size m. Assume that the algorithm terminates when
there are k < n segments of sizes my,my, ..., my,
where m; +ma +---+my = n. If k = 1 the result
follows. If k > 1 then the total number of messages
sent is less or equal than

F(m) + F(mp) +---+ F(my)

1 1
<m(1 +§10gm,) + - m (] +510gmk)

1
<n+§(m1+mz+-~+mk)
x log(my +my+ -+ my)

=n(1+—;—log2n). O

For the purpose of time complexity analysis, we as-
sume that a message is delivered after at most one time
unit. In the basic algorithm, each node sends a mes-
sage when it wakes up. We call the situation where
two nodes send messages to each other on the same
link a conflict. It is important to notice that a conflict
can be created only when a node wakes up. After a
conflict is created, one of the nodes changes its orien-
tation and sends a message on its other link. This can
lead to a conflict on that link and we shall say that
the conflict moves one hop. Otherwise, we say that the
conflict was resolved.

Lemma 6 (Cidon and Shavitt [6]). In the basic ori-
entation algorithm, delaying an incoming message,
cannot cause any message to be sent earlier from this
node.

Lemma 7. If all nodes are awakened together, after
k time units there are no conflicts between segments
that are both of size less than k.

Proof. Using Lemma 6, for the worst case, we assume
that messages always incur the maximal delay of a
single time unit.

We prove the lemma by an induction on the integer
k. After one time unit, all segments are of length 1,
and the lemma holds. We assume that the hypothesis
holds for all time values less or equal to k — 1, and
prove for k.

Assume that at time k there are two conflicting seg-
ments of sizes §; > s;, respectively. If the two seg-
ments were already at conflict at time k£ — 1, then at
that time the larger among them had a size of §; — 1
and the other had a size of s, + 1 (at time & 51 > 57
for this case and the larger segment always absorbs
the smaller segment). Given that the hypothesis holds
at time k — 1, it must be that s; > k. If the two seg-
ments were not in a conflict at time k — 1 then at least
one of them has been in a conflict at time k — 1 with
a segment of size 1 (in order for them to be in a di-
rect conflict at time k). Therefore, by the hypothesis

116 L. Cidon, Y. Shavitt/Information Processing Letters 54 (1995) 111-119

eithersy, —1>2k—1lors; —12k—-1. O

Corollary 8. If all nodes are awakened together, the
algorithm terminates after no more than n time units.

A simple addition to the algorithm enables termina-
tion for a ring of size n after no more than [3r/2] time
units. Every node that receives a message for the first
time (wakes up) sends immediately a wake-up mes-
sage on the other link (on both links). It is clear that
after [n/2] time units all the processors are awakened,
and the extra cost is only 2n messages. Using Lemma
6, from this time on the algorithm cannot terminate
later than an algorithm that is executed over an iden-
tical ring where all the nodes are awakened together
(by Lemma 7, it takes at most n time units). Thus,
the algorithm terminates after [3n/2] time units.

Another simple version of the algorithm suggested
by one of our anonymous reviewers, performs the
above orientation algorithm without the use of the
length field. The link markings are used to determine
the orientation of the links. Two types of ties are pos-
sible: two links that point to a node (sink) or two links
that point away from a node (source). A sink node
chooses an arbitrary direction, and sends a message
to flip the links in that side of it until the next source
node. This algorithm improves the bit complexity by
a factor of logn but possesses a time complexity of
O(nlogn).

2.4. A Las-Vegas orientation algorithm

The orientation algorithm presented above, uses a
deterministic function to break symmetry among adja-
cent nodes. Consequently, it requires some predefined
consistent input for each pair of neighboring nodes.
These predefined markings can be replaced by a prob-
abilistic tie breaking procedure. In order to break sym-
metry among neighbors, each node tosses a fair coin
and sends the result to its competing neighbor. If they
both toss the same value, another round of coin toss-
ing is performed, until exactly one of the nodes gets
“1”. The expected number of rounds for such a con-
test process is 3 o i - () = 2. Therefore, the ex-
pected message complexity for the probabilistic ori-
entation algorithm remains O(n - logn). Similar to its
deterministic counterpart, the probabilistic algorithm
is partially correct, i.e., it outputs the correct result for

every finite execution [9]. It message terminates with
probability 1, and therefore it constitutes a message
terminating Las-Vegas algorithm.

3. Partitioning an even size ring into pairs

We assume a bidirectional un-oriented ring with an
unknown but even number of anonymous processors.
We present a maximum matching algorithm for this
ring.

The algorithm operates in phases: In each phase, a
node sends and receives a single message over both
links. (We delay messages which arrive out of phase
until the next phase starts, and there can be at most
one such outstanding message per node.) Nodes are
either single or married. Only single nodes initiate the
communication of the next phase. Two messages are
used: invite and reject. At the beginning of a phase
(or upon wake-up) a single node randomly selects
one of its links, marks it as candidate, sends an in-
vite message over that link and sends a reject mes-
sage over the other link. If it receives an invite mes-
sage over the candidate link, it marks the link as a
spouse and becomes married. Otherwise, it waits un-
til it has received a message over both links and starts
a new phase. A married node only forwards the mes-
sages it gets to the opposite direction. In the case that
both messages of the same phase are invite, the mar-
ried node swaps its spouse, i.e., it removes the spouse
marking from one of the links and marks the other as
spouse. The change of the spouse marking shifts the
matches of all the couples between two single nodes
and repartitions these nodes and the two single nodes
into neighboring couples. If all nodes are married af-
ter a phase completes, the algorithm terminates as no
processor initiates a new phase.

We turn to the cost analysis of the presented algo-
rithm. At each phase a single node becomes married
with probability 1/2. Therefore, on the average half
of the single nodes become married after each phase.
Consequently, it is easy to show that the average num-
ber of phases is logarithmic in the number of nodes.
Each phase requires exactly one message over every
link in each direction, which totals to O(n-logn) mes-
sages. Since there are only two message types (invite
and reject), the communication bit complexity is also
O(n -logn).

1. Cidon, Y. Shavitt/Information Processing Letters 54 (1995) 111-119 117

The above algorithm for partitioning an even size
ring to pairs can be generalized to partitioning a ring
of size km to m groups of k neighboring nodes.

3.1. Formal description

As in the previous section each node has a lo-
cal orientation. We denote the left (right) link by
the Boolean value “0” (“1”). Consequently, if the
Boolean variable x contains the left (right) link iden-
tity then its complement X holds the opposite link iden-
tity.

The algorithm is given in Fig. 2.

The following procedures are used by the algorithm:
Receive(m, 1) — Writes in m the type of message that
is at the head of the queue / and removes the mes-
sage from the queue. If the queue is empty Receive
first waits for a message arrival. Random - returns a
random Boolean value (with equal probabilities).

Each node uses the following variables: cs — the
current candidate/spouse link. state — the state of the
node, single or married. m1 and m2 — the type of the
received messages at queues 1 and 2. Initially all nodes
have state = asleep.

Messages that are sent or received by the algorithm:
WAKE_UP - an initialization message received from
a higher level. invite, reject ~ as explained above.

4. Impossibility results

Let f: 3* — T be a function computed on anony-
mous rings defined over some alphabet 3. f is sym-
metric if for every string s € 3™ and for every natural
k, f(s) = f(s*). Otherwise f is nonsymmetric. (It is
easy to realize that most functions f are nonsymmet-
ric.)

An algorithm is partially correct if it outputs the
correct result for every finite execution. Itai and Rodeh
[9] prove the impossibility of calculating the ring size
when the processors are anonymous, and the algo-
rithm is partially correct. In the sequel we shall extend
this proof in two directions. First we prove that the
ring size cannot be calculated by algorithms that have
bounded bit complexity and are partially correct with
probability 1, where in [9] algorithms that err with
probability O were not considered. Second we gener-
alize this to all nonsymmetric functions.

Examples for nonsymmetric functions are leader
election, XOR and computing the ring size. For XOR,
f(s) # f(s*) whenever s contains an odd num-
ber of 1s and k is even. For computing the ring size,
F(s) never equals f(s*) if k > 1. For leader election
there are no input values (except for the size) and the
function return value is a bit that tells each proces-
sor whether it is the leader, it is clear that the vector
f (s*) never equals the concatenation of the k vectors
of f(s).

The proof is constructed for a synchronous algo-
rithm and thus holds for asynchronous algorithms as
well.

Theorem 9. There is no algorithm for computing a
nonsymmetric function in a ring of unknown num-
ber of anonymous processors that is partially correct
with probability 1 and its average bit complexity is
bounded.

Proof. We assume to the contrary that such an al-
gorithm exists and show a contradiction. Let A be
such an algorithm for computing the function f in
a ring with an unknown number of anonymous pro-
cessors, and let E be the average number of bits sent
by the algorithm. We examine a ring with n proces-
sors (p1,pa2,...,pn) With inputs s = (51, 82,...,5,).
Let f;(s) be the value that processor p; holds when
the algorithm (message) terminates for inputs s, let
F(9) = (), f2(8)s s fu(s)), and let f2(s) =
(f(s), f(s),...,f(s)) be the concatenation of
k output vectors f (s)._Select s and k such that
fr(s) # f(s*), where f(s¥) is the output vector for
a ring of size kn with inputs s* (k concatenations of
the vector s). We select an execution * R of positive
(greater than zero) probability that terminates after
a finite number of bits were sent, and yields f (s)
as an output vector. We now show that such R with
probability greater than zero exists. By definition
E =37 ip(i), where p(i) is the probability that .4
terminates after { bits were sent. Applying the Markov
inequality (see [16]) we get 3,5, p(i) < 3, and
thus Zingl’(i) > % Since the number of execu-
tions that uses at most 2E bits is finite (recall that we
are dealing with a synchronous model here) we can

4 An execution is defined by the messages that are sent (received)
and by their transmission (reception) times.

118 I. Cidon, Y. Shavitt/Information Processing Letters 54 (1995) 111-119

for WAKE_UP or message reception and state = asleep
(W.1) ¢s < Random

(W.2) send invite on link cs

(W.3) send reject on link ¢s

(W.4) state — single

for a message arrival on link /

(M.1) if state = asleep then
(M.2) do WAKE_UP procedure
(M.3) if state = married then
(M.4) Receive(ml,1)

(M.5) Send(m1,1)

(M.6) Receive(m2,1)

(M.7) Send(m2,])

(M.8) if m1 = m2 = invite then
(M.9) cs « €5

(M.10) if state = single then
(M.11) receive(ml, cs)

(M.12) receive(m?2, ¢s)

(M.13) if m1 = invite then
(M.14) state «— married
(M.15) else

(M.16) ¢s — Random

(M.17) Send invite on link cs
(M.18) Send reject on link ¢

Fig. 2. The partitioning algorithm - A formal description.

deduce that at least one such execution has a positive
probability termed .

Examine a system of k& rings each of n nodes and
an input vector s. All the rings are stochastically inde-
pendent. Since the probability space of this system is
the Cartesian product of k identical probability spaces
of the ring discussed before, the probability for R to
be executed simultaneously at all the rings is &*.

Now cut all the above rings at the same place,
say between processors p; and p;;;. Then, con-
nect all the k strips into a ring of kn processors
such that every processor p; of ring j is con-
nected to processor p;.1 of ring j + 1 (modulo k):
(Plis -os Pao PL oo Pl PR o PR PR

..,pf). Since the processors are anonymous there
is no way for a processor to tell if it is in the sys-
tem of k rings that each one of them has R executed
at, or whether it is in a ring of kn nodes that has &
“copies” of R executed at its k sections. The proba-
bility space of the concatenated ring and the k ring

system is identical. All the events in the probabil-
ity space that cause simultaneous execution in the
k ring system cause also simultaneous execution of
k copies of R at the concatenated ring and yields
f"(s) = (f(s),f(s),...,f(s)) as output. These
events are selected with the same probabilities at both
systems. Therefore, the probability to get f_k(s) as
output in the concatenated ring is at least ¥. [

A direct corollary of this theorem is that determin-
istic algorithms for nonsymmetric functions do not ex-
ist.

The rationale for our restriction to algorithms with
bounded average bit complexity can be demonstrated
by the following simple algorithm. Each node selects
a real number in the range (0..1). Since the probabil-
ity for two nodes to choose the same real number is
zero the ring’s nodes possess a unique identities with
probability 1, a model that was studied in depth in the
literature (see [14], [15, Chapter 2, Section 5], and

1. Cidon, Y. Shavitt/Information Processing Letters 54 (1995) 111-119 119

the references therein). Leader election can now be
easily performed with O(nlogn) messages but each
one of them carry an infinite number of bits.

5. Concluding remarks

We presented message terminating algorithms for
the problems of ring orientation and partitioning an
even size ring into pairs. An algorithm for the problem
of General Pattern Searching (GPS) can be found in
[6]. Simple implementation of this algorithm can be
used to compute the functions OR and AND (a search
for a “1” or a “0”, respectively) with O(n) bit and
time complexity.

Some problems are more difficult to describe in
terms of functions. However our impossibility result
still holds for such problems if they possess an asym-
metric behavior. Such examples are: partitioning a ring
of size n # km to a maximal number of groups of k
neighboring nodes; evaluating the size of the longest
sequence of consecutive “1”, where in the case that all
inputs are “1” this translates into finding the ring size
(which was also proved in [9]).

Acknowledgment

The authors are thankful to the anonymous review-
ers for their constructive comments and suggestions
that helped to improve the presentation of the paper.

References

[1] K. Abrahamson, A. Adler, L. Higham and D. Kirkpatrick,
Randomized function evaluation on a ring, in: J. van
Leeuwen, ed., Proc. 2nd Internat. Workshop on Distributed
Algorithms Lecture Notes in Computer Science 312
(Springer, Berlin, 1987) 324-331.

[2] K. Abrahamson, A. Adler, L. Higham and D. Kirkpatrick,
Optimal algorithms for probabilistic solitude detection on
anonymous rings, Tech. Rept. TR 90-3, University of British
Columbia, 1990.

[3] D. Angluin, Local and global properties in networks of
processes, in: Proc. 12th Ann. ACM symp. on Theory of
Computing (1980) 82-93.

{4] H. Attiya and M. Snir, Better computing on the anonymous
ring, J. Algorithms 12 (2) (1991) 204-238.

[S] H. Attiya, M. Snir and M.K. Warmuth, Computing on the
anonymous ring, J. ACM 35 (4) (1988) 845-875.

[6] 1. Cidon and Y. Shavitt, Message terminate algorithms for
rings of unknown size, EE Pub. 793, Dept. of Electrical
Engineering, Technion ~ Israel Institute of Technology, Haifa
32000, Israel, 1991.

[7] D.H. Greene and D.E. Knuth, Mathematics for the Analysis
of Algorithms (Birkhauser, Basel, 2nd ed., 1982).

[8) A. Israeli and M. Jalfon, Uniform self-stabilizing ring
orientation, Inform. and Comput. 104 (2) (1993) 175-196.

[9] A. Itai and M. Rodeh, Symmetry breaking in distributed
networks, in: Proc. 22nd Ann. IEEE Symp. of Foundations
of Computer Science (1981) 150-158.

[10] A. Itai and M. Rodeh, Symmetry breaking in distributed
networks, Inform. and Comput. 88 (1) (1990) 60-87.

[11] Y. Matias and Y. Afek, Simple and efficient election
algorithms for anonymous networks, in: Proc. 3rd Internat.
Workshop on Distributed Computing, Lecture Notes on
Computer Science 392 (Springer, Berlin, 1989) 183-194.

[12] S. Moran and M.K. Warmuth, Gap theorems for distributed
computation, in: Proc. 5th Ann. ACM Symp. on Principles
of Distributed Computing (1986) 141-150.

[13] J.K. Pachl, A lower bound for probabilistic distributed
algorithms, J. Algorithms 8 (1987) 53-65.

[14]). Pachl, E. Korach and D. Rotem, Lower bounds for
distributed maximum-finding algorithms, J. ACM 31 (4)
(1984) 905-918.

[15] M. Raynal, Distributed Algorithms and Protocols (Wiley,
New York, 1988), translated from French.

[16] S.M. Ross, Probabilities Models (Academic Press, New
York, 3rd ed., 1985).

[17] B. Schieber and M. Snir, Calling names on nameless
networks, in: Proc. 8th Ann. ACM Symp. on Principles of
Distributed Computing (1989) 319-328.

