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Optimal Partition of QoS Requirements with Discrete
Cost Functions

Danny RazMember, IEEEand Yuval ShavittMember, IEEE

~ Abstract—The future Internet is expected to support applica- The QoS routing problem is to find a minimal cost path (or
tions with quality of service (QoS) requirements. To this end, sev- g multicast tree) in the network that can support the connection

eral mechanisms are suggested in the IETF; the most promising ; _
among them is DiffServ. An important problem in this framework QoS requirements (such as delay). Along the selected path, re

is how to partition the QoS requirements of an application alonga Surces (bandwidth, buffer space) should be optimally allocated
selected path. The problem which is, in general, NP-complete, was to support the required QoS at a minimal cost. The latter can be
solved for continuous convex cost functions by Lorenz and Orda. formulized as an optimization problem for the partition of the

This paper concentrates on discrete cost functions, which better onq.to-end QoS requirements to local requirements along a path
model the existing and upcoming mechanisms in the Internet. We .
(or a multicast tree).

present efficient exact and approximated solutions for various con- » o .
ditions of the problem. We also show that although the more com-  In general, the partition problem is intractable. The special
plex problem of QoS sensitive routing with discrete cost functions case where the link cost functions, i.e., the function that de-
is hard, it has a fully polynomial approximation scheme. scribes the cost of allocating a QoS parameter on a link, are con-
Index Terms—Approximation algorithms, differentiated ser-  tinuous convex cost functions was addressed recently by several
vices (DiffServ), dynamic programming, multicast, quality of \yorks. Kodialam and Low [10] dealt with multicast trees for the
service (QoS), restricted shortest path (RSP). strongly convex case. Lorenz and Orda [13] presented polyno-
mial algorithms both for trees and paths for weakly convex cost
|. INTRODUCTION functions and addressed the QoS routing problem [12].

HE FUTURE Internet is expected to support applications This pap.er. concentrates on di;crete cost .functions, 'and

with quality of service (QoS) requirements. To this enda’resents efﬂqent exact and approxmgted solutlon§ for various
mechanisms are required to support signaling for connecti6RSes- We first show that even the simplest possible discrete
establishment that include QoS routing and resource allocati§ASe: i-e., two level cost functions, is still intractable. We give
A promising application that is currently being deployed an@n efficient dynamic programming solution for the special case
needs QoS support is IP telephony [4]. To support IP telephomyere the QoS parameter domain is integer, but not necessarily
one needs to guarantee the overall end-to-end delay, in ordeg@dvex. We present a sublinear algorithm for the homogeneous
allow acceptable service level to the end user. convex case—the case where all the cost functions are iden-

DiffServ [1], [15] is a technology that is suggested to be usdigal. Both solutions are demonstrated to be easily distributed

to enable the QoS support over the Internet for applications withith low communication and storage complexity. The same
QoS constraints like IP telephony. In this framework, routers &chniques are also used to establish similar algorithms for the
the edge of the network mark packets to provide them with a desulticast problem.
ignated priority level or service class. Each type of service has,For the general discrete cost functions case, we show a simple
in our case, a bound on the delay inflicted on packets througduction of the QoS partition and the QoS routing problems
the network. Service providers may publish different prices pgy the restricted shortest path problem [8]. Using this reduc-
type of service. An IP telephony call will typically traverse multion, one can easily derive arapproximation algorithm both
tiple networks, each with its own service classes and pricifgr the QoS partition and routing problems in the unicast case.
scheme. In this environment, we need to find a route that spfpwever, this reduction does not apply to the multicast case.
isfies the end-to-end delay bound requirement, and a partitigRs we present a different fully polynomial approximation al-
of the end-to-end requirement along the selected route such gfithm for the QoS partition problem that works both for the
the cost of using the route is minimized. Note that, in Manyicast and multicast cases. Namely, we prove that for any ap-

;:a_lses, the routing |s|g|ve?] by SBO(rBHPe gegerﬁl bestl—leffqrt und§iaimation parameter, our approximation algorithm finds a
ying routing protocol such as » and the application m lution with cost not greater thdn+ ¢ times the optimal cost,

only optimize its cost via partition. both for paths and trees. Moreover, we show that our approxi-

mation can also solve a more general class of nondiscrete cost
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8 Regional ISP Backbone Provider Regional ISP
servicetype d ¢ servicetype d ¢ servicetype d ¢
gold 15 25 gold 40 60 gold 15 30
silver 30 20 silver 60 30 silver 40 10
bronze 40 10 bronze 90 10
Fig. 1. An example of the use of DiffServ for IP telephony (based on [11]).
many service classes. Each administrative dorhaiermed II. MODEL

N g . ; i implify the discussion, we sometimes refer to the QoS param-
administration of the DS domain is responsible for ensuring thaf, 55 delay.

adequate resources are provisioned and/or reserved to SUPPQH the unicast case. a paghof lengthn between two end

the SLA's offered by the domain. For example, an ISP can offghges is given, and the QoS requirement is additive. Given a

three levels of service above best-effort: gold, silver, and bronzg, ;g Q on the end-to-end QoS requirement, the QoS partition

For any ingress—egress pair, the SLA guarantees a specific d(ﬂﬁymem is to find a vectak = (z1, -+, zn), S, 2y <

bound for each service level. The guarantee is achieved by us@lgand S ¢i(w;) is minimal. Note that, the casze_i)f bottle-

priority mechanisms, and class based routing in the DS domaijeck QoS requirement is trivial [13], and the multiplicative case
Consider an application like IP telephony, thatrequires a delgy pe easily reduced to the additive case by using the logarithm

bound of say 120 ms and traverses three DS domains (see kighe requirement [2], [13].

1). We need to partition the dellay bound req_uirement among thap, the multicast case, a multicast tréeis given. The tree

three DS domains that comprise the path, in a way that resuligs,, nodes one of which is designated as the root. The QoS

ina minimal cost. The cost and the delay bound for each serviggrtition problem is to find a vectak = (z1, -+, @), Sit.,

level at each DS domain appear below the domain in Fig. 1.2@) z; < O, for all pathsp, from the root to the leaves, and

naive approach will partition the delay equally among the thrég. = ¢, (z;) is minimal.

domains. This results, in this example, with a cost of 80 units. The QoS partition problem is called homogeneous if all the

An optimal partition, with a cost of only 65 units, is to select th@nks have the same cost function.

low level service from the backbone (with 90 ms delay bound)

and the highest level service (with 15 ms delay bound) in each®f piscrete Cost Functions

the regional ISPs. Evenin this simple example, there are multiple . . . .
9 P b P A general discrete cost function associates a cost with each

choices for the partition. A service provider that can choose ﬂ(}|escrete level of 00S. In the most aeneral case. there mav be
cheapest one has an obvious advantage. S .Q ' 9 ' Y
. . infinitely many discrete QoS levels. We concentrate on the case
The support of QoS has been the subject of excessive e L
where link¢ hasl; QoS levelsg;,, -+, g, . In such a case,

search. The specific aspect of resource allocation in this con- ~ (ci(gi)s -+ (i, ))- Note that the representation of the

]Eext has all(lso befnd('excti:ebssnlldefly ?U(ﬁd’ ir(]) pf:ll_rr:lcularaa .S'mlgé}gcrete cost functions causes the input size to depend on the
ramework was studied by [14], [5], [13], [10]. The rea erisres . iple number of QoS levels, Q.

ferred to [3] for a survey on QoS multlcas'.c routing algonthmg, A convenient way to visualize a cost function is to consider
although from a slightly different perspective.

. . a step function where the cost of a QoS paramegisithe cost
The rest of the paper is organized as follows. In the next s P QoS parame

Hf the biggest discretely defined QoS parameter< see
tion we detail our model and define families of discrete c01';_ti '99 : y ! QoS p aers g (

functions; and in the next section we give an approximation al- Next we define some special cases of cost functions.
gorithm for general discrete cost functions. In Section VI We pefinition 1: A cost function is calledntegerif it is defined
extend these results to the multicast case. In Section VIl we Qﬁ'ﬂy on a finite number of points;, g - -, ¢
. . . . . ) ? .

SC”be an approximation algorithm for the QoS routing problem, pefinition 2: A cost function is calledully integerif it is
and in Section VIIl we show that our approximation results alsfsfined on a finite number of consecutive points starting at 1
hold for nondiscrete cost functions. Or0)g1 =1, q2=2---, q; = L.

1An administrative domain is a subnetwork that is administrated by a single Note thfit’ by scaling, any discretg finite (_:OSt funCtion,(deﬁned
organization, e.g., an ISP or a corporate network. on the rationals) can be translated into an integer function. How-
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cost Proof: It is easy to show by comparing the problem def-
initions that the optimal cost of the above QoS partition with
olq) @ limit Q for a path of Iengﬂ_’n is @ if and only if there exists a
: subsetS C {1, 2, ---n},with > ;. a; = Q. O
¢(a,) : We will show in Sect_lon V that alt_hough the problem is NP-_
g |- : complete, good approximation algorithms can be usedto solve it.
@ IV. EXACT SOLUTIONS
4G % % % d In this section, we solve the QoS partition problem for integer
cost functions. We first present a polynomial dynamic program-
ming algorithm for the general case, and then give a sublinear
cost solution for the homogeneous case.
oq) | e— A. The General Case
: In this section we use dynamic programming to solve the QoS
e(qy) : partition problem for a collection of integer cost functions. The
olgy) [ only requirement is that all these functions can be defined on
olg) [ the same integer scale with no significant increase in their rep-
q resentation. We do not impose any other requirements on the
9 9% 94 q functions, in particular, they need not be convex.
Let cost(k, d) be the optimal cost of partitioning the QoS
Fig. 2. Adiscrete cost function, and its representation as a step function. requiremend a|0ng the patlbl, o U Clearly,cost(k, d) can

be calculated by the following recursive formula
ever, this may increase the cost of representing a set of functions

exponentially, and thus translate a polynomial solution foranin-  cost(k, d) = min cost(k —1,d—1) +ex(i). (1)
teger function to a pseudopolynomial solution. o T N _ .
Definition 3: A cost functionc is calledconvexf for every ~ The minimal cost for the partition of requiremeplong a path

three pointsy; < ¢; < ¢ we have is thus given by calculatingost(n, Q).
Theorem 1: The complexity of calculating the QoS partition
c(g;) < (9 = 9:)elai) + (@ = 45)ela) in the case of general integer cost function®i&QQ), and
N~ the memory requirement ©(n()). The proof appears in [9,

Definition 4: A cost functionc is calledstrongly convexf  Section 3.3].

for every three pointg; < ¢; < ¢ we have
( Ye(a:) + ( Yela) B. Convex Cost Functions
q; — 4;)c\4i a — g5 )\ ) .
c(gj) < = ’ - For the case where the cost functions are fully integer and

L ) L i ) .. (weakly) convex, one can apply the algorithm by Lorenz and
The above definition requires that an intermediate pejnis 44 [13] to find a solution irO(n log n log Q). Note that

below the straight Iilne connecting any two points one to its 'e&/ery monotone function, and thus every convex function, has
(¢:) and one to its righte). at most() different values for;, 1 < i < Q.
In this section, we consider the case where the cost functions
IIl. HARDNESSRESULTS are fully integer and convex, but require them all to be identical.
In this section we prove that, in general, the QoS partitioi¥e give an optimal algorithm with constant time complexity,
problem is NP-complete even if the discrete functions afe.,O(1). To this end, we first prove the following lemmas.
convex. In particular, we show that even if the cost functions Lemma 2: The optimal QoS partition in the homogeneous
are the simplest nontrivial possible, containing only one-stéplly integer strongly convex case results in all the QoS param-
functions, but different for every link, the problem is in-eters taken from at most two successive values.
tractable. A similar but weaker (since it considers a wider class Proof: Suppose to the contrary that the lemma does not

of problems) proof was given in [9]. hold. Then the optimal partition contains, at least, two QoS
Lemma 1: Let the cost function for link be values? ¢ < j, s.t.i + 1 < j. By applying Definition 4 twice
; we get
cz(i)z{gl zizl g. .
=W ci+1)+e(—1)
then determining whether the optimal solution to the QoS par- )+ (G —t—Dcy) (G—1t—D)c(i)+ ()
tition with limit @ for a path of length is @ is equivalent to < J—i + J—i
solving thesubset surproblem [6, problem SP13] with a set of = (i) + c(4).
itemsay, ---, a, and aboundB = > a; — Q. -

2In our notationg; is defined in the pointg, = 0, ¢> = a;, ande; (0) = ay,
ci(ar) = 0. 3Note that for fully integer functiong; = i.
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. . . t t

Corollary 1: In the optimal QoS partition in the homoge- e Ve
neous fully integer strongly convex case at least one link is al- ‘e €21 [
located|Q/n . c12 cag |

. €13 > i
Ca?e@larly, we can prove the lemma for the weakly convex TIae dads; a
’ . . . . hd © o o

Lemma 3: There exists an optimal QoS patrtition in the ho-
mogeneous fully integer convex case where all the QoS param-
eters are taken from at most two successive values. .

Corollary 2: There exists an optimal QoS patrtition in the c1,dyy 2172
homogeneous fully integer convex case where at least one link [ c1y diy o
is allocated| Q/n|. Tt

LQ/ J i, dy C2, d2,

An optimal QoS partition is calculated as followg. =

LQ/HJ ' The number of links t.hat alloga:c@ghs given by finding Fig. 3. The reduction of the QoS partition problem for general discrete cost
the maximalr that solves the inequati@p > z¢;+(n—2)gi+1.  functions to the restricted shortest path problem.

Sincec() is a fully integer function (assume normalized to the

integers) we have;+; = ¢; + 1 and thuse = [n(g; +1) — Q.

n — x links are allocated a1 We assume that the cost function is nonincreasing, i.e., for all

i, di; > dij, — ¢, < ¢, .Denote bye;....., the maximum cost
of any element in the se&f;, and byd;__, the delay associated
with this element. Lety.x = max; ¢, be the maximum
The dynamic program for the general integer cost functionest overall links. Clearly); d; ... < D, otherwise there is
(Section IV-A) can be easily distributed. No¢lalong the path no feasible solution. We denote by the over all number of
can calculateost(i, d) for 1 < d < Q, based on thé) values elements, that ism = 3;7;' I;, wherel; is the number of
passed to it from node— 1. When the calculation reaches theelements in the sed;.
end node, it selects its optimal value, and passes back the opt was already observed by Lorenz and Orda [12] that there is
timal portion left for the path’s prefix. This process continues straightforward reduction from the QoS partition problem with
until it reaches the originator. The total number of messagesigneral discrete cost functions to the restricted shortest path
only 2n, while the bit complexity isO(n()). The storage re- problem. Thus one can derive a fully polynomial approxima-
quirement at each node @(Q)_ Note that the reservation istion scheme for the QoS routing problem using Hassin’s results
done in the reverse direction, thus the origin can start transnii8}. For completeness, we state and prove the following claim
sion after a two-way handshake. A formal description of th® our notation.
more complex multicast case is given in Section VI-B. Claim 1: Given an instance of the QoS partition (routing)
The homogeneous case of Section IV-B can be calculatedos@blem with general discrete cost functions, one can construct
the source node since the cost functions are known and eq@adii-criteriat graphG’ such that the cost of the restricted shortest
Once the two QoS parameter values that should be used pag problem irG’ equals the cost of the QoS partition (routing)
determined, a reservation message with a counter stating h@wblem.
many reservations should be made for each value can propagate Proof: We replace théth link by a set of; parallel links,
along the path toward the destination. each corresponds to a specific working point in the discrete cost
function. More formally, given an instance of the QoS patrtition
problem, we build the grap#’ with » + 1 nodes where nodes
¢ — 1 andq are connected b parallel links, with costs; . and
All the results in this section can be applied to the dual casgslaysd;, (see Fig. 3). Since any simple path from node 0 to
where the cost is discrete and one wishes to find the best def@de must choose exactly one of the edges between nodes

C. Distributed Implementation

D. Discrete Cost

a certain cost can buy. This simple extension is omitted. i — 1 ands, a path with a delay bounded By and cost' in G’
defines a set with delay bounded Byand costC' in the QoS
partition problem. O
V. APPROXIMATIONS Note that the same reduction holds for the QoS routing

nproblem with general discrete cost functions, where the solu-

In this section we give a fully polyn_omlal apprqmmatlo tiotn for the restricted shortest path problem determines both
scheme for the QoS partition problem with general discrete C?ﬁe links and the appropriate partition (see Section VII).

functions. We assume here that the cost values are all integersrhere are two problems when applying Hassin's algorithm in

In this case we can rephrase the problem as follows. . . : 2 .
L ) " : ._this way. The first one is that the solution is complex and it is
Definition 5: (The QoS partition problem with general dis- . - : U ; .
) . difficult to implement. The more significant problem is that this
crete cost functions.) Given setsS; = {a;,, a;,, ---a;, } Of - .
: , o ' i’ result does not translate to multicast trees. Thus, the reduction
objects, with specific delays and costslay(a;,) = d;, € 2 does not hold for the QoS partition problems on trees. To this
andcost(a;,) = ¢;; € Z*, and a delay bound € Z+, find b P '

a subset containing objects, each from a different set, sucr?nd’ we develop a different algorithm that can be generalized

that their total delay is bounded H, and the total cost is min- to multicast trees. Note that although Hassin’s algorithm cannot

imized. 4A graph where each edge is associated with both a cost and a delay.
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cost Benefit Discrete [BD] ({S;};,d;;,bi;,¢, D)
A d 1. K = ebmnu
1;"” 2. for each a;;: b, = Lb—lg-J
Ciy [l Cimaz 3. B'=PP({Si},,diy, V%5, D).
, 4 4. if (KB' < bmag) OUtDUL byygg, otherwise output K B'.
do | ba ]
:
Ciz ? §bi3 Fig. 6. Algorithm benefit discrete.
d, l
Cis o Proof: Define A(¢, p), forl < ¢ < n,andl < p <
" q n X by, t0 be the delay of the set with minimal delay that
di, dis has at most objects, each from a different s&t, - - -, .5;, with

. N y _ ~ benefit of exactlyp. A(%, p) is oo if no such set exists. Clearly,
Fig. 4. The transition from the QoS partition problem with general discrete

cost functions to the benefit discrete QoS partition problem.

A, p) = mln{llgr}lgli{dij + A —1,p—b)},

Pseudo Polynomial [PP] ({S:}7;,d;;, b, D) Ali—1,p) ;.
1. bmaa: = ma.xij bij'
2. forp=1ton-byg,: . .
3. A(1,p) = co; if p= by, then A(1,p) = dy,. Now, the largesp such thatA(n, p) is smaller thanD is the
‘51~ f°ffi = 2_t;> o optimal solution for the QoS partition problem. Since we need
6. OrAinTp) ;’gin{';;;gg“ {di, + Ai—1,p— to computen - b,,,, different values, and to compuk@(i,_p), _
bi;)} Al - 1,p)}. we need; + 1 steps. The overall complexity of the algorithm is
7. return the largest p such that A(n,p) < D. O((m + 7‘L)7‘Lb ) O
max,/-
. . . Next we show how to use this algorithm in order to achieve
Fig. 5. Algorithm pseudoplynomial. ane-approximation in polynomial time. We assume that the size

of all elements is smaller than the boubdsince elements with

be applied to multicast trees, there might be other dynamic pRigger sizes cannot be used, and may as well be omitted.
gramming algorithms that solve this problem without the benefit Claim 3: Let B p be the profit outputted by algorithm ben-
formulation we present in this paper. efit discrete (see Fig. 6). Then
We begin by defining a variant of the problem, called the ben-
. - . . Bpp > (I—G)Bopt.
efit discrete QoS partition problem, and proving that it has a
fully polynomial approximation algorithm. We then show how  Proof: For every element; , the profit considered by the
to use this algorithm to achieve a fully polynomial approximaalgorithm may be smaller than the actual profit divided Ay
tion scheme for the QoS partition problem with general discretas defined in line 1 of Fig. 6), but by no more than 1, bg.,>
cost functions. (bi,/K) — 1. ’
Definition 6: (The benefit discrete QoS partition problem.) Let profitx(U) be the solution for the instance of
Givenn setsS; = {a;,, a;,, - - a;, } of objects, with specific / scaled by K. Therefore, for any set of elements,
sizes and profitssize(a;,) = d;;, € Z* andprofit(a;;) = profit(U) — Kprofitx(U) < nK. The setS’ computed
b;, € Z*, and a delay boun® € Z*, find a subset of at most by the PP algorithm must have at least the same profit on the
n objects, each from a different set, such that their total sizesealed elements as any other set, including the set computed by
bounded byD, and the total profit is maximized. the optimal algorithmS*. Therefore,
The main idea here is that the total profit for a given delay . , . .
D represents the amount of cost one can save by allowing Bpp z Kprofiti(5') = Kprofitk (S57)
more units of delay along the path, starting with any feasible > profit(S*) — nK.

(but maybe costly) initial solution (see Fig. 4). The objective i1$he firstinequality is by line 4 of algorithm BD, and the second
thus to gain as much savings as possible for every unit of de(l;":ﬁ/ '

In the example of Fig. 1, the initial costly solution consists ) St?:tillljtt%rls dusvto th? optimality of PP on the scaled elements.
selecting the highest level of service in all the three DS domains gi, we ge
which results with an end-to-end delay bound of 70 ms at a cost Bgp 2 Bopt — €bmax.
of 115 units. Reducing the service level by one in the backbone
network, for example, results in yet a feasible partition (witRINC€Bopt = bumax,
dela_ly bound of 90 ms), and saves 30 units. N Bipp > (1— €)Bop.
First we show that the benefit discrete QoS partition problem
has a pseudopolynomial algorithm that uses dynamic program- O
ming. Then we use this algorithm in order to achieve the poly- Since the running time of algorithm benefit discret@i{gn+
nomial approximation scheme for the QoS partition problem.m)n | (buax/K)]) = O((n+m)n|(n/¢)|), Theorem 2 follows.
Claim 2: Algorithm PP (Fig. 5) is a pseudopolynomial algo- Theorem 2: Algorithm benefit discrete is a fully polynomial
rithm for the benefit discrete QoS partition problem that workapproximation algorithm for the benefit discrete QoS partition
in O((m + n)nbyax) time, whereb,,.x = max;; b;;. problem.
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General Discrete [GD] ({S:},,d;;,c;;,€,D) Using> ", ci... < kCopt, we get
1. Cep =3 ;Cine

repeat as long as none of the sets S; is empty:

for each (27D b,']. = Cimae — Cijs d: = d,'j - dim.,,-

2
3. ’
4. C&C = BD({S,‘};;l,d;’,,bij,e/n,D b Ei dimu)'
5 if (21 Cipas — C;JC' < Cgp) then Cgp = Zz Cimas — CIGC O
6 remove the element c from its set.
= Lemma 5:If (Cop/>°: cin) < (1/n), then the element

with the maximal cost cannot be in the set that achieves optimal
cost.

Proof: Clearly,

cost(S") < €Copr + Cope (1 — %) <A +6)Cop.

Fig. 7. Algorithm general discrete.

Now we can describe the algorithm for the QoS partition
problem with general discrete cost functions. It works as follows Z Ci
(see Fig. 7). Given an approximation parametave construct
a benefit discrete QoS patrtition problem that basically captures
the amount of “saving” one can get starting from an obvious O

feasible solution. We flpd aa/n—approxmgtlon 'to this value, Now, letO be the set that achieves an optimal cost. det
and compute the resulting cost. We then iteratively remove tgle

7
C(opt < n S Cmax-

. ; € the element with the maximal cost(h Since algorithm GD
most expensive cost from one of the links and recompute t

€
best cost. At the end, we choose the best cost out of the (po

€letes elements in order according to their cost values, there is
. . _ah iteration in whichuo is the biggest element. By Lemma 5, in

nomially many) costs that we may have. The following C|all’[]1i o 9 y

follows immediately from the definitions.

s iteration,(Copt/ >, cin.,.) = (1/n) because the element
Claim 4: For any feasible solutiofy to the benefit discrete

with the maximal cost is in the optimal set. By Lemma 4, with
QoS partition problem withh;., and d. , there exists a setk.: n, the costfpund inthis iteration is bounded(byl-c_)Copt.. :

, S : y Y - .Since the algorithm chooses the best cost overall iteration its
U’, which is a feasible solution for the original QoS parti-

. : . . output is at least as good.
tion problem with general discrete cost functions such thayThe running time of algorithm general discrete is

oy £ N — .
profit(l7) + cost(U") = 3, Cino- bounded by O(m?n(n?/c)) since we run the BD al-

This last claim proves that the algorithm finds a feasible set, . . . .
. .~gorithm at mostm times, and the complexity of BD is
We have to show both that the cost found by the algorithm 's?ﬂmn (b /K)]) = O(mnl|(n/e')]). However, we can

;_;Eﬁgﬁ;ga“on of the optimal cost, and that the algorithm Irseplace the exhaustive search for the bgst by a binary

. .. search using Lemma 5. If — eCeD < 1/n3, ¢, We
IWe ?Ireadygrovtehd that.the sawtn%%reated ?%’ thelalggmth ged to reduc€,,; and if there is no feasible solution, we
a mk?ls as gtzott?f de savmtg greai I yan)f/fo t(;ragon M. ¥t too far and need to increaék, ... This complicates the
tpro etr"n IS t?1 Ist' oels notg|veal1) u proho or" eterl]ppr?hxn‘? lescription of the algorithm but reduces the running time to
lon ratio, as the optimaj cost may be much smaflerthanthetog, s log m/¢). Altogether we have proven the following
saving. However, if the optimal cost is at le&s}, ¢; .., /n, we

S . L “imax theorem.

do have are-approximation since we used BD with = ¢/n.

. ; . . Theorem 3: Algorithm GD is a fully polynomial approxima-
If the optimal cost is smaller, we will show that the biggest StetPon algorithm for the QoS partition problem with general dis-
in one of the links is not used in the optimal solution; henc

. ; Grete cost functions.
we may delete it from the problem and start with a better upperGOing back to the example of Fig. &,= 3, m = 3 + 3 +

boun_d. Thu_s, one of the ite_ratio_ns of the algprithm will fi_nd g _ 8, and fore = 1% (mn® log m/e) — 64800. In general,
solution which is ar-approximation of the optimal CO_St_‘ Slncethe number of DS domains that a connection traverses in the
the output of algorithm general discrete is withinafactor of
the optimal cost.
For the formal proof we need the following two lemmas.
Lemmad:If (Copr/ >, Cinan) = (1/k), andS’ is a set with
profit(S’) > (1 —e/k)B,p: for the benefit discrete QoS parti-
tion problem withb;; = ¢, —¢;; andd;, = d;; —d then
cost(S") < (14 €)Cope, for any constank > 1.
Proof: By Claim 4,cost(S’) = 3. ¢;,.., — profit(S’),
therefore, A. Exact Solutions
In this section we solve the QoS patrtitioning problem for a
cost(S') £ Cipw — (1= ¢/k)Bop. collection of integer cost functions in a multicast tree. As in the
i unicast case, the only requirement is that all these functions can
be defined on the same integer scale with no significant increase
in their representation. We do not impose any other require-
ments on the functions, in particular, they need not be convex.
Copt)

the DS field in the IP header enables us to support 256 service
classes, which translates#o = 256 = 5 = 1280, we get for

e = 1% (mn?® log m/e) = 1.6 E8. Although this is well within

the computing capabilities of today’s hardware, improving the
algorithm complexity is an important research direction.

Tmax !

VI. MULTICAST

Replacing agaimB,,: by >, c;,... — Copt, We get

cost(S') < Z .. — (L —€/k) <Z Cipnr —

%

We begin by presenting a polynomial dynamic programming so-
lution.
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Let! = (u, v) be alinkin the multicast tree such thats the
parent ofv, and let\; be the group of tree links connected to

[wy

Distributed Multicast Partitioning

For START(¢(+)) from link !

v exceptl, namely the group of links leading t8s children. g p‘(f)l(_ al)
Remember that here denotes the number of tree links. Let 4 Egreachi’e,\,l
cost(l, d) be the optimal cost of partitioning the QoS require- 5. send START (¢;(-)) on link 4
mentd in the subtree of nodeand the linkl. Clearly,cost(l, d) 6. gotit(i) « false
can be calculated by the following recursive formula 7. i Ml=0
8. foreach j < @
9. cost(j) = min;; cl.(j) ‘
cost(l, d) = Iznél(lil zj\:/ cost(e, d — 1) + ¢(1) @) 1(1) serqllglg:;tj()l,.:) ffﬁilﬁzf )
e 12. For cost(:) from link !
13.  cost(l,-) + cost()
and the minimal cost for the partitioning of requireméxin the 4. gotit(l) ¢ true
tree, T, is given by calculating”_ - cost(e, Q), where\ are 12 if \Zérfa{:\}[fg ~"<"tg(’) = true
the set of links emanating from thg tree root. o 7. cost(f) = minie; Yoen, costle, d — ) + cpld)
Theorem 4: The cost of calculating the QoS partitioning in 18. value(j) = arg minic; > pen;, cost(e, d—i) +¢, (i)
the case of general integer cost functions in a multicast tree is  19. send cost(+) on link p
O(nQQ), and the memory requirementlgna). 20. For BUDGET(d) _
( Pro)of: For the calculation we negg to )keep a table of 21 send RESERVE(value(d)) on link p
A . 22. foreach i € N
cost(l, d) wherel < ZA < nandl < d < Q. This re- 23. send BUDGET(d — ¢,(value(d))) on link i
quires a storage af(n(}) numbers. The calculation of each 24. For RESERVE(d) from link !
entry is done using (2). For each entry, the calculation cost 25.  reserve d delay guarantee on link I

is at mostQA, thus the overall calculation complexity is

Sier QQNT = nQQ. O

B. Distributed Implementation

Fig. 8.

Distributed multicast partitioning—a nonroot node algorithm.

Distributed Multicast Partitioning
1. For a request with demand @

2. foreachie N
The dynamic program for general integer cost functions 3. send START(¢;(-)) on link ¢

(Section VI-A) can be easily distributed. The root floods the 4 gotitly) « false

. . . 5. For cost(-) from link I
tree with START messages. The START message carries in 6. cost(l,0) « cost(Q)
each link it traverses the cost function of the immediate up- 7. gotit(l) « true
stream parent. A leaf that receives the START message from 8. ifVi€eN: gotit(i) = true
link [ calculates itgost(l, -) entries and sends them on lihto ?6 Czst = EgeN./\C/?St(er)
. N . . . oreach ¢ €
its parent. A node that receives thest values from all its chil- 1 send BUDGET(0) on link i

dren calculates it§ entries and sends them to its parent. When
the root receives theost calculations from all its children, it
initiates the reservation phase by sending a BUDGET message.

This message carries the QoS remaining budget downstre&m.9.

A node that receives the BUDGET message uses the appro-

12. For RESERVE(d) from link !
13.  reserve d delay guarantee on link /

Distributed multicast partitioning—the root algorithm.

priate entry in the cost table it calculated before locating tf@. Approximations

QoS parameter allocation in its upstream link. It asks its up-

I%As mentioned before, in the multicast tree case we cannot use

stream ne|gh(§)or tc()j aIIoEc;Stgéfll_l_sl,_ amount US'QE tt:e RES_ESY Treduction of Claim 1, since it will require finding a restricted
Message, and sends a message wi € remandefBrtest tree rather than a restricted shortestpath.

the budget downstream. ) ) ) Thus, in order to derive a fully polynomial approximation
The total number of messages is odty, while the bit com-  gcpeme, we follow the steps we took in the path case: starting
plexity is O(n@Q). The storage requirement for each link igom 5 feasible (but possibly costly) partition on the tree, we
O(Q), thus, for a node with\" children the storage require-yy 14 se the extra delay we have in order to save as much cost
ment is\'@. The time complexity i€)(3h) whereh is the tree 5 possible. We use many of the notations from Section V, and

hight. we assume that the multicast tree is a binary tree. It is easy to

Figs. 8 and 9 give a formal description of the algorithm. Eacyify that for any multicast tre@, with n nodes, there exists
node has the following variablesthe index of the parent link; binary multicast tre@”, with at most2n nodes, with exactly

cost(l, -) a vector with the optimal cost calculated by the nodgq same optimal costThe amount of saving is expressed in
downstream linK; cost(-) a vector with the results of the local o following definition.

optimal cost calculation;alue(-) a vector with the QoS param-
eter that gives the best cost; apgit(-) a binary vector to mon-

itor the receipt ofost calculations from the child links. In ad- 9"
dition, a node holds a discrete cost functioexq), for each of its ,,
downstream linkg, and a list of its downstream link§’.

5To the best of our knowledge, approximating a restricted shortest tree for
aphs with costs and delays is an open problem.

6This is done by replacing the outgoing edges at any node that has more than
o children, by a binary tree in which these children are the leaves, and all the
links to internal nodes have both zero cost and zero delay.
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Pseudo Polynomial Multicast [PPM] (, {S;},,d;;,b;;, D)
brnaa: = Imax;; bi]"
for p =1 to nbmas:
for all leaves I:
A(l,p) =0.
fori=2ton:
for p =1 to nbyas
A(i,p) = ming<i<p{max{min{A(iz,!), min.cs, A(ir,!I — profit(a)) +
d(a)}, min{A(ig,p — I),minycs,,, A(ir,p — — profit(a’)) + d(a’)‘}}}
8.  return the largest p such that A(n,p) < D.

NS TR W

Fig. 10. Algorithm pseudoplynomial multicast.

Definition 7: (The benefit discrete QoS partition problemGeneral Discrete for Multicast trees [GDM] ({S:}%,,di;,ci;, ¢, D)

on trees.) Given a tre€l’, with n nodes, setsS; = 1 Cop = 3; Cins - .
X . . . . repeat as long as none of the sets S; is empty:
{a;,, ai,, ---a; } of objects, with specific sizes and profits, for each ai;: by, = ci... — i3 di, = di, — di.....
; N =g + ofitla: ) = b + Cho = BDM({S:Yy, ), biyse/n, D = T, diyn.a)-

size(a;;) = di; € f _andp7 ofit(a;;) = b, € ZT, and a O DN Wt
delay boundD € ZT, find a subset of at most ObjeCtS,aiji , remove the element ¢,uqs from its set.
each from a different set, such th@iep diji < D, for all
pathsp € T, ahdZ:i=1 bij_ is maximized. Fig. 11. Algorithm general discrete for multicast trees.

Next we prove that the benefit discrete QoS partition problem
on trees has a pseudopolynomial algorithm that uses dynamigheorem 5: Algorithm general discrete multicast is a fully
programming. An algorithm similar to the dynamic programpolynomial approximation algorithm for the QoS partition

ming algorithm from Section VI-A is not good enough becausgoblem on multicast trees with general discrete cost functions.
it is polynomial in the delay boun#? and not the maximal cost |t has time complexity oD(mn* log m/e?)

cmax- IN the multicast tree case, the rules of the delay and the
cost (benefit) are not symmetric since the cost (benefit) is com-
puted over the entire tree while the delay bound is true for any ) ) ] )
path in the tree. Recall that we assume that the multicasftree !N this section we formally define the QoS requirements
is a binary tree. We also assume that neds the root of the routing problem with discrete cost functions. We then show

tree, and that;, andi are the indices of the left and right chil-that it is an NP-hard problem and show how to obtain a fully
dren of node. polynomial approximation scheme for this problem.

Claim 5: Algorithm PPM is a pseudopolynomial algorithm Definition 8: (The QoS requirements routing problem with

for the benefit discrete QoS patrtition problem on multicast tree@screte .COSt funct|on§.) Given a grag . (V, E), each edge
that works inO((m+n)nb2, ) time, where,,. = max;, b IS’ associated with a discrete cost function, and a delay bound

nax ‘' D, find a pathp, and a partition such that the delay along the

Proof: Define A(¢, p), forl < ¢ < n,andl < p < i ) :
7 - b, 10 bed iff there exists a QoS partition of the Subtreechosen path is bounded By, and the cost along this path is the

- . ' minimal possible.
rooted at node with minimal delay bound! and profitp, and : . i . .
no other partition of this subtree with benefithas a smaller Clearly this problem is NP-complete since the QoS partition

. . . . roblem with general discrete cost functions is a special case
delay bound A(é, p) is oo if no such partition exists. At node P 9 P

one can choose the amount of profit and delay from each of it (when the grapi@: is a line). Even the simpler problem of
inding th h with ifying th iti I
sets associated with the left and the right childrein @ne can itiding the best path without specifying the QoS partition along

itis NP-complete. This follows from a straightforward reduction
also choose not to choose any of these elements. In any case,§hfe restricted shortest path problem [8].

relation defined by line 7 of Fig. 10 holds. Therefore, the value ¢|4im 1 provides a constructive way to construct an instance

of A(n, p), is the best possible delay bound for the given #ee ¢ he restricted shortest path problem from a given instance of
with profit p, and the algorithm outputs the optimal value.  the QoS routing problem with general discrete cost functions.
Since the computation ot(i, p) requires at moshuax(li +  Using it, and the approximation results from [8], we get the
1) steps, we need to compute it farvalues ofi andnb,, following theorem.
values ofp. The computation complexity of line 7 of Fig. 10is  Theorem 6:The QoS requirements routing problem with
n°b;.(li +- 1). Thus, the overall complexity of the algorithmgiscrete cost functions has a fully polynomial approximation
is O((m + ﬂ)ﬂbfnax). O scheme.
We now apply the rounding technique from Section V to
achieve an approximation scheme for this case. We use Algo- VIIl. GENERAL COST FUNCTIONS
rithm BD with a call to PPM rather than PP (this versionis called . . . . )
BDM?). This results in ar-approximation algorithm that runs N this section we discuss general cost functions. That is, we
in time O((11 + 1)7( | (buae/ K))?) = O(mn?/e2). do notassume any properties such as monotonicity or convexity.
Fig. 11 presents a slightly modified version of the GD al§uch a function, which is defined for all cost values, is repre-
gorithms for the multicast trees case. Applying Claim 4 ar nted by a constant number of bytes. It computes the minimal

; elay guarantee for a given cost in polynomial time in the rep-
Lemmas 4 and 5 for GMD, we get the following theorem. resentation of the input number. Note that although the discrete

"The formal description of BDM is omitted. functions defined in Section Il look similar to the general cost

A

VIl. THE QOS REQUIREMENTSROUTING PROBLEM
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Descret Integer: IV-A, V, VI-A, VI-C

111

fully integer

IV-B
homogeneous
VI-A

(1]

(2]
functions, the representation of such a function is linear in the s
number of points and not constant. For example, the function
cost(d) = 1/d is defined for everyl > 0, but if we want to
represent it by a discrete function we would have to explicitly (4]
give the cost value of each possible delay. To emphasize thigs;
point we use herdg;: Cost — Delay for the reverse function

Fig. 12. Graphical view of our results in the problem domain.

cost~1; thus, for the above examplg;*(d) = 1/d. For such  [®]
functions we can prove the following theorem.
Theorem 7:For a set ofn functions f;: Cost — Delay, [7
such that for each such a function eittfgrl, orapair(c;, d; =
f(e)), with d; < D/n is given, a graplts, a delay bound), (8]
and an approximation parametgione can do the following.
1) Given a path, 7, find ane-approximation algorithm for [
the QoS partition problem. [10]
2) Given a multicast tre#, find ane-approximation for the
QoS partition problem on multicast trees. [11]
Proof: First observe that given the reverse functjgmt,
one can computé!(D/n) = ¢;, and use the paiic;, D/n).  [12]
These pairs define a feasible solution, both for the path and mul-
ticast tree problems with cost bounded &y, = 377 ¢i. i3]

Therefore, no optimal solution will use any costbigger thag. .
Observe now that the pseudopolynomial algorithms PP and PPN
work also if each step function hag,., steps. Thus, one can
compute a discrete function for each link with= ¢, points,  [15]
and therefore the results from Section V (unicast) and Section
VI-C (multicast) can be used, with = > cpax = nemax. U

A similar proof can be used to prove arapproximation
scheme for the routing problem with general cost functions.
However, it requires either to generalize our results from S
tion V to the QoS routing problem, or to show that Hassin
algorithm can be used. This is beyond the scope of this pap

IX. DISCUSSION

In this paper we studied QoS partition and routing problem
We concentrated on discrete cost functions that are both theoy
ically interesting and have practical applications in IP network&

2601

Fig. 12 depicts graphically the problem domain, where the en-
closing rectangle represents the domain of discrete integer cost
functions. Each subdomain holds the numbers of the sections
where it is discussed (multicast treatment is in italics), sections
with results that apply to the entire domain are placed above the
rectangle.

An interesting direction, with possible practical significance,
is studying a distributed implementation of the approximation
algorithms presented here (in the same spirit of the results of
Sections IV-C and VI-B). The main open problem, however,
remains the multicast trees routing problem.
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