Efficient QoS Partition and Routing of Unicast and
Multicast

Dean H. Lorenz® Ariel Orda Danny Raz Yuval Shavitt
Department of Electrical Engineering Bell Laboratories
Technion—Israel Institute of Technology Lucent Technologies
{deanh@?tx,ariel@getechnion.ac.il {raz,shavit} @research.bell-labs.com

Abstract—In this paper we study problems related to supporting unicast route to support the QoS guarantee. These may include buffer
and multicast connections with Quality of Service (QoS) requirements. We qr bandwidth reservations.

investigate the problem of optimal routing and resource allocation in the . . .
context of performance dependent costs. In this context each network el- Network considerationsQoSR may be used to Improve overall

ement can offer several QoS guarantees, each associated with a differentn€twork efficiency or enforce fairness. The cost may represent

cost. This is a natural extension to the commonly used bi-criteria model, the decrease in overall network performance from establishing

where each link is associated with a single delay and a single cost. Thisthe selected connection. For instance, there may be loss of rev-

framework is simple yet strong enough to model many practical interesting ’ !

networking problems. enue due to blocked future calls, or there may be management
An important problems in this framework is finding a good path for COStS.

a connection that minimizes the cost while retaining the end-to-end delay (Jser considerationsThere are several proposals for pricing

requirement. Once such a path (or a tree in the multicast case) is found, h for diff t Scl Gi h . . h

one needs to partition the end-to-end QoS requirements among the links schemes for different QoS classes. Given such a P“?'ng scheme,

of the path (tree). We consider the case of general integer cost functions the user would attempt to choose the cheapest feasible route.

(where delays and cost are integers). As the related problem is NP complete, Other Other optimization criteria may be expressed in terms of

we concentrate on finding efflueqte-apprommatlon solutions. We improve costs. For instance, where there is parameter uncertainty, the
on recent previous results by Ergin et al., Lorenz and Orda, and Raz and

Shavitt, both in terms of generality as well as in terms of complexity of COSt may represent the probability of a bad estimate.
the solution. In particular, we present novel approximation techniques that Identifying feasible routes may be a difficult task, and its

yield the best known complexity for the unicast QoS routing problem, and : . :
the first approximation algorithm for the QoS partition problem on trees, complexity corresponds to the intricacy of the QoS mechanisms

both for the centralized and distributed cases. (scheduling, signaling, and resource reservation) and of the re-
quired QoS guarantee. The constraints on the feasible set may
l. INTRODUCTION be relaxed to include routes that are feasible with just “high

probability or that provide just statistical guarantees. The QoS
Quality of Service (QoS) support is a growing need in broagyarantees themselves may be imposed on the whole connec-
band networks. Many modern applications require better sggn or on each individual link. The latter typically requires
vice than the Internet’s best effort mechanism. There have bqﬁappmg the app“cation’s end-to-end requirements into local re-
numerous suggestions for QoS provisioning and it has been éﬁﬁ’rements.
focus of many recent studies. Indeed, there is a growing conqp, this paper we investigate a model in which a performance-
sensus that QoS supportin the Internet is necessary. AImost gBjendent cost is associated with each network link. The goal
QoS framework requires a QoS Routing (Q0SR) mechanisgi.the QoSR process is to identify a route and a séocdl de-
and this has been the subject of many proposals, as descrifgghds on its links as to minimize the overall cost incurred. A
in [1], [2], [16] and references therein. QOSR aims at setlingasible allocation of demands must satisfy the end-to-end re-
the connection topology for an application, i.e., a path for unjyirement of the application. For instance, if the QoS require-
castand a tree for multicast, based on its QoS requirements @it is end-to-end delay then a feasible allocationgartion
some optimization criteria. of the end-to-end delay over the links of the route. The op-
Many of the QoSR algorithms, first restrict the route selegma| solution must be chosen from all combinations of route
tion to a set offeasibleroutes, which have sufficient resourcegng demand allocation, namely it is a combined routing and
to guarantee the QoS requirements of the application, and thggource allocation optimization problem. We use integer cost
choose an optimal route out of this set. The optimization Ciynctions, which better fit practical purposes (see [15] and ref-
terion is generally defined in terms of a “cost”, namely: thergences therein). We also focus on additive (e.g., delay) QoS
is a cost associated with ensuring a specific QoS guaranteg&@jlirements, which are typically harder to solve for than bot-
a specific route. Naturally, this cost is higher for more strifreneck (e.g, rate) requirements (see [13] for a more detailed
gent requirements, such as larger bandwidth or shorter de|aydi§'cussion).
many cases the cost is not explicitly given but rather implied. 15 model and related problems were recently addressed by
An implied cost mechanism is quite flexible and may be usedd@yeral works. Some studies assumed that the route (i.e., unicast
incorporate different considerations: path or multicast tree) is given and only the resource allocation
Link considerations The cost may represent the consumptiogat of the problem is solved. Heuristics for loss rate guaran-
of local resources that must be reserved on every link of tgg\es on unicast connections are presented in [14]. Optimal so-
*Part of this work was done while visiting Bell Labs, Lucent Technologieé,Utions for convex cost functions, from an operations research
and was supported in part by DIMACS. point of view, are discussed in [9] under the broader scope of

a general resource allocation problémn optimal solution for present approximation techniques which rely on tight lower and
(weakly) convex cost functions and improved results for specifipper bounds on the cost of an optimal solution. The problem
cost functions are shown in [12], [13], and [15]. Heuristics foof efficiently finding such bounds is solved in Section IV and
the resource allocation problem for multicast connections &tee full approximation process is given in Section V. Section VI
given in [4] and the problem is optimally solved in [13]. A vari-applies similar approximation technigues to solve the resource
ant of this problem for rate guarantees is studied in [10] ancalocation problem on multicast trees. Finally, concluding re-
more efficient solution is given in [8].Distributed optimal so- marks are given in Section VII.

lutions are presented in [13], and a detailed version for multicast

connections is given in [15]. Il. PRELIMINARIES

The combined problem of partition and routing of QoS re- In this section, we give a formal definition of the problem and
quirements was also addressed. Optimal multicast tree cpresent simple dynamic programming pseudo polynomial solu-
struction is a very complex problem even in simpler frameworkions. These pseudo polynomial algorithms are used as “build-
(e.g., constrained Steiner tree [11]), thus the combined route sy blocks” for the approximation algorithms presented in the
lection and resource allocation problem was solved only for umest of the paper. Similar (and more detailed) solutions can be
cast connections. Optimal solutions were presented in [6] filmund in previous works [12], [13], [15].
rate demands and rate-based delay requirements, and in [12] fofhe network is represented as a gréptV, E), where|V| =
general (integer) delay requirements with convex cost functionsand |E| = m. There is a single source nodeand a single

Although these problems have been proved to be intractalifrget node. We denote ant-path byp, and its length (number
efficient e-approximations may be derived. The approximataf hops) by|p|. We shall assume that all parameters (both delays
solutions ares-optimal in the sense that their cost is within @nd costs) are integers. We will further assume that the minimal
factor of 1 + ¢ of the optimal cost. The running time is polyno-cost on any link isl, however we shall relax these assumptions
mial in 1/¢, that is, there is a tradeoff between the accuracy of Section V-B.
the solution and the computational effort needed to find it. An)
approximation scheme for the combined routing and resourte Restricted Shortest Path
allocation problem was introduced in [12]. That approximation The Restricted Shortest Path Problem (see e.qg., [7]) can be
scheme required several limiting assumptions, including coflewed as a special case of our problem. EachlliakE offers
vexity of the cost functions. A Fully Polynomial Approximationg single delay and cost, which are denotedipgndc; respec-
Scheme (FPAS) for general (integer) costs was recently obtainggly. We define the cost of a path ag) = ZlEp ¢; and the
by [3]. delay of a path bylelay(p) = 3", di.

A special case of practical interest was studied by [15]. ThatProblem RSP (Restricted Shortest Path{siven a network
study assumediiscretecosts® meaning that each link offers G(V, E), a delay/cost pair for each linkl;, ¢; };c 5, and an end-
only a limited number of QoS guarantees (and costs) inste@dend requiremend. Find the minimal cost path among all
of the complete spectrum of requirements. Under this assunpaths which satisfylelay(p) < D.
tion, [15] presentedtrictly polynomial approximations for the Algorithm RSP (Fig. 1) is a pseudo polynomial dynamic pro-
combined routing and resource allocation problem and for theamming algorithm that solves Problem RSP.
multicast resource allocation problem as well.

This paper presents efficient approximation schemes for gelRSP (G(V, E), {d;, ¢; }ie g, D, U):
eral integer cost functions and end-to-end delay requirementg. forallv # s
Previous approximation schemes ([12], [15], [3]) are all derivec® D (v;0) <0
from approximations to theestricted shortest pathroblem ob- i gf??;o U
tained by [7] and are restricted only to eitryclicgraphs or | 5 forp e v
non-zerocosts. Our results apply to generak(also cyclic) | 6 D(v,4) — D(v,i—1)
graphs and allow for links with zero cost; in addition we present’ forl € {(w,v) | c(u,v) <4}
the first polynomial time approximation scheme for the optimal8 ~ D(v,9) «— min{D(v,),di + D(u,i — c1)}
resource allocation problem on multicast trees with general n2 PG <D

. . 0 return the corresponding path
teger cost functions. Furthermore, our results improve upon the retumeai

previous ones in terms of time complexity, namely: they have Fig. 1. Algorithm RSP
a better time complexity than the results of [3] for integer costs
and the results of [15] for discrete costs. The parametel is an upper bound on the cost of the solution.

The rest of this paper is structured as follows. SectionsThe algorithm returns the minimal cost path that satisfies the
to V discuss the combined path selection and resource allodatay requirement if the cost of this path is no greater ttian
tion problem for unicast connections. Section Il formulates tlgherwise it fails.
model and problems and presents pseudo-polynomial solutioBemplexity For each each link is examined at most once, thus
which are the basis for our approximations. In Section Il wehe overall complexity i<D(mU). If a solution is found then

the complexity isO(mc*), wherec* is the cost of the optimal

LOptimal solutions for continuous functions are also discussed. solution

2[8] presents efficient solutions for a broader family of optimization problemf\,l) . -
which includes the one discussed in [10]. ote If some links have a zero cost then the updates in line 8

3We follow the term used by [15]. may not be performed in an arbitrary order. For acyclic graphs,

the “natural” partial order induced by the graph ensures correblete 2 If the cost functions are (weakly) convex then Algo-
ness, however establishing a correct update order for geneitiim OP-MP of [12] can be applieiThe resulting complexity
graphs requires a shortest path computation at each iteratiofis@ (mU (log U + log D)).

the algorithm and adds to the complexity.

IIl. SAMPLING AND SCALING

B. Optimal QoS Partition and Routing]) o)
In this section we present approximation techniques based on

We now generalize the results fategercost functions. Each sampling and scaling. The two methods are used in succession
link may offer different (integer) delay guaranteds, each as- at a preliminary stage to produce an instance of Problem RSP
sociated with a (integer) cosi(d;). The cost of a patp with a or Problem OPQR with smaller integer parameters. We then
given delay partitiof(d; },¢p is defined ag(p) = 3, ,, ci(d1). find an approximated solution by calling the appropriate pseudo-

Problem OPQR (Optimal QoS Partition & Routing)Given polynomial algorithm presented in the previous section. Since
a network G(V, E), a delay/costfunction for each link the complexity of Algorithm RSP and Algorithm OPQR de-
{ei(d)}ier, and an end-to-end requiremebt Find the min- pends on their integer input parameters, reducing these parame-
imal cost pathp and partition{d; },¢,, that satisfies the end-to-ter values improves the complexity.

end delay requiremer@. ' N On the other hand, both sampling and scaling introduce an
We denote the optimal path kiy" and the optimal partition error in cost on every link, because they affect the granularity of
by d* = {d] }1cp~ With optimal costc*. the parameters. There is a tradeoff between the accuracy of the

The following dynamic programming algorithm (Fig. 2)solution obtained and the complexity of the algorithms. We seek
solves Problem OPQR. The general idea behind the algorithgis:--approximation, namely a solution with cost no greater than
is to view each linkl as a set of linkg{l1,[2,... ,ly} corre- afactor of(1 + ¢) from the optimum. The value eafis an input
sponding to all possible costs on the link. The delay associatectthe algorithms and the complexities polynomially depend on
with each of these links is the minimal delay which achieves the.,

specified cost (line 9). In this section, we assume that an upper bound and a lower
bound on the optimal solution are given. In the next section,
OPQR (G(V, E),{ci(d) }1er, D, U): we show how to efficiently obtain these bounds. Note that the
1 forallv # s tighter these bounds are the lower is the complexity of finding a
2 D(v,0) o0 solution.
3 D(s,0) —0
4 fori=1,2,...,U
5 forveV A. Logarithmic sampling
6 D(v,i) « D(v,i —1)
7 forl € {(u,v)|veV} In this section we use logarithmic sampling on the cost func-
8 forj =1,32,... i tions. The idea is not to check the cost functions for every
9 di(j) = min{d | (d) < j} o possible cost, as is done by Algorithm OPQR. Instead, we
ﬁ) D g(gg — min{D(v,4),d(j) + D(u,i - 5)} check delays that correspond to specific costs on a logarithmic
12 return the corresponding path and partition, scale. Specifically, we check delays WhICh correspond to costs
13 returnrAIL of 1,(1 +¢),(1 +¢)?...,U, whereU is an upper bound on
“The minimal ik cost s assumed o be the maxima_l cost. We re_p_lace each link with a set of links each
corresponding to a specific delay (and cost), and then we solve

Fig. 2. Algorithm OPQR Problem RSP. Algorithm L-OPQR (Fig. 3) finds ampproxi-
mation to Problem OPQR.

Complexity For each possible cost valiesach link is exam-
ined i times (in line 8),i.e, O(U?) examinations overall. In L-OPOR (G(V. E d D.U.2):
each examination in line 9 we need to find the minimal delay; ;- :Qﬂogfﬁ(m’ Ja(dhes, D,U.e):
that has a cost no greater thawhich requiresD(log D) steps, | 2 foreach € E
3
4

implying an overall complexity o)(mU? log D). If we save foreachj = 0,1,...,I¢ _
the d;(j) values and compute it only for new values jothen dij — min{d|¢;(d) < (1 +¢)’}
repeated examinations can be donedifl). At mostU new | > = cj < (1+e)

computations (each requiring(log D) are required per link. | 6 £={lj[l€ E,j=0...I°}

The overall complexity would then k@(mU? + mUlog D) = | 7 U=0+eU A
O(mU (U +1log D)). If a solution is found then the overall com{ 8 P — RSP(G(‘C E) Adijs ci}ijep D U)
plexity is O(mc*(c* + log D)), wherec* is the cost of the opti- | 9 if = FAIL then returrFaiL

mal solution. 10 (else)p — {l|3lj € p}

Note 1 In some cases the complexity of the computation rﬁ foreaci €p

. . . . J={illjep}

line 9 can be done in less tha@n(log D). For instance, if the |13 returnp, {di5, hiep

inverse functlcl)ns{dl(c)}l.eE are available, (e.g. they have anr Fig. 3. Algorithm L-OPOR
explicit analytic expression which has an inverse form) then it

can be computed i0)(1) and thelog D can be eliminated from 4without the additional assumptions of [12] (e.g., bounds on the cost of each
the complexity. link).

Lines 1-7 select the delays on logarithmic scale costs, ling 8-OPQR(G(V, E), {ci(d) }ier, D, U, L, ¢):
calls Algorithm RSP, and lines 10-13 compute the partition jn1 s 5
terms of the original problem. 2 foreach € E
Complexity Let 1 = mI¢ = O(Z1%Y). Initializing G re- | 3 _ definet(d) = |ei(d)/S] +1
quiresO(rlog D). Calling Algorithm RSP require® (inU). | 4 U~ [U/S]+n i
The overall complexity is therefor@ (%(logD + U)). 5 return "'OPQF{G(V’ E){a(dhes, D,U, 6)
Note If I* > U then logarithmic scaling does not im- Fig. 4. Algorithm S-OPQR
prove the complexity, and an exact solution can be found in
O(mU (log D + U)) by using Algorithm OPQR.

Theorem 1: If Algorithm L-OPQR returnsFAiL thenc* >
U. Otherwise the returned paghand its corresponding partition
are a feasible solution to Problem OPQR with cost

Note SincelL is used only for scaling, it does not have to be a
valid lower bound for the algorithm to produce a solution. How-
ever it does affect the accuracy of the solution, namely we get
ane-approximation only ifL < ¢*.

ok Theorem 2: If Algorithm S-OPQR returnsAIL thenc* >
<]‘ b U b
c(p) < (1 +&)min{e”, U} U. Otherwise the patp returned and its partition are a feasible
namelyp is an1 + ¢ approximate solution. solution to Problem OPQR and

Proof: For eachl € p*, letj* = [l 7.5 Obviousl
P et = flogy. cf y e(p) < (1 + &)(min{c", U} + ¢L).

* i *

a <(l+ef <(l+e)q. (1) Thus, if L < ¢* < U thene(p) < ¢*(1 +¢)?, i.e, pis an
5 . .

From the definition of line 4, and sineg = ¢;(dy) < (1 + (1 +;) “f’llj 2e apr?rox];matehsolutlo;. < Satd) < er(d

€)', we getdy;; < dj. ThusY . dijr < D, i.e, the path roof: For each € £ we haver,(d) < 5¢(d) < e(d) +

: . . A .. S. Summing for all links we get for any pa
{lj }1ep~ 1s a feasible solution ol. By the same definition g g y pah

(line 4), c;j» < (1 + e)’t. Inserting this into (1) and summing c(p) < Sé(p) < c(p) + nsS. (3)
we get
If U > c* then
&= ;<Y (L4+e)g =(1+e)c. 2)

S
If U > ¢* thenj < I° and from (2)¢* < (1 +¢)U = U. o .
Therefore, the feasible pafitj; },c,+ must be examined by the This implies that ifU is indeed an upper bound @i then so

call to Algorithm RSP, and thus, Algorithm L-OPQR will notiS U on G (namely, with cost function§é(d) }ic). Therefore,

returnFAIL. Hence, Algorithm L-OPQR may retusaiL only I Algorithm S-OPQR retumsAiL (i.e, Algorithm L-OPQR
it ¢ > U. returnedraiL) thenU < c¢*. Let&* be the cost of the optimal

solution to Problem OPQR af. Sincep* is a feasible partition
on G we must have

U.

Algorithm RSP finds the minimal cost feasible path 6n
with cost at mosU, thereforec(p) < min{é*,U}. UsingU =

(14¢)U and (2) we get(p) < (1+¢) min{c*, U}, as claimed. c*
- & <alp) < G)
B. Linear scaling The pathp returned by Algorithm L-OP QR must satisf{p) <

Here we present an approximation based on linear scaling(bft €) min{¢*, U}. Inserting into (3) and (4) we get
the costs. Scaling is applied to all costs to produce an instance of

Problem OPQR with smaller costs. We then call Algorithm L- cp) = Selp) -
OPQR to find the optimal solution. < S +¢)min{c*, U}

We use the lower bound to compute a scale factérwhich < S(1+¢)min{é&(p*),U}
introduces an overall error no greater than a fraction fsbm c* -
L. If the lower bound is validf < c¢*) then this ensures the < S(l+e) min{g +n,U}
accuracy of the solution obtained. The tightness (ratio) of the < (1+¢&)(min{c*,U} + (n+1)8)
upper and lower bounds determines the complexity of the algo- < (14&)(min{e",U} + <L),

rithm. Algorithm S-OPQR (Fig. 4) uses scaling to find an
approximation to Problem OPQR. as claimed. m
Complexity The complexity is dominated by the call to Algo- remark 1: It is possible to replace the call to Algorithm L-
rithm L-OPQR (line 5), which require®(“%¢Y (log D+U)). OPQR on line 5 with a call to Algorithm OPQR. The overall
Letaw = U/L. Then,U = O(an/<) and the overall complexity complexity will then beO (m2® (log D +), which may
is m oan on be an improvement i is very small [og “* > an). If a path

O (— log — (1ogD + —)) . p is returned by Algorithm S-OPQR then, in this case, it sat-

€ c c isfiesc(p) < min{c¢*,U} + L. The proof is similar to that of
5Note that the assumptian > 1 is needed here. Theorem 2.

Remark 2: For convex cost functions it is possible to ap
ply scaling to theexactalgorithm MP-OP of [12]. That is,

MP-OP is called instead of Algorithm L-OPQR in line 5 of

Algorithm S-OPQR. The overall complexity in this case i
O (m22 (log D + log %)) ,which is an improvement unless
D > an/e > 2%™.

IV. FINDING UPPER ANDLOWER BOUNDS

In this section we present algorithms for finding upper ar
lower bounds on the solution to Problem OPQR. We seek tig

bounds,i.e., with « = U/L as small as possible. We can the
use these bounds with the approximation algorithms of the p
vious section.

A. General idea

- BOUND (TEST(), L, U):
1 if TEST(L) does not returi®AIL then
return[L, f(L)]
if TEST(U) returnsrAIL then
return ERROR
f— 1)
l+—logL
u «— logU
whileuw — 1 > 1
2 — 2(l+u)/2
if TEST(A) returnsrAIL then
[— log A\
M2 else
e u «— log A
14 fF—ro
15 return[2, f]

2
3
>4
5
6
7

[e¢]

b

bt

Fig. 5. Algorithm BounD

We follow the method proposed by Hassin [7]. Suppose we

have a test proceduregET(\), that checks whethexis a valid
upper bound. We can callEBT(\) for all A € {1,2,4,8,...}.
If for some*, TEST(A*) returnsFAIL and TEST(2*) succeeds
then* < ¢* < 2XA*. Clearly, since EST(\) returnsraiL for
all A < ¢, then if TEST(1) returnsrFAIL such aA* will be found
in O(log ¢*) tests.

Now, suppose that all we have is approximatedest proce-
dure in the following sense.

Note The initial lower boundL is assumed to be valid. On
the other handl/ does not have to be a valid upper bound,
but TEST(U) must notraiL (i.e, f(U) should be a valid up-
per bound). A valid upper bound could be chosen as the initial
U in which case EsT(U) would notrAaiL, however, this would

be a pessimistic bound with relatively high complexity. It is bet-
ter to choose the smallest knownfor which TEsT(U') does not
FAIL.

Definition 1: Atest procedure, EsT()), isanf-approximated ~Altogether, we have proven the following theorem.

test procedure if it satisfies the following:

1. if TEST(A) returnsrAIL then) < ¢*, otherwise

2. TEST()) returnsf(A) and f(\) > ¢*.

TEST(\) either returns a valid upper bourfd)) > ¢* or FAIL.
If TEST(A) returnsrAlL then is not a valid upper bound.é.,
¢* > A, meaning tha# is actually a lower bound). If EST(\)
returnsf(X) then it is a valid upper bound, batmay not be a
valid upper bound.

Theorem 3: Given an f-approximation EST() procedure,
an upper bound/, and a lower boundl,, such thatl < ¢* <
f(U), Algorithm BounD finds correct upper and lower bounds,
u andl, such that

% < f(l2l)'
An obvious valid initial lower bound i4.° A slightly bet-

ter bound ismin;c g ¢;(D), which is actually a lower bound on

Note that the above definition is a generalization of Hassirtlse cost on any link. This bound can be improved by comput-
approximated test procedure. By settifigr) = (1 4+ ¢)x one ing the length of the shortest-path with {c;(D)};cx as link
obtains Hassin’s-approximation test procedure [7]. lengths, since the cost of each lihbn any feasible partition is

We can apply the above method and catsT()) for all atleast; (D). A valid upper boundi$~, ., (D /|pl) for some
A€{1,2,4,8,...}. If for some*, TEST(A") returnsFAIL and arbitrary st-pathp, becausg D/|p|}icp is a feasible partition.
TEST(2A*) returnsf(2A*) then* < ¢* < f(2X*). Again, if Therefore, a valid upper bound is the length of the shoxtest
TesST(1) returnsrFAIL then such a* must be found IO (log ¢*) path with{c;(D/n)},c £ as link lengths.
tests. Otherwise, if EST(1) returnsf (1) then0 < ¢* < f(1).

If f(\) is a monotonic increasing function of and there B. The test procedures
are some known (possibly trivial) lower and upper bouhds In this section, we present two test procedures that can be used
¢ < U then the following algorithm (Fig. 5) may be used. ijth Algorithm BounD. We assume that the test procedures

Algorithm BouND performs a binary search on a logarithare aware of the problem instance, i@(V, E), {c;(d) }icg, D.
mic scale. This can be viewed as a searchXfoon the group For notation simplicity we omit the problem instance from the
{L,2L,4L,... ,U}. The quality of the bounds we get (segest procedure description.
line 14) depends on the accuracy of test procedure, namely offhe first test (ProcedureEBT1, Fig. 6) is based on Algo-
f(X). Specifically, the returned bounds, U] must satisfy rithm S-OPQR. It is very accuraté (\) < 4)), however has
U _ f(2L) relatively.high _complexity. _ . .

i < A Complexity Using the complexity expression for Algorithm S-

.) OPQR we get¢ =1, =1)
If, for instance,f()\) = A then the bounds satisfy < ¢* <
U<2L,ie,a<2.
Complexity The number of calls to #sT()) is of orderlog(u—
1) with the initial [, u, that is

L<c <UL f(2L),ie, a=

O (mlogn(log D +n)).

Accuracy By Theorem 2 if TESTL returnsFAIL thenc* > U
A; and if it returns a pathp thenc(p) < (1 + €)(U + L)

U
O (log(logU —log L)) = O (log log f) = O(loglog). 6Recall that this is assumed to be the minimal cost on any link.

ProcedureTEST1 (\):
1 P HS'OPQRG(Vz E): {Cl (d)}lEE’ D7)‘7)\7 1)

e-OPQR(G(V, E), {ci(d) }iek, D, €):

1 Uy <« maxjeg ¢;(D/n)

2 If p=FAIL 2 L < cost of SHORTESTst PATH (G(V, E),{c;(D) }ieg)
3 returnrAIL 3 [L2,Uz] < BOUND(TEST2, L1,Uy)

4 else 4 [L3,Us] < BOUND(TESTL, L2, U2)

5 returnc(p) 5 return S-OPQRG(V, E), {c:(d)}iep, D, L3, U, €)

Fig. 6. Procedure sTl Fig. 8. Algorithme-OPQR

(14 1)(A+ A) = 4\. Obviously,f(\) = ¢(p) is a valid upper Complexity L, is a valid lower bound and 8572(U;) can-

bound, and we havg(\) < 4. not returnFAIL. Thus, L;,U; are a valid input to Algo-
The second test (ProceduredT2, Fig. 7) is based on a “stan-rithm BouND in line 3. Computing both these bounds requires

dard” shortest path computation. Itis less accurate thesntI, O(m + nlogn). Algorithm BouUND requires O(loglog j3)

but has better complexity. The idea is to bound the highest coatls to Procedure 8512, where s is the ratio of the ini-

incurred on any single link of the optimal solution.

ProcedureTEST2 (\):
1 foreachl € E
2 di(N) =min{d]| ¢ (d) <A}
3 p < SHORTESTs¢PaTH (G(V,
if delay(p) > D

returnFAIL
else

returnc(p)

E),{di}ier)

4
5
6

7

Fig. 7. Procedure #sT12

Complexity Computingd; (\) requiresO(log D) for each link.
Computing the shortest path requir€$m + nlogn).” The
overall complexity is thus

O(mlog D + nlogn).

Note If G is connected then 8ST2(max;cg ¢;(D/n)) cannot

FAIL. Thereforemax;cg ¢;(D/n) can be used as an initial up-

per bound for Algorithm BUND with TEST2. An even better
bound can be found by computingsuch thatG(V, E(\)) has
an st-path, whereE () is defined agi|c;(D/n) < A}. Such
a A can be found irD(mlogm) by sorting the links and then
runningO(log m) connectivity tests.
Theorem 4: Procedure EsT2 is a valid test procedure with
f) <nA
Proof: If a feasible pathp is found by the call to
SHORTESFPATH then by definitionc; < A for all [€ p, im-
plying an overall cost(p) < nA. Since{d;(\)}icp is a fea-
sible partition we must have® < c(p) < nA. In other words
fA) < An.
Consider now the optimal solution to Problem OPQR) [#
c* then since=* > ¢ for everyl € p*, we have
di(\) < di(¢") < di(ef) =df Vlep.
Therefore,) ;.
ble path w.r.t. {}le
if the algorithm returngAiIL then) < ¢*

) < Xiep- 47 < D, namelyp is a feasi-
}zeE and the aIgonthm cannot fail. Thus
|

V. PUTTING IT ALL TOGETHER

tial bounds® Thus, the overall complexity up to line 3 is
O(loglog B(mlog D + nlogn)).

L, and U, are valid bounds orc* and therefore are valid
input to Algorithm BouNnD. Since Us/Ls < 2n the
call to Algorithm BouND in line 4 requiresO(loglogn)
calls to Procedure AsTl and an overall complexity of
O (loglog n(mlogn(log D 4+ n))).

L3, Us are valid bounds oa* and therefore are valid input to Al-
gorithm S-OPQRU3/L3 < 8, hence the call to Algorithm S-
OPQR requires

o(log_(lo D+8_>)

The overall complexity is therefore

@) ((mlog D + nlogn)loglog B+
mlogn(log D + n)loglogn + 2 log 2 (log D + 2))
O(m logD(loglogﬁ + lognloglogn + — log(n/s))

+nlogn (loglog 8 + mloglogn) + €—2mn log(n/5)>

Note 1 For very small values of, replacinglog = by n may
improve the complexity (see Remark 1 in Section IlI-B).

Note 2 The complexity can also be improved for the case of
convex cost functions (see Remark 2 in Section 111-B).
CorrectnessAs explained beforel/; and L, are valid bounds.
Using Theorem 3 and Theorem 4 we get thatand L, are also
valid bounds. Applying Theorem 3 again witle3T1, together
with Theorem 1 establish the algorithm correctness.

A. Discrete cost functions

In this section we discuss the application of our approxima-
tion technigques to the more restricted casdistretecost func-
;tions. This case, which was studied by [15], admits a strictly
polynomial approximation scheme, meaning that the complex
ity does not depend on eithésglog 5 or log D. We follow
[15] and use the terndiscreteto refer to cost functions with

We can now present a fully polynomial approximation algo- 8Note that3 is bounded by the maximal cost of any single link.

rithm to Problem OPQR.

7Using Dijkstra’s algorithm.

9Even if U is replaced by the better bound suggested in the note in Sec-
tion IV-B the complexity of finding the initial bounds is still dominated by the
rest of the algorithm.

at mostq discrete (delay,cost) values, wherds given as in- is totally independent of the cost values. Specifically, the costs
put. Next, we derive an improved complexity for the solution alo not need to have integer values.
Problem OPQR for discrete cost functions.

We first observe that computing the inverse cost function VI. M-OPQ
(e.g., in line 9 of Algorithm OPQR) can be done @log q) In this section we solve the multicast resource allocation ver-
instead ofO(log D). This reduces the complexity of Algo-sion of Problem OPQR. We assume that the multicast tree is
rithm OPQR taO (mU (log U +log q)). Alternatively, each link given and that the problem is to find the optimal resource allo-
can be replaced b§(q) links corresponding to its offered ser-cation (delay partition) on it.
vices. After this substitution, Algorithm RSP can be used with a We denote a multicast tree Byand the multicast target group
complexity ofO(mqU). Our second observation is that we capy M = {¢,,t,,...}. We denote a path from the sourcéo a
reduce the number of calls tce872 by Algorithm BouND. In- nodev by p”. The cost of a tree is defined a&l’) = 3,1 c:.
stead of searching through the whole range of costs we can limite delay of a tree is defined as the maximal delay of a path
the search to th&(mgq) discrete cost values, which requiresrom the source to any member of the multicast group, namely
only O(log(mgq)) calls to TEsT2. The initial sort requires ad- delay(T) = max,¢ s delay(p®).
ditional O(mqlog(mgq)) operations, however using techniques Problem M-OPQ (Multicast Optimal QoS Partition)Given
for searching in arrays with sorted columns [5], the additional treeT’, a delay/cosfunction for each link {c;(d)};er, and
number of operations can be reducedXton log ¢). The over- an end-to-end requiremend. Find the optimal partition

all complexity, assuming = O(< log 2),20is d = {d;};er that satisfies the end-to-end delay requirement
delay(T) < D.
0 ((m log ¢ + nlog n) log(mq)+ We present exact andapproximate solutions which apply to
man any integer cost functions. We assume all parameters (costs and
mlogn(log ¢+ n)loglogn + T) delays) are integers.
This is a significant (aboven?) improvement over the A. Exactsolution
3
O(M) approximation obtained in [15]. We solve Problem M-OPQ using the same techniques we used
for Problem OPQR. We start with Algorithm M-OPQ (Fig. 9)
B. Zero and non-integer costs which is an exact pseudo-polynomial solution. The todt of a

: Y-
We shall now relax the assumption that the minimal cost dff€ is denoted by, the twd links connected to are denoted
every link is at least. As noted in Section II-A, if there are PY ¥ @ndz and their corresponding sub-trees are denotefby

links that have a zero cost and the graph contains cycles RS L - AS befores, m (= n — 1) denote the number of nodes
a shortest-path computation is required in every iteration of tg8d inks in the tree. The hight (depth) of the tree is denoted by

exact pseudo-polynomial solution. This increases the comple’% . .) . .
ity of Algorithm RSP by a factor ofog n, and adds to the com- Algorithm M-OPQ (Fig. 9) finds the optimal partition on the
plexity of all the approximations. whole tree by combining optimal partitions on the sub-trees.

Both Algorithm OPQR and Algorithm L-OPQR assume ’X’_Y and Z are tables of siz&/ which hold the best de-
minimal cost ofl on every link. On the other hand, these alg ay achieved for each and every cost. Such a table is computed

rithms are called only through Algorithm S-OPQR which ador each sub-tree and for each Ii_nk. The .a!gorithm recursively
signs costs that cohere with this assumption. The rounding rges tables of sub-trees (and links) until it reaches the root of

line 3 of Algorithm S-OPQR ensures that the minimal cost a ile treg. E?Ch caltl) to ProcedurzﬂMGEh(Flg. 9E)f|nds the tl))est
signed on any link is at least The only requirement is that thedllocation of cost between two branching sub-trees or between

scaling factorS is greater than zero. The scaling factor woul sub-tree and its root link. In t.he iatier case the delays must be
be zero only if either. or ¢ is zero. Ife — 0 then we actu- summed and ProcedureBMGE s called with a> operator. In

ally require an exact solution and therefore Algorithm S-O PQIIQe former case the overall delay is the maximal delay between

cannot be used. We can still use Algorithm OPQR, as s, fg}e two (parallel) branches and ProcedurergEis called with

acyclic graphs, or modify it (with increased complexity) to in& 122X operator.

. . 9
clude a shortest-path computation in every iteration. Complexity Each call to Procedure BRGE requiresO(U*).

L : There are two such calls for every node in the tree. Calculat-
If L = 0 then the approximation scheme requires |nf|n|t-£ oo : .

time anyway, since in this cage= co. On the other hand, for !n?hX(Cf) me(ll)ne E()thlaqull;ei)[(]U loAg é))t -.Lh? %velrall (.:t?]mpleﬁ'tﬁ
any positiveL, Algorithm S-OPQR works fine, with the same> Neretor (nU(log D +U)). Istributed algorithm whic

complexity, even ifL < 1. Also, Algorithm BouND only re- Eses p;grallel callls tqtsg-tﬁgsl(sez[ngfor detailed description)
quiresL > 0 hence Algorithme-OPQR only requireg, > 0. o> @ IMe compiexity (HU(log D +U)).
The case o™ = 0 can be easily checked by calling Proceg Approximation

dure TEST2 with A = 0. Note that in this case, any feasible path]] S
returned by EST2 is an (exact) optimal solution. # > 0but _ Ve canuse Algorithm S-OPQR to find arpproximation to

L, = 0 then some assumption (e.d.; > 1) must be made. Problem M-OPQ. For this end, it is sufficient to replace the call

Except from its dependency dnglog 3, Algorithm e-OPQR 11jithout loss of generality, we assume a binary tree. The tree can be made
binary by splitting each non-binary node witchildren tox — 1 binary nodes.
10This determines whether Algorithm OPQR or Algorithm RSP are used. This adds a constant factor to the complexity.

-OPQ (T, {c/(d) }ier, D, U): TEST2M (\):

if X(U)> D Fig. 11. Algorithm TEST2Mm
returnrFAIL (exit recursion)

M

1Y —M-OPQTY,...) 1 foreachh € T'

2 Z —M-OPQ(T%,...) 2 di(A) =min{d| ¢;(d) < A}
3 W —MEeRGHY, Z, U, max) 3 if delay(T) < D then

4 forc=1...U 4 returnHX

5 X(c¢) < min{d|cz(d) < c} 5 else

6 X «—MERGEX,W,U,Y) 6 returnFAIL

7

8

X (all except root)
9 (else) returr{ min{c | X(c¢) < D} and the cor-

responding partition. (root only) Complexit_y O(nlog D); andO(H log D) for a distributed im-
ProcedureM ERGE (A(c), B(c), U, op): plementation.
1 fore—0. .U ' 0 OP The fully polynomial approximation algorithm to Problem M-
2 D(c) = minj<y<. 0p{A(z), B(c — 2)} OPQ is presented in Fig. 12.
3 returnD
Fig. 9. Algorithm M-OPQ e-M-OPQ (T, {Cl(d)}leT,D,E)i

1 Uy « maxjer ¢;(D/H)

. . : | 2 L= er a(D)
to Algorithm L-OPQR in line 5 of Algorithm S-OPQR with| 3 (1, 1/,] — Bounp(TesTwm, Ly, Uy)

a call to Algorithm M-OPQ. Algorithm SM-OPQ (Fig. 10) is| 4 [Ls,Us] «+ BouND(TESTL, Lo, Uz)
the modified version. 5 return SM-OPQT', {c;(d)}ier, D, L3, Us, €)
Fig. 12. Algorithme-M-OPQ

SM-OPQ (T, {c;/(d) }ier, D, U, L, €):
18—t Complexity Combining the complexity expressions of Algo-
2 foreach € T rithm SM-OPQ and the modified test procedures we get the

3 definec(d) = |a(d)/5] +1 overall complexity of finding am approximation to Problem M-
4 U« [U/S]T+n OPQ:
5 return M-OPc(T, {&(d)}ier, D, U, s)

Fig. 10. Algorithm SM-OPQ (0] (n log D log log 5+

2(log D + n)loglog H + ™ (log D +)),
Complexity The complexity is dominated by the call to Algo- n"(log n)loglog (log 5)>

rithm M-OPQ (line 5), which require®(nU(log D + U)),

~) . h
whereU = O(an/e), as in Algorithm S-OPQR. Thus, theW ere max ci(D/H)
overall complexity is b= "~Sam
leT
2 . . .
0 (n@ <logD T %)) -0 (ﬂ (logD i %)) . For the distributed case the complexity is
g 3 e 3

1o (H log D log log -+

The overall complexity for the distributed case is
nH(log D +n)loglog H + "2 (log D + 2)).

O (H% (1ogD + %)) .
¢ ‘ CorrectnessSimilar to the unicast case.
Note As for Algorithm S-OPQR/ does not have to be a valid

lower bound, but it affects the accuracy of the solution. VIl. CONCLUSIONS

Theorem 5: If Algorithm SM-OPQ returns-AlL thenc™ > | this paper we studied efficient approximations to optimal
U. Otherwise the partition(T") returned is a feasible solutionoyting and resource allocation in the context of performance
to Problem M-OPQ and dependent costs.

. We established fully polynomial approximation schemes for
c(d(T)) < min{c”, U} + eL. the following problems:

The proof is similar to that of Theorem 2.
We can find lower and upper bounds to Problem M-OPQ uI;’_roblem OPQRThe combined optimal routing and partition

. : . ; problem for unicast connections.
ing Algorithm BouNnD and apply Algorithme-OPQR with a) : " e L
few modifications (see Fig. 12). First, the initial bounds are Problem M-OPQ Optimal partition of end-to-end QoS require

ments on a multicast tree, including a distributed implementa-
tion.
Ur= e a(D/H), Ln = ;CZ(D)’ We also presented improved results for the two important special
© cases of convex cost functions and discrete cost functions.

second, we replace the call to Algorithm S-OPQR in Proce-We presented the first fully polynomial approximation
dure TesT1 with a call to Algorithm SM-OPQ; and third, we scheme (FPAS) for Problem OPQR that is not limited to either
use the following ProcedureEBT2M (Fig. 11) instead of Pro- acyclic networks or links with non-zero costs. Our approxima-
cedure EST2. tions are valid for general costs, and in particular to non-convex

cost functions. In addition, we presented the first FPAS for Pralbt
lem M-OPQ that applies to general cost functions.

D. S. Hochbaum. Lower and upper bounds for the alloction problem and
other nonlinear optimization problemsviathematics of Operations Re-
search 19(2):390-409, 1994.

Our results significantly improve upon previous results, in €W T. ibaraki and N. KatohResource Allocation Problemghe foundations

ery context of cost functions that has been investigated. Specifi-
cally: (10]
General costsThe approximation scheme of [3] achieves an
overall complexity ofO(X ™2 log log(nC™)), whereC™ax [11]
is a trivial upper bound on the cost of any link add =
min{D, w + log D, % + log D}. Our approximation [12]
scheme provides a significant improvement in terms of com-
putational complexity. The exact comparison involves a curnis)
bersome algebra and is thus omitted; as an indication to the ex-
tent of the improvement, we note that our approximation Otﬁ-‘”
performs that of [3] by a factor of more than eitheg log 3 or
n/e, depending on the relative order of magnitude of the iant5]
parameters.

Convex costsFor Problem OPQR, efficient approximations for
convex cost functions were studied in [12]. However, that af<!]
proximation requires several more assumptions on the cost func-
tions, e.g. that the maximal cost on any link is bounded. Those
assumptions were reasonable in the context studied in [12],
namely uncertainty of network parameters, but they are too re-
strictive for the general case considered here. In contrast, our re-
sults do not rely on those assumptions. On the other hand, when
only QoSpartitioning is considered (i.e., the routing is given),
the convexity assumption allows fekactpolynomial solutions

for both unicast and multicast [13]; moreover, the (exact) solu-
tion of [13] for Problem M-OPQ outperforms our approximation
also in terms of complexity.

Discrete costsWe improved the results of [15] for discrete cost
functions (see Section V-A). Our approximation has a signif-
icantly better (above:?) time complexity for both unicast and
multicast connections.

Future research should focus on the open problem of multi-
cast routing in this framework. Future work should also con-
sider the application of our methods to specific cost functions,
in particular those that arise in practical QoS applications. Such
an investigation would potentially allow for more efficient ap-
proximations. We also believe that simple cases (e.g. uniform
or linear cost functions) should simplify the task of multicast
routing.

REFERENCES

[1] G. Apostolopoulos, R. Garin, S. Kamat, A. Orda, T. Przygienda, and
D. Williams. QoS routing mechanisms and OSPF extensions. Internet
RFC, August 1999.

E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A framework for
QoS-based routing in the internet — RFC no. 2386. Internet RFC, August
1998.

F. Ergin, R. Sinha, and L. Zhang. QoS routing with performance-
dependent costs. IRroceedings of the IEEE INFOCOM 2000el-Aviv,
Israel, March 2000.

V. Firoiu and D. Towsley. Call admission and resource reservation for mul-
ticast sessions. IRroceedings of the IEEE INFOCOM'96an Francisco,
CA, April 1996.

G. N. Frederickson and D. B. Johnson. The complexity of selection and
ranking inX +Y and matrices with sorted column¥urnal of Computer

and System Sciengext:197-208, 1982.

R. Guérin and A. Orda. QoS-based routing in networks with inaccurate
information: Theory and algorithms|IEEE/ACM Transactions on Net-
working 7(3), June 1999.

R. Hassin. Approximation schemes for the restricted shortest path prob-
lem. Mathematics of Operations Researd7(1):36—-42, February 1992.

(2]

(3]

[4]

(5]

(6]

(7]

of computing. MIT Press, Cambridge, MA, 1988.

M. Kodialam and S. Low. Resource allocation in a multicast tree.
Proceedings of the IEEE INFOCOM'9pages 262-266, New York, NY,
March 1999.

V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing
for multimedia communicationlEEE/ACM Transactions on Networking
1:286-292, 1993.

D. H. Lorenz and A. Orda. QoS routing in networks with uncertain param-
eters. IEEE/ACM Transactions on Networkin€(6):768—778, December
1998.

D. H. Lorenz and A. Orda. Optimal partition of QoS requirements on uni-
cast paths and multicast trees.Rroceedings of the IEEE INFOCOM’'99
pages 246-253, New York, NY, March 1999.

R. Nagarajan, J.F. Kurose, and D. Towsley. Allocation of local quality of
service constraints to meet end-to-end requirement§:IWorkshop on

the Performance Analysis of ATM SysteMartinique, January 1993.

D. Raz and Y. Shavitt. Optimal partition of QoS requirements with discrete
cost functions. InProceedings of the IEEE INFOCOM 2000el-Aviv,
Israel, March 2000.

Z. Wang and J. Crowcroft. Quality-of-service routing for supporting mul-
timedia applicationslEEE JSAC 14(7):1288—1234, September 1996.

In

