656 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

SNMP GetPrev: An Efficient Way to Browse
Large MIB Tables

David Breitgang Associate Member, IEEBanny RazMember, IEEEand Yuval ShavittSenior Member, IEEE

Invited Paper

Abstract—The simple network management protocol (SNMP) I. INTRODUCTION AND MOTIVATION

is a widely used standard for management of devices in Internet NMP (simple network management protocol) is a widely

protocol networks. Part of the protocol great success is due to its d standard f t of devi in Int t
simplicity; all the managed information is kept in a management Sed standard for management of devices In internet pro-

information base (MIB) that can be accessed using SNMP queries tocol (IP) networks [1]-[4]. Part of the protocol great success is
to a software agent. In this paper, we develop a general model that due to its simplicity. All the managed information is kept in a
abstract the data retrieval process in SNMP. In particular, we study  management information base (MIB) that can be accessed using

the amount of queries (Communication) and time needed to ran- g\Mp queries to a software agent that is executed on the man-
domly access an element in this model. It turns out that this ques- aged device

tion has practical importance. . . . ,
For some network management applications, e.g., MIB 10 retrieve information from the remote SNMP daemon’s

browsing, there is a need to traverse portions of a MIB tree, MIB managercan use two basic SNMP requesfset and
especially tables, in both directions. While theGetNext request GetNext. A Get(x) request retrieves the value of the object
defined by SNMP standard allows an easy and fast access to thejnstance identified by the given object identifier (OIB)If the
next columnar object instance or next scalar object, there is no leaf in the MIB tree identified by: does not exisGet returns

corresponding operator defined in the SNMP framework for . S . .
retrieving the previous MIB object instance. This, in effect, allows with an error indicating this. AGetNext(x) request receives

an efficient MIB traversal only in one direction and makes the an OID approximationas its input. The wordpproximation
search in the reverse direction problematic. is used in the literature to indicate the fact that the input

This paper presents and analyzes th&zetPrev application, component sequence should not necessarily identify an
a tool that enables the retrieval of the previous instances of a existing leaf in the MIB treeGetNext always retrieves a value
tqolumnar °b1|e°t3t ordscglaér NI\IA\/IIEg}thel%[S. ?ur g‘zf'PtreV apF"t'Cﬁ;' of the object instance whose OID is immediate lexicographical
ion uses only standar et-Next and txet requests 10, ~cessor of the given OID approximatiorin the MIB tree.

carry on a fast and bandwidth efficient search for the required ob- h d h h | f bi
jectinstance. For example, as predicted by our analysis and shown [N Other words, GetNext retrieves the value of an object

by our experiments, retrieving a value of the last columnar object instance with the smallest (in the lexicographic order) OID
instance in a large forwarding table (ipForwardTable) containing that is still greater than the given OID approximation. If the
about 3000 entries can take several minutes using a sequence otjiven OID approximation identifies the last leaf (in ascending

the GetNext requests (the straightforward approach used, e.g., |exijcographic order) of the MIB tree, the@etNext returns
by widely deployed snmpwalk and snmptable applications). with an error indicating this condition.

The GetPrev application presented in this paper retrieves this - _
value using no more than 20GetNext requests (in most cases While Get andGetNext are perfectly adequate for retrieving

about seven requests), taking no more than a second (i.e., it is twoScalars, using them to retrieve large tables may be cumbersome
orders of magnitude faster and two to three orders of magnitude and inefficient (see a discussion in [5]). To this end a special

less bandwidth consuming). GetBulk request was introduced in SNMPv2 [&etBulk fa-
Index Terms—GetPrev, MIB browsing, network management, ~ Cilitates the retrieval of large blocks of data and is used primarily
SNMP. to retrieve large tables. In a sense it is a generalization of the

GetNext request. ConceptuallfzetBulk can be viewed as
GetNext requests packed into a single protocol data unit (PDU),
wheren being a parameter controlled by a manager.
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A MIB browser is an indispensable management tool that allowslIn the latter two options, we may be required to retrieve the
the interactive browsing of the content of a MIB using an adntire table although we are interested only in a single object
vanced GUI. Many MIB browser implementations are availablastance. This is inefficient in several aspects: it takes a longer
today [7]-[9]. In order to implement such a browser, one has time, it consumes more bandwidth, and it overloads both the
be able to efficiently respond to the user requests and retriemanaged device and the manager. For example, retrieving a for-
the ever changing information regarding the next and previowsrding table with 3000 entries from a Cisco 7500 router over
objects instances with respect to the current position of a uslee 100BaseT Ethernet can take five to seven minutes using
in the MIB tree. In other words, the MIB tree should be effisnmptable application included with the UCD SNMP library
ciently traversed in both directions in real time. Most browse(8], which is definitely too time consuming.

today will download a “chunk” of the MIB tree and then per- Our goal is to address this problem and allow efficient MIB
form a local browsing. This creates two problems: 1) if the irbrowsing in real time. To do so, we introduce a sim@lgPrev
formation in the MIB is changing at a relatively high rate, thapplication, a tool that substantially optimizes retrieval of the
information displayed to the user may be out of date; and 2) irevious MIB object instances. The preserntedPrev applica-
many cases the browser may download unnecessary information uses only standard SNMRetNext andGet requests (thus
(e.9., wherizetBulk is used), which both wastes bandwidth an@deing applicable to any SNMP version) to carry on a fast and

slows down the browser. bandwidth efficient search for the required object instance.
The following options are available in order to support the The main novel idea proposed by this paper is to use binary
retrieval of the previous MIB object instances. search rather than linear search in order to make a fast progress

« One may add &etPrev request to the SNMP standardin a table starting with the first instance of the columnar ob-
Once the agent supports such a request, the retrievaljeift. That is, instead of retrieving the lexicographically next ob-
the previous object will become fast and efficient. Thgect we try to “jump” forward to a larger OID and perform a
problem, of course, is that changing the standard is highlyetNext request on it. If we do not end up with a too large OID
undesirable. It takes a long period of time, and it is ndhen we continue, otherwise, we know that the guessed value
clear whether such a change is unavoidable. Even if th#too large and we modify the previous guess. Of course, this
would happen the multitude of the legacy agents woulegsic idea had to be modified in order to build an efficient tool.
not support the new version. This resulted in a number of algorithm variants with different

 One can redefine large tables in such a way that evdigne/bandwidth tradeoffs.
object instance contains a pointer to the previous object.Note that our algorithm is an interactive process and may be
Although such mechanism could (and maybe should) leffected by changes in the table during its execution. As a result,
used when new MIB modules are designed, it is inapplihe algorithm may return a stale value. This problem exists in
cable to the well established MIB definitions e.g., thosall the other alternative methods, e.g., due to changes that may
of MIB Il [10]. Therefore, this option is as troublesomeoccur immediately after the table was dumped.
as updating the SNMP standard to support a new type ofAs our experiments showGetPrev retrieves a value of
request. the last columnar object instance in a large forwarding table

« One may “walk” the table, using a sequence of th@pForwardTable) containing about 3000 entries in less than
GetNext requests until the required oid is retrieved. I second, which is 500 times faster than the straightforward
we are required to find the value of the last but one entgpproach used bynmptable. It also achieves a factor of
in the table of sizen, this method loads the device withabout 400 in the amount of data transmitted over the network
n queries and takes a time ofround trip delays plus  during the search. As mentioned above, the usagéetBulk
guery processing delays. RFC 1187 [11] suggests to dividees not reduce the total bandwidth consumption (in some
the table among a number of threads each one walking é&@ses it even makes it larger). However, one would expect less
part of a table concurrently with the other threads. Thi®quest messages sent over the network and less processing
scheme potentially reduces the retrieval time by a constdime. We show that even when compared wi@htBulk , the
factor at the price of overloading the SNMP agent anpkerformance of ouGetPrev application is orders of magnitude
the management station. The issue of evenly partition teaperior not only in terms of bandwidth, but also in terms of
table among the threads is not addressed there. time and a number of IP datagrams.

« One may uséietBulk for greater efficiency. Alas, here The rest of the paper is organized as following. In Section I,
we are faced with a problem of choosing the right blocwe define the problem in more rigorous terms. Section Il dis-
size for theGetBulk request. If the block size is too large cusses the algorithms used f@etPrev implementation. We
one may retrieve information which is outside of the tablevaluate the performance of the new tool in Section IV, analyze
If the block size is too small we will only improve the pre-the performance results in Section V, and provide some con-
viously mentioned “walking” method by a small factorcluding remarks in Section VI.

It should be noted also th&tetBulk does not reduce the
overall amount of data transmitted over the network, but
rather reduces the overall number of IP packets sent be-
tween the manager and a daemon. Last, but not the leastin order to perform a rigorous study of the efficiency of the
this method is not applicable to the legacy SNMP daemodsferent possible solutions we turn now to define our model
that are still running SNMPv1. formally. We abstract the MIB objects and the communication

Il. PROBLEM DEFINITION AND MODEL



658 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

0 0 0 0 0000

127 0 0 | 127.00.1

132 Px) 254 7 132.23.254.7

132 65 10 4 132.65.104

135 180 158 21 |135.180.158.21

135 150 158 32 |135.180.158.32

135 180 254 7 135.180.254.7
7 21 kY

0
1 4 7
[12700.1] {35 23 254 7] [13265.104 |135.180.158.32| [135.180.254.7

Fig. 1. An example for the tree structure of a table.

between a manager and an SNMP agent by the following datal he above formalism can also represent a table with a lexico-
base model. graphically sorted key list. In this case the identity of the leaves

All management variables are organized into a labeled trezpresent the values of the keys of the table ent@esretrieves
representing a MIB. A labeled treg, is a tree in which each the value of a table entry given the key values, &atiNext re-
node has a label. Two different children of a node must hatrieve the key values of the next element in the table along with
distinct labels. Following the naming model adopted by SNMRs value.
these labels are nonnegative Integer numbers. Each node of th8iven a label sequence OID, identifying a leaf in the tree, our
labeled tree is uniquely identified by the ordered sequenceaim is to find the previous (in the lexicographic ordering) leaf
labels of the internal nodes belonging to the path from the raaetthis tree. In other words, we want to implement the following
to this node. operator:

Definition 1: Identity (or path label) of noden, Definition 3: GetPrev(lyls. ... 1L,) = ({05 ... U,V
nl = l1.05. ... 1, is the ordered sequence of labels uniquel§/}.l5. ... 1/)), wherel{.l;. ... ], is the largest (in lexico-
identifying the path from the root of to this node. The graphic ordering) leaf ir¥” that is smaller thaw, .l5. ... [,. If
sequence is interpreted as a path that starts at the root (.) gaesh a leaf does not exist thanls. .. . I, = beginningOfTree
to the node labeled, then to the child labele} and soon.  andGetPrev(l;.l>. ... l,) = NULL.

Leaves in the labeled tree havaluesassociated with them.  Given the above definitions, the problem is expressed as fol-

The value of nodé, .l». ... [, is given byV(l;.l>. ... 1,). In lowing. We need to implement th@etPrev method using the
SNMP terminology;! is termed the OID of a MIB variable, least number of calls to th8et and GetNext SNMP-like data
andV(In) is referred to as the value of the variable. base operators.
Definition 2: SNMP-like data bads an object comprised of Note that by the above definitions ifl;.l5. ... 1,
a labeled tre€’, and the following methods: is a leaf then GetNext(GetPrev(li.ls....1,)) =
(lido. o Ly, V(o . L) I 1ids. ... 1, is an internal
Get(lidy. ... 1) ?lodle the;l ?etNext(GetPrev(ll.lg. ... 1)) =  GetNext
142« lpn ).
V(s .. L) Tl ...l isaleaf  Let us call the identity returned b§ietPrev thetarget leaf
L NULL otherwise In order to implement th&etPrev operator we need to find the

target leaffirst. In other words, we have to find the path label lex-
icographically preceding the path label specifiedzsPrevs
input. Once found, target leaf uniquely identifies the previous
VL. . 1)) eIemenF, and its'vallue' is retrieved usi@gt.. .
m The first step in finding the target leaf is to find the common
ancestor of the given path label and the target leaf. The common
wherel.l5. ... I;, is the smallest (in lexicographic ordering)ancestor is the last node (from the root) on the path from the
leaf in 7" that is lexicographically greater thdnls. ... I,. If ~ root to the given node that has a descendant leaf whose label
such a leaf does not exist thénlz. ... I, = EndOfIree and s |exicographically smaller than that of the input path label. In
GetNext(ly.ly. ... I,) = NULL. other words, we are looking for the first node from the input
Note that the methods can be called with any value, thatnede upward, for which the label of tHgetNext operator is
l1.ls. ... 1, can be any label sequence and does not needstactly smaller than the input. We call this node tmaximal
represent an existing node in the tree. In this dase. ... [, common prefixFor example, in Fig. 1 the maximal common
is termedidentity approximation prefix of the leaf.1.135.180.158.21 is the nodel, and

GetNext(ly o. ... 1) = (.1 ... 1.

m?
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the maximal common prefix for the label.132.65.10.4 Binary Search(oid, prefiz, low, high)
is.1.132. 1. i « length(prefiz) + 1;

The correspondence between the labeledfraed the scalar | 2 while (low f(zggﬁ-) h{i k)2l
objects in the MIB is obvious. Instances of columnar objec if (mid = low) g ’
are lexicographically ordered by the ascending values of thi mid  mid + 1; o
indices. Usually, as explained in the introduction one woul irfeff:;f;n‘s—e _Sz_";'gg)GetNeXt(’"ef iz.mid);
apply theGetPrev operator to an instance of a columnar ob high + mid — 1;
ject, looking for the value of the previous elementinthe table. | 9.  elseif (Tlespﬂnse < oid) // lexicographic comparison of OIDs
such cases either MIB parsing or Syntax parsing of the OID ¢ | 11" } // white compi(response);
retrieve the table’s OID. The search for the maximal commc| 12. return low;
prefix can then start from this OID, since the table is an existing

ObjeCt. Fig. 2. Binary search: determines a value of the OIC iri¢hgth(prefix)+1
position of the OIDs predecessor.

© N oo w

lll. | MPLEMENTATIONS OF THEGETPREV ALGORITHM
This section presents the algorithms used byhePrev ap- seco_nd one. In this case, we do not'have an upper bound on the
plication and reports the status of its implementation. All of tHR2SSible value of this component. Since we know that any OID
algorithms utilize two basic building blocks: a variant of th&omponent is of integer type, we can use the maX|m_aI integer
well-known binary search algorithm, and apper boundal- value as an upper bouddHowever, a better approach is to try

gorithm based on well known techniques for competitive aIgéQ find a tighter bound on the actual value of the component. We

rithms [12]). The latter is used to obtain an upper bound to thEeSent a simple and fast algorithm that finds an upper bound
searched value when one is not known. that is guaranteed to be no greater than twice the actual value

As explained in Section I, we are looking for an identity off this component. Once the bound is found we use the binary

an instance of the columnar object that lexicographically pr@_earch to determine the wanted component value. In a similar

cedes the identity of the given OID. In other words, if the givef@y: We find the values of the next two components and then
OID identifies a valid instance of a columnar object then erform anSnmpGet request to retrieve the desired value of

are looking for the instance of the columnar object for which'® columnadr °bJ‘?§t mhstal?c_ia& block ioned ab d
the return value of &etNext request is the value of the given Next, we describe the building blocks mentioned above an

instance. However, if the given OID does not identify a vaIiH1e GetPrgv_aIgorithm. '_I'hen we de§cribe modifications maqe

instance of a columnar object then we are looking for the if2 the building blocks in order to improve the application’s

stance of the columnar object for which the returned value Bf"formance. Finally, we report thgetPrev implementation

a GesNextrequest is the returned value of&sNext request Status and the application’s availability.

for the given instance approximation. Thus, before starting the

search algorithm we verify that the given OID identifies an ex?- Building Blocks

isting instance of a columnar object (usi@gt). If this is not the 1) Binary Search:We use binary search in two ways: a

case, we replace the given OID by the identity of the instanctassic divide-and-conquer and a search in a sparse domain [13].

returned by &GetNext request. As explained before, the first step in finding the predecessor of
In order to illustrate the problem and the difficulties assocthe given OID is to find the maximal common prefix between

ated with solving it, consider the table presented in the rigthis OID and its lexicographic predecessor. In order to do this

hand side of Fig. 1. This is a part of the ipRoutingTable fromwe use the classic binary search on the length of the prefix.

MIB II. 2 The corresponding labeled tree is presented in the I&fiter we refer to this procedure Eaximal_Common_Prefix.

hand side of Fig. 1. Leaves of the tree are ordered (from leftAnother use of the binary search is to determine values of

to right) in the ascending order of the values of their indicetheobject identifier componen{®ICs), following the maximal

Suppose that we want to find the value of the entry precedisgmmon prefix. The pseudo code of the binary search algorithm

135.180.158.21. The full OID of this columnar object in- adapted for this purpose is shown in Fig. 2. Here, and later on,

stance is:1.3.6.1.2.1.4.21.1.1.135.180.158.21 we make usage of the two additional functiobsigth(oid)

(or ip.ipRoutingTable.1.1.135.180.158.21 ). By that receives an OID and returns the number of its OICs; and

parsing the MIB one can find the table OID and limit the searafomp, (0id) that returns the value éth component of the OID

to the indices that follow the table prefix (these key fields argpecified as its argument.

shown in Fig. 1). The first stage is to find the first component Binary_Search (see Fig. 2) receives the following parameters:

of the preceding entry (132 in our case). We know that the com- « id: OID whose lexicographic predecessor should be

ponent’s value is an integer number between 0 and 135, and we fgund

can carry onabinary search to find it (see Section lll-A-1). After « prefix: currently known prefix of the predecessor

the first component has been determined we turn to finding the « 1ow: lower bound of the binary search

* high: upper bound of the binary search.

2Notice that this table is obsolete and is replaced by other tables. Howeveiin fact, in this specific case we could use additional knowledge about IP
in many legacy systems this table is still in use and, therefore, we used it in @aldresses, and bound this number by 255. We discuss this point further in Sec-
experiments. tion 11l-A-2.
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tcpConnState tcpConnLocalAddress tcpConnLocalPort tcpConnRemAddress tcpConnRemPort
closed 0.0.0.0 0 0.0.0.0 0
listen 0.0.0.0 7 0.0.0.0 ]
listen 0.0.0.0 9 0.0.0.0 0
listen 0.0.0.0 13 0.0.0.0 0
listen 0.0.0.0 111 0.0.0.0 0
listen 0.0.0.0 513 0.0.0.0 0
listen 0.0.0.0 515 0.0.0.0 0
listen 0.0.0.0 13722 0.0.0.0 0
listen 0.0.0.0 13782 0.0.0.0 0
listen 0.0.0.0 32780 0.0.0.0 0
listen 0.0.0.0 32870 0.0.0.0 0
listen 0.0.0.0 34810 0.0.0.0 0
established 127.0.0.1 32796 127.0.0.1 32872
established 127.0.0.1 32870 127.0.0.1 32875
established 127.0.0.1 32870 127.0.0.1 32881
established 127.0.0.1 32870 127.0.0.1 32887
established 127.0.0.1 32870 127.0.0.1 32893
established 127.0.0.1 32870 127.0.0.1 33187
established 127.0.0.1 32890 127.0.0.1 32889
established 127.0.0.1 32893 127.0.0.1 32870
established 127.0.0.1 32895 127.0.0.1 32896
established 127.0.0.1 32896 127.0.0.1 32895
established 127.0.0.1 33187 127.0.0.1 32870
established 127.0.0.1 33189 127.0.0.1 33190
established 135.180.161.15 23 135.180.142.50 1125
established 136.180.161.15 23 135.180.142.50 1126

Fig. 3. An example of a TCP connection table.

It preforms a binary search based on the fact that the wan
value of the component is the largest valuesuch that
SnmpGetNext(prefix.v) is lexicographically smaller thasid.
Note that thef statement in Line 9 is redundant and is prese
there just for the sake of clarity.

2) Upper Bound Algorithm:ln many cases the upper bounc
for the binary search is unknown. As an example, consider tc
ConnTable (MIB-I1). An instance of a columnar object in this
table is identified using four indices: two IP addresses (Sourﬁﬁ. 4. Upper bound algorithm: finding an upper bound for the binary search.
and destination), and two ports (source and destination). A

sample table is shown by Fig. 3. . . . .
If we want to find the value of an OID that lexico-SPecified as the input. To achieve a tight bound we select as

graphically precedesl35.180.161.15.23.135.180. our next candidate value twice Fhe valqe we received ip the
142.50.1125, then, obviously, we can use the regulaf®SPoNse to t_hSnmpGetNext. This promises a bound which _
binary search in order to determine the value of the first OI€ &t most twice the actual value present in the table for this
of the predecessor by having zero as the low and 135 as olle In_Sectlon I1I-C, we show how to make the bqund tighter.
high bounds of the search. However, we cannot use this simple>tarting from second OIC after the common prefix, the upper
scheme for determining a value of the second OIC of t und algorithm is executed prior to the binary search for every
predecessor. oIC.

Using semantic knowledge of the OIC (in this case, about IP ) )
addresses), we would be able to set 255 as the upper boundFoBasic Search Algorithm
the label's values. However, this require the client to be awareFig. 5 presents the pseudocode of the main algorithm used
of the semantics of all MIB variables. We prefer to keep th® implement theGetPrev application. The algorithm is
client side as simple as possible and, thus, do not use semaotimprised of four main steps. In the first step (line 1), the
knowledge. algorithm finds the maximal prefix common to the input OID

In absence of the additional knowledge, we find an uppand its predecessor using classic divide-and-conquer search on
bound for the binary search using the upper bound algoriththe length of the prefix. In the next step (line 3), the value of
The algorithm (see Fig. 4) receives the OID whose predthe first OIC following the maximal common prefix is found
cessor should be found, and a currently known prefix of thesing binary search algorithm presented in Section 1lI-A-1.
predecessor. In the third step (line 4), subsequent OICs are determined

It sequentially tries candidates for an upper bound untising a two phase procedure. First, a tight upper bound for
the SnmpGetNext request returns the OID equivalent to thathe OIC value is found using the upper bound algorithm (see

Upper_-Bound(oid, prefix)

. i+ length(prefiz) + 1;

. high <« 1;

response « prefiz;

. while (response < oid) {

response « SnmpGetNext(prefix.high);
high «— 2 * comp;(response);

L R N

. return high,;
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GetPrev(oid) Improved Bounds(oid, prefiz)
1. prefiz + Mazimal .Common_Prefiz(oid); 1. bounds[0] « 0;
2. i+ length(prefiz) + 1; 2. bounds(l] « %;
3. first « Binary.Search(oid,prefiz,0,comp;(oid)); .
4. prefix « prefic. first; . phase I: gross bound computation phase:
5. while (SnmpGetNext(prefiz) < oid) { while (true) {
6.  high + Upper_Bound(oid, prefiz); comp « bounds[1] * 2;
7
8
9
1

4

5

6.
comp + Binary_Search(oid,prefiz,0, high); 7. approx - prefix.comp;
prefix < prefiz.comp; 8 response + SnmpGetNext(approz);
9

.} if (response = oid)
0. return SnmpGet(prefiz); 10. break;
11. bounds|0] < comp;(response);
12.
Fig. 5. Basic GetPrev algorithm: finds the value of a lexicographic | 13  phase II: fine bound computation phase:
predecessor of the given OID. 14.  delta=1;

15.  bounds[1] = bounds[0] + delta;
16.  while (true) {

Section IlI-A-2). This bound is fed to the binary search whicl| 17. bounds|1} = bounds(1] + delta;
comprises the second phase. In the fourth step, the algorit| 18 approx «— prefiz.bounds|1];
. . . - 19. response + SnmpGetNext(approz);
retrieves the value of the variable identified by the found OIl| 5 if (response = oid) lexicographic comparison of OIDs
of the predecessor. 21. break;
22. delta + delta * 2;

In the following subsections, we present some modificatiot }
made to the building blocks used by the main algorithminord| 54 return bounds;
to improve its performance.

. Fig. 6. Improved bounds algorithm: Tighter upper and low bounds for the
C. Improved Bounds Algorithm binary search.
The upper bound algorithm finds an upper bound which
iS, in the worst case, twice the actual OIC value of the prede-The main motivation for the improvement described in

cessor. For example, suppose we want to find the predecessfy section is the observation that OICs are not uniformly

of 135.180.161.15.23.135.180.142.50.1125 in distributed in the Integer space, but rather tend to concentrate
tcpConnTable shown in Fig. 3. Upper_Bound will return g several blocks of large size. This can be easily seen in the
value not greater than 66 378 as the upper bound for the fif§ple presented in Fig. 3. The improvement's performance is

OIC of the predecessor (In fact, the upper bound returned {@ore rigorously assessed in Section V using the model defined
this example will be32 780 * 2 = 65 560). in Section II.

It would be beneficial to obtain a tighter upper bound to min-
imize the number of iterations performed later by the binar . N .
search and, thus, to conserve b%th bandwidth anilj time. In d_Search Algorithm With Time-bandwidth Tradeoffs
dition, since the upper bound algorithm sequentially tests in-In many cases, getting the right answer fast is more impor-
creasing OIC values until it finds an upper bound, each of tignt than the overhead of the algorithm. Thus, one may wish to
responses to the queries issued by this algorithm constitutegagle bandwidth for time. For example, in cases where the com-
better lower bound on the OIC value. Not using this informanunication delay dwarfs the message processing time, we may
tion later in the binary search is wasteful. want to reduce the number of messages sent back and forth be-

Fig. 6 presents the pseudo-code of the Improved Boungigeen the SNMP daemon afittPrev even further. This can be
Algorithm. The Improved_Bounds function receives the samghieved by asking about more than one OID in evgésyNext
parameters as Upper_Bound. However, it is modified to retufifessage. As a result, the number of messages is reduced but
two values: a lower bound and an upper bound. their size and processing time become larger. This requires to

Improved_Bounds works in two phas&psoss bound com- modify the binary search as described below.
pUtation and fine bound ComputationThe gross bound com- The number of OIDs to include in a message is a param-
putation phase is almost identical to the original upper bouiger we can tune. If this number is very large, we are again
algorithm. The Only difference is that now the algorithm keeﬁﬁced with the pr0b|ems discussed for usag@efBulk re-
updating the lower bound. The lower bound is the last respongigest (see Section IV-A. We found that using two or three vari-
to aSnmpGetNext request being lexicographically less thample bindings pefnmpGetNext message offers a considerable
the input OID. improvement in the number of messages and only slightly in-

During the second phase, we start a new series @eases the bandwidth consumption. For simplicity we continue
SnmpGetNext queries at exponentially increasing diswith a description of the algorithm where three variable bindings
tances from the lower bound found in the previous phasgre used, but in the same spirit we can use any (small) number
For example, if the OIC we are looking for is 3214, and thgf bindings per message.
expansion phase finished with the bounds [3200, 6400], then general, the variable bindings are evenly spaced between
contraction phase would test the values 3201, 3203, 3207, 322 current bounds. For the case where the number of bind-
and return [3208,3215] as the bounds for the binary search. ings per message is three, the known prefix is concatenated with

4For simplicity we assume that all the values between 3200 and 3216 inddd@w + high)/4, (low + high)/2, and3 * (low + high)/4, re-
exist. spectively, wherdow is the lower bound of an OIC value and
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Fig. 7. The performance @ietPrev on a TCPConnectionTable.

high is the upper one. All three approximations are packed in&dbove. As we write this paper, the application is in the process
a single SNMRGetNext message PDU and sent to the daemonf being released by Lucent Technologies, and we plan to make

For the case of three variable bindings per message, the mibghublicly available in the near future.
ified binary search provides the effect of performing two itera-
tions of the original binary search in just one iteration. There-
fore, 50% less messages are sent by binary search. However, one
may notice that exactly one out of every three bindings sent overn this section, we study the efficiency of oGetPrev tool.
the network in everfnmpGetNext message would not be usedAll experiments have been conducted on a 166 MHz Pentiumil
by the original binary search algorithm. Therefore, the tradedfinning the FreeBSD operating system. The machine was
between using this modified algorithm and other versions is teennected through a Fast Ethernet to a Cisco 7500 router
tradeoff between sending 50% leSstNext messages where running 10S Version 11.2(21)P, and to a Sun Ultra 10 running
each message is three times larger than in the regular case,awd SNMP Agent, Ultra-250. Our application was written
sending more messages where each message is smaller.  using ucd-snmp-3.6.2 SNMP library.

Similar modification can be made to the improved bounds We performed two sets of experiments on two different large
algorithm, by changing it to try more than one upper and lowé&bles found in MIB-I1 [10]: tcpConnTable (residing on the Sun
bound candidate in evelgetNext message. machine), and ipRoutingTable (residing on the Cisco router).

In principle, multiple variable bindings may also be used foFcpConnTable had around 500 entries in it throughout the ex-
the search of the maximal common prefix. However, in prageriment. It tooknmpwalk application (included with the ucd-
tice, this would not provide any considerable benefit since tf%6.2 library) about 2.5 s to download the entire table. In order to
maximal number of OICs in an OID according to the SNMRVvaluate the performance of the algorithm, we first downloaded
standard is limited to 128, and usually OIDs are much shorfée entire table, then we retrieved the OIDs of the elements in
than this. Therefore, in the worst case, maximal common prefiesition 5, 10, 15, etc. For each of these OIDs we found the pre-
can always be found using just sev@nt Nextmessages. vious value using the following four methods:

» TableWalk: A sequence ofGetNext requests from the
beginning of the table. This is the traditional way to find
The GetPrev application has been implemented in the  the previous object.

FreeBSD OS environment using the C programming language « GetPrev (Basic): This is our basic algorithm without the

and ucd-snmp-3.6.2 SNMP library [8]. The application, called improvements discussed in Sections IlI-A-2 and III-D.

snmpgetprev (in analogy tosnmpgetnext) admits a number » GetPrev (Improved Bounds):This is our basic algorithm

of options that allow to choose different tradeoffs explained  with the improvement discussed in Section IlI-A-2.

IV. PERFORMANCE EVALUATION

E. Implementation Status
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70 M Our tool used 7000 octets while the traditiorainpwalk used
60 A By Db A 200000 octets (a factor of 30).
e ¥, ;g A Fig. 8 shows a detailed picture of the resources used by
© 50 ADE A gg,\ A&@ém the different variants ofietPrev (the legend is the same as
% PN /\:—*Le AR ; ) g ;
£40 ) TaS A 1 in Fig. 7). One can see the clear tradeoff between time and
3 S: 3 A“’ * ] bandwidth achieved by the variant with multiple variable bind-
o R, of ings per message (blue circles in the figure). This variant uses
20 “‘ the least number oflet/GetNext requests, but, in general,
104 it uses more bandwidth compared with other two variants of
) ) . our GetPrev algorithm. This is hardly surprising, since each
0 100 200. 300 400 500 packet contains more octets. It is also clear from this figure that
table size the number ofiet /GetNext requests, and the total bandwidth
usage does not depend on the location of an entry in the table.
10000 - . An even more impressive improvement has been achieved
) when we tested thé&setPrev tool on Cisco 7500 router’s
8000 - ipForwardTable. The number of entries in this table was around

3000 throughout the experiment, which is not a very large
number for such a router. The resource consumption of the
different tests is presented in Fig. 9. The gap between the
linear behavior of the traditional retrieval method and constant
requirements of ouGetPrev is very clear. In fact, due to this
large gap it is impossible to see the data in a linear scale. Thus,
we selected a logarithmic scale on theaxis. In fact, if we
0 100 200 300 400 500 consider the time parameter for the 2625th element, we can
table size see that while more than eight minutes were required for the
traditional snmpwalk , our GetPrev accomplished the same

Fig. 8. The performance of the different variants 6%tPrev on a taskin less than a second, a factor of more than 500.
TCPConnectionTable.
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A. GetBulk

« GetPrev (Multiquery): This is our algorithm with ~ SnmpGetBulk is a new type of request introduced in

the time/bandwidth tradeoff improvement discusse¢grsion 2 of the SNMP protocol [10] as an optimization
in Section III-D. to SnmpGetNext in order to improve the performance of

For every invocation of each of the above algorithms we ha@@Wnioading large tables [2]. Basically, instead of retrieving
measured the following parameters: only a single next _object (like |Sn_mpGetNe>_¢t) it retrleves_ a
bulk of data following the next object. The size of the retrieved
* the number ofSnmpGet and SnmpGetNext messages data bulk is specified by the user. Note that whiletBulk
used to retrieve the value of the lexicographically previousan reduce the number of requests needed to download a table,
OIb; and can also reduce the number of IP packets used, it will not
« the overall time it took to retrieve a value of the previougecrease the total amount of octet transmitted except for the
OID. This time accounts for all of the local computationsheaders. In some cases, it may even increase this number as the
the communication between the agent and the applicatigast data bulk may contain data that is not part of the table.
and the agent's response time; Unfortunately, SnmpGetBulks applicability is limited to
« the total bandwidth used. This is the number of payloagiNMPv2 and SNMPv3 versions only. In particular, in our ex-
octets sent over the network in the process of retrieviggriments we could not test it with the SNMPv1 agent deployed
the value of the previous OID. by the Cisco router. Thus, we computed the possible effect of
The results presented in Fig. 7 reflect an average of ten rungéftBulk instead of measuring it. The amount of resources
the above test for each of the four algorithms. Itis clear from tlmequired by GetBulk depends on the bulk size parameter.
figure that the number dfet/GetNext requests, the amount of Since most SNMP implementation are done on top of UDP, the
network traffic, and the time required for the traditional retrievahaximal size of a UDP packet (65 000 octets) is a clear upper
of the previous value increase linearly with the distance of th®und on the size of the possible bulk size. Because of the
object from the beginning of the table. However, the amount 8SN.1 encoding schemes about 163 instances of the columnar
resources used by our tool does not depend on the position ofdgect like ipRoutingTable can fit into 65 000 octets. Thus, in
entry in the table. It stays fairly constant for all elements (the rea-very optimistic scenario, a retrieval of the table up tothe
sons for this are discussed in the following section). Moreoveiement will work 163 times faster thammpwalk (compare
the amount of time it took our tool to get the previous elemetd the factor of 500 for our GetPrev).
of the 500th entry in the table was about 0.65 s while it took The MTU (which is the maximal size of an IP packet) in our
snmpwalk more than two seconds to accomplish the same taslast Ethernet network is 1500 octets and, therefore, the number
In terms of bandwidth usage the result is even more dramatié.IP packets used b¢etBulk is only a factor of five times
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Fig. 10. The performance @ketBulk on a ipRoutingTable.

less than the one used bympwalk. Note that each large UDP As mentioned before, the total number of bandwidth usage of
packet is fragmented into smaller MTU size IP packets [14fzetBulk is at least the same as that @fmpwalk. Fig. 10
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presents the computed resource consumption of the previoustalle. It is indexed by an IP address. This means @&wPrev
jectinstance retrieval usingetBulk, and compares it to that of algorithm should perform the search for four components of the
GetPrev. As one can observe, the gap between @atPrev  predecessor’'s OID. However, since all of them belong to IP ad-
and this application is smaller with respect to the number dfesses their value never exceeds 255. Therefore, the number
IP packets and processing time. However, our tool still offerscd the Get /GetNext requests used is, in fact, boundedy

clear advantage for all resource types (packets, time, and ovesalt 2 « 3 « 8 + 1 = 59. The actual number obtained in the ex-
bandwidth usage) while being compatible with all versions gferiments, though, varies depending on the actual values of the
SNMP. fields. This explains the noisy picture in Fig. 8.

This also explains why the search in the TCP connections
table demands more requests. In this table, entries have ten com-
ponents of their OIDs belonging to the indices (two four-compo-

In this section, we analyze the expected performance of qusnt IP addresses of the source and destination and two integer
GetPrev tool using the model defined in Section Il. Since onaumbers for the source’s and destination’s ports). The port num-
can find the beginning of the table using MIB parsing or syntaers, however, can be as large as 64 000. Thus, the upper bound
parsing (simply looking for the last occurrence of the patten the number of requests in this case is much worse, namely
.1.1in the OID) we assume for this analysis that the table begins 8 + 2+ 7% 8 +2%2%x16+1 =4+8+112+ 64 +1 = 189.
atthe tree’s root. Also, unless specified otherwise, wéaige) Now, let us analyze the theoretical performance of the
to denotdog,(z). improvements introduced in Sections 1lI-C and 1lI-D. Clearly

Consider first the basic variant GfetPrev, and let us assume the upper bound for finding the maximal common prefix does
that we want to find the predecessorof,. ... .J,,. Recall that not change as a result of the improvement. Analogously we still
the first step of the algorithm is to find the maximal commoneed the finalGet request to be performed in order to retrieve
prefix. This is done using a binary search on the length of thige desired value. It is easily observed that the minimal lower
label path (the number of components in the input OID) usingbund that can be attained by the first phase of the improved
no more thanog(n) Get/GetNext messages. The second stepounds algorithm (see Fig. 6), namely the lower bound compu-
is a bounded binary search that uses a value of the componatibn phase, isSM AXINT/2. Also, as explained above this
(in the input OID) that follows the maximal common prefix aphase’s message complexity is boundeddy(M AXINT).
the upper bound and zero as the lower bound. Then, for evattye upper bound computation starts from the lower bound
remaining component, until we find the wanted object, we cargpmputed in the previous phase. As one observes, its message
on both a computation of the upper bound and the bounded dbmplexity is bounded byog(M AXINT/2). Finally, the
nary search (see Fig. 5). Note that the number of these stepsary search algorithm message complexity is also bounded
is bounded by the length of the result, i.e., by the number bY log(M AXINT/2).
components in the OID of the object precediids. ... .[,. Putting it all together, we obtain that the message complexity
This OID may have more tham components. The number ofof the improved bounds variant of th@etPrev algorithm is
components is effectively bounded by 128 which is the mag(log(n)+log(MAXINT)+(n—1)*[log( M AXINT)+2x
imal number of components allowed in a name of SNMP objelie(M AXTNT/2)] + 1). Turning back to our ipForwardTable
[1]. However, if bothl; .l». ... .I,, and its predecessor are in-example, we obtain the upper boundof- 8 + 3 * (8 + 2 x
stances of the same columnar object, then they have the same- 1 = 77. As one may notice, the predicted performance
number of components in their OIDs and it equals the numbef the improved algorithm is worse than that of the basic one.
of table indices. Both the upper bound computation and the Iylet, as our experiments show, the performance of the improved
nary search algorithm take(log(M AXINT)) Get/GetNext  bounds variant of the algorithm is almost always superior to that
requests wherd/ AXINT being the maximal value of an In- of the basic variant. Namely, the improved bounds variant uses
teger index. Finally, there is an additiorfaét request that re- 10%-15% lesszet /GetNext requests.
trieves the wanted value. The reason for this is simple. As was mentioned in

Putting this all together, if we are searching in a table index&kction 111-C. In the real tables, the integer values of the indices
by n integer keys, the total number @fet /GetNext request of the table entries are not uniformly distributed. Thus, in
messages is bounded by: most cases after the lower bound is found in the first phase of

the improved bounds algorithm, it takes only a few messages
O(log(n)+log(MAXINT)+2+(n—1)log(MAXINT)+1). (usually only one or two) to compute the upper bound and not
log(MAXINT/2) as predicted by the theoretical analysis.
Note that this bound does not depend on a position of the objg¢hen this is not the case, we observe the rare fluctuations of
in the table, or, even more important, on the table size. Thise Improved Bounds performance rendering it worse than the
is the reason for the superior performance&setPrev that we basic algorithm (see Fig. 8).
observed in the previous section. Finally, we analyze the multiquery variant of the basic al-

It is important to mention thdbg(n) + log(M AXINT) + gorithm. As was explained in Section IlI-D, a single packet of
2% (n — 1)log(MAXINT) + 1is only an upper bound, for the multiquery algorithm contairisdifferent values (in our ex-

a specific object, the number ¢fet/GetNext requests used periments we use# = 3). This means that we partition the
by GetPrev depends on the actual values of the index compeearch range inté + 1 equal intervals, and use a response to
nents of the wanted object. For example, consider the routitige GetNext request to choose the correct interval. The search

V. PERFORMANCEANALYSIS
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in this case takelog, , , (M AXINT) iterations, instead of the (calledsubidentifiersn SNMP SMI) written from left to right
log, (M AXINT) required by our basic algorithm.légn +1 being separated by “..” Each component value of OID is a
is small enough when compared with log(M AXINT) the nonnegative Integer number and the number of components in

Multiquery variant saves a factor of the OID should be at least two. SNMP limits the OID length
to 128 components while ASN.1 does not. An interpretation of

logy(MAXINT) (h+1) the OID component values is as following. Starting with the

log; | (MAXINT) ~ 082 root of the OID tree every component value identifies an arc in

. ) the tree. Thus, an OID of the MIB object type which is a node
in the number of messages. Assuming that the local computatigihe tree is, in fact, a unique path from the root of the tree to
time is negligible, and most of the search time is due to thgis node. To illustrate this, node5.2 is accessed using the
communication delay and the daemon’s response time, a simii@st child of the root, then the fifth child of the first child, and
factor is saved for the overall search time. As explained aboYgen the second child of the second level child.
we pay for this speedup by increa_sing the size of each pa_cketAn object may be defined asszalar objectmeaning that it
We can assume that each packet tsnes larger than the basichas exactly one instance, or az@umnar objectColumnar
of uniquely identified using somiedexing schemdogether with
k the indexing scheme, a columnar object defineaceptual
T N table (later referred simply atable). Entries in the table are
logy(k + 1) ; .
accessed using the values of the indices.

larger than that of the basic variant. Indeed, #o= 3 we use  An access to the management information items exported by
half the messagesog, (3 + 1) = 2) and3/log,(3 + 1) = 1.5 the MIB interface is instrumented by the software agent, called
times more bandwidth. Note that this is a theoretical analysfSNMP daemothat executes locally on the managed device and

in practice, due to factors such as the MTU size, one cannot ipgssesses the means for retrieval or modification of the values
k that is larger than say five. of variables present in the MIB it controls.
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