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Abstract—Web content providers and content distribution net- tent. Accesses to Web caches, on the other hand, can result in
work (CDN) operators often set up mirrors of popular content  cache misses. In addition, mirrors can also serve some forms of
to improve performance. Due to the scale and decentralized ad- dynamic content and content customized for each client.
ministration of the Internet, companies have a limited number of . , . .
sites (relative to the size of the Internet) where they can place mir- To kegp mirrors Content ConS'St?nt’ Synchronlzatlon be-
rors. We formalize the mirror placement problem as a case of con- tween mirrors and the main server is required whenever the
strained mirror placement, where mirrors can only be placed on main server’s content changes. Various algorithms to keep Web
a preselected set of candidates. We study performance improve- caches consistent have been proposed in the literature and may
mentin terms of client round-trip time (RTT) and server load when be applicable to mirrors. We classify these algorithms into two

clients are clustered by the autonomous systems (AS) in which they L . .
reside. Our results show that, regardless of the mirror placement categories: those based on time-to-live [1], and those based on

algorithm used, for only a surprisingly small range of values is in- S€rver invalidation [2]. Without going into the details of the
creasing the number of mirror sites (under the constraint) effective algorithms, we note that the cost of keeping mirrors consistent,
in reducing client to server RTT and server load. In this range, we jn terms of the amount of traffic seen at the server (in the case
show that greedy placement performs the best. of [1]) or the total amount of traffic seen on the network (in
Index Terms—Constrained mirror placement, Internet experi-  the case of [2]), increases linearly with the number of mirrors.
ments, performance analysis, placement algorithms. Thus, even if one assumes that larger number of mirrors provide
further reduction in server load or client download time, simply
|. INTRODUCTION increasing the number of mirrors with impunity will result in
. igher consistency cost. Certainly, one would be willing to
HERE .ARE a growing ””F“ber of frequent_ly accesse?fy the cost asso{:iated with a Igrge number of mirrorsgif it
. Web sites that employ mirror: Servers to Increase tv9ould be outweighed by the reduction in the overall system
reI|§b|I|ty anq performaqce of their services. Mirror Servers. st We show in this paper, however, assuming that clients
or simply “mirrors,” replicate the vxhole centeqt or the MOSAccess the mirror which lowers their download time the most,
popular co,ntent ofa\_/veb SEIVer, or 'Server. A client re_quesuqﬂcreasing the number of mirrors beyond a certain value does
the server's content is then redirected to one of the mirrors (\NSI significantly reduce server load nor client download time.

fr?i?rgfiggg'éﬁatzd (;T;Lir;?]rz]}?hzet;;'?gIeuggorgl'ij:?sciaia%viously, we are not considering the case where there is a
yap d ' rror on every client host or local area network (LAN).

served faster; furthermore, if clients are redirected to mirrors iven a finite number of mirrors, we are interested in where

closer to them than the server, download times can be redu%a lace them to maximize performance. A content distribu-

(a';nt(;_retfolrmal ar\g/;vurgent \r']v'" be presetnted n ?ﬁcnon lI-A). tion network (CDN), for instance, may have a large number of
Irstglance, Web caches appear to Serve (e Same pUrpsgines scattered around the Internet capable of hosting mir-

as mirrors. We differentiate mirrors from caches in that clie%rS A content provider with a busy Web server can rent re-
access to a r_nlrror never results ”? a “miss.” A client is redEources on these machines to host their mirrors. The question is
rected to a mirror only when the mirror has the requested CQfen: on which subset of the candidate machines should a con-

tent provider put mirrors of its content? Ideally, a mirror can be
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documents from 47 Web servers, which mirrored three differetfiteir topological placements &&(H), P(M), and P(B), re-
Web sites. Feet al. [5] present a server selection techniquspectively. We use the notatidr, A, and5 to denote a spe-
that can be employed by clients on end hosts. The techniquegific size and placement of the sets. The constrained mirror
volves periodic measurements from clients to all of the mirroacement problem can now be formally stated.
of a server. Seshagt al.[6] proposed a server selection scheme Definition 1: Given a graph, a set of candidate hostx,,
based on shared passive end-to-end performance measurengeptsitive integek, and an optimization conditio®C(M, p),
collected from clients in the same network. There are alsoe CMP problem is to find a set of mirrors/, of sizek such
related works that focus on maintaining consistency amotitat OC(AM, p) is minimized.
cache servers, which can be applicable in keeping mirrorsWe include M as part of the notation fo©C(M, p) to
consistent [2], [1]. These works studied different scalable Wamphasize that we are studying the effect of changiigon
cache consistency approaches and showed various overheati®fperformance of CMP. Specifically, we study the effect of
keeping caches consistent. changing| M| and P(AM) while holding |H| constant, with
Jaminet al. [7] used two graph theoretic algorithmisHST H N B = @, andH U B C V. We experiment withP(7)
[8] and min K -center [9], to determine the number and thaniformly distributed and on nodes with the highest outdegrees
placement ofnstrumentation boxef®r the purpose of network (outgoing links). We also experiment with both uniformly
measurement. The authors demonstrated the usefulness dfs&ibuted and trace-bas&®(3). A major difference between
network distance service by showing that the distance mapr formulation of the problem and the one in [11] is that
computed can be used to redirect clients to the closest {hey assume mirrors can be placed within client clusters, i.e.,
latency) of three server mirrors. While they used closest mirrét C 5. We do not consider it realistic for a CDN to always be
selection as a motivating problem, the three mirrors theple to place mirrors inside client clusters.
consider are manually placed at arbitrarily selected locations.
In this paper, we take a closer look at mirror placement g Optimization Conditio®C(M, p)

the Interne_t under a more realistic setting where the numberWe identify two goals commonly associated with placing mir-
of mirrors is small, but generally larger than three, and UL
t

) X . ; Brs on the Internet: reducing client download time and allevi-
placement is restricted to a given set of hosts. Krishnamur

RYY 3 q h ¢ by Web cli Mng server load. In the previous section, we mentioned the cost
andyvang [3] proposed a sc eme 10 group nearby YWeb ¢ IeB]fskeeping mirrors consistent as a limiting factor in deploying
into clusters and evaluated it to be highly effective. The,

large number of mirrors. We will show that even discounting
further proposeo_l and evall_Jatfed schemes for Proxy placemf&ﬁsistency cost, increasing the number of mirrors beyond a cer-
where a proxy IS placed_ inside each such cllgnt Cluster. Hin number does not significantly reduce client download time,
para_IIeI to an earlier version of our work [10], Qat al. [.11.] or assuming that clients access mirrors with the lowest client
studied pIacmgM.relecas onV client clusters to maximize seryer round-trip time (RTT), distribute server load. Without
performance. Various placement schemes were proposed ‘i/of generality, we assume zero cost to keep mirrors con-
evaluated against a "super-optimal” algori_thm, which provide stent for the rer’nainder of this paper. With zero consistency
the performance. lower bound for the optlmalllpllacement. T st, we can treat the server itself as simply one of the mirrors.
placement algorithms were evaluated on artificially generat suming one can add a mirror with no cost, we ask, “By how

:opo:ogles_,rﬁs W?:]l as the Iln:jergirt] a}[utonomé)usl sys{ﬁmsb( ch adding one more mirror reduces client download time and
opology. 1he authors conciuded that a greedy algorithm as§ viates load at existing mirrors (including the server)?” Client

on client cluster provided performance that was close to t Bwnload time can be affected by factors such as load at mir-

optimal solution. The authors focused on finding the best plaq%—rs bottleneck bandwidth, network latency (in terms of RTT)
ment algorithm/heuristic given a certain constraint, while o ' ' '

paper focuses on the performance limitations of all pIacementWe focus primarily on the network latency factor and
algorithms under the constrained setting. We show that evell sider reducing RTT as ouwole optimization condition,

thff bes_t placemenltglvgs al;notgjt nfo pe:jf_(()jrn:anie |mproveme@§(M’ p). From a theoretic standpoint, network latency is
atter mirrors are placed on o Of candidate sites. the most difficult factor to improve since it is limited by the
speed of light. A heavily loaded mirror can always be better
lIl. CONSTRAINED MIRROR PLACEMENT provisioned to meet the load requirements, e.g., by forming a
] server cluster [12] (content providers and CDNs have incentives
We model the Internetas agragh= (V, £), whereV isthe o ensure that there is enough provisioning), and bottleneck
setof nodes and’ C V' x V' the set of links. We definé C V' pandwidth may be upgradedhowever, we cannot “upgrade”
to be the set of candidate hosts where mirrors can be p'“%‘?ency—in the same sense that we do for server load and
MEH the set of mirrors of a particular server ad- V' the  pandwidth—by simply “adding hardware.” From a practical
server’s clients. The objective of the CMP problem is to placgandpoint, transmission control protocol (TCP), the underlying
the set of mirrors on the set of candidate hosts such that SOoMhsport protocol for Web download, has well-known biases
optimization conditiorOC(M, p) (defined in Section I1l-A) is - against connections with long RTTs [13]. Routers drop packets

is satisfied depends on the sizes and topological placements of

the candidate hosts and client sets. We denote the sizes of thghere are certain financial constraints associated with such upgrades, but no
candidate host, mirror, and client set§®$, | M|, and|5|, and  inherent technical constraints.



CRONIN et al: CONSTRAINED MIRROR PLACEMENT ON THE INTERNET 1371

congestion, TCP backs off its transmission window size and | Algorithm 1 (2-approximate min K -center [9])
slowly increases the window again based on successfully
acknowledged transmissions. Connections with longer RTTs,
thus, experience longer congestion recovery periods and lower
throughput [14]. In this paper, we study the use of the max-
imum, 95 percentile, and mean client—mirror disténgethe
optimization conditions, denoted & (M, 1), OC(M, 0.95),

and OC(M, u), respectively. We do not factor in the time itFig. 1. Two-approximate algorithm for thein /' -center problem.
takes for a client to find its closest mirror because it can be

amortized over the number of client-to-server requests, andrpe algorithm receives as input a graph= (V, E) where
any mechanism that improves this transaction can be equgityis the set of nodes = V x V, and the cost of’an edge=
applied to any redirection scheme. (v1, vo) € E, ¢(e), is the cost of the shortest path betwegn

In order to direct clients to the closest mirrors, we need t4,q,,, ‘Al the graph edges are arranged in nondecreasing order
know the distances between each client and all of the m|rrorsbg cost,e: cler) < eles) < -+ < clen), let G = (V, Ei)

the network topology is known, the closest mirror to any C"e’%hereEi = {1, ¢a, ..., ¢;}. Asquare graptof G, G2, is the
can be identified, for example, by computing the shortest paé?aph containing” and edgegu, v) wherever therezis a path
from the client to all mirrors, using Dijkstra’s shortest path alyatweeny andwv in G; of at most two hops, and # v. An
gorithm. When network topology is not known, such as in thﬁdependent setf a graphG' = (V, E) is a subseV’ C V
case of the Internet, client redirection can be done randomly,., that, for alks, v € V7, the edge(u, v) is notin E. An
Jaminet al.[7] showed that closest mirror selection using adisfhdependent set af2 is, thus, a set of nodes if; that are at
tance mapinvariably gives better performance than random sgsaci three hops ap:;rt. We also defimeaximalindependent set

lection. In comparing various mirror placement algorithms, Wgy oc an independent set such that all nodes il — V7 are
require that the distances between candidate sites and cliefits,ost one hop away from nodes}if.

are known (in the case ofiin K -center, all pairs of distances e oytline of thenin K -center algorithm from [9] is shown
must be known), and the closest mirror to a client can be d@-rig. 1. The basic observation is that the cost of the optimal
terministically computed. Obviously, Internet topologynst  sqution to thek -center problem is the cost ef, wherei is
knowna priori. In order to apply the placement algorithms W&he smallest index such that, has a dominating sebf size at
thus, need to first construct a virtual topology of the Internet. Iy osi ¢ This is true since the set of center nodes is a dominating
Section IV-B2, we present a methodology to construct a virtught and it has a dominating set of siZ€, then choosing this

Construct G2, G%,. .., G2,

Compute M; for each G7

Find smallest 7 such that [M;| < K, say j
M; is the set of K centers

hal el M e

topology of the Internet. set to be the centers guarantees that the distance from a node to
) ) o the nearest center is bounded &y The second observation is
B. Mirror Placement Algorithms and Heuristics that a star topology i6; transfers into a clique (full mesh) in

We now present three graph-theoretic algorithms and té - Thus, a maximal independent set of sifein G7 implies
heuristics that we use in placing mirrors. We look at placemetiiat there exists a set éf stars in(7, such that the cost of each
algorithms that can optimize for all three of our performancgdge in it is bounded bge;: the smaller the, the larger the
metrics such as cost-adjustable set cover/agreedy, as well K. The solution to thenin K-center problem is th&} with
asmin K -center that optimizes exclusively f6}C(M, 1). We K stars. Note that this approximation does not always yield a
also look at two heuristics that do not require topological knowdmigue solution.
edge of the network. In the subsequent discussion, in accor\WWe have to make further approximations in applying the
dance to the terminologies used in the literature, we use the temn K -center algorithm to the CMP problem. In the construc-
“center” instead of “mirror.” tion of themin K -center algorithm above, any nodedhmay

1) Min K-Center: Min K-center is a graph-theoretic algo-be selected to act as a “center.” In CMP, only node#{ican
rithm that finds a set of center nodes to minimize the maximuf®st mirrors. Thus, to apply thein K-center algorithm, we
distance between a node and its closest center. Given this d#ft run the algorithm o7 with V- = # U B. Should a node in
nition, themin K -center problem is relevant only in the case oB be selected as a center, we substitute it with a nod¢ ihat
optimization conditior©OC(AM, 1). Themin K -center problem is closest to it. Recall that we assufen B = 0.
is known to be NP-complete [15]; however, a 2-approximate al-2) ¢-Greedy: This algorithm places mirrors on the network
gorithm exists [9]. With the 2-approximate algorithm, the maiteratively in a greedy fashion. First it exhaustively checks each
imum distance between a node and its nearest center is no wéy@ée in to determine the node that best satisfies the optimiza-
than twice the maximum in the optimal case. For ease of reféien condition (see Section l1I-A) for a givel. For/ = 0, after
ence, we include here our summary of the 2-approximate algssigning the first mirror to this node, the algorithm greedily
rithm presented in [7]. looks for the best location for the next mirror, etc., until|a|

mirrors are placed. For any othéwalue, the algorithm allows
for £ steps backtracking: it checks all the possible combinations

2We use the term “client—mirror distance” to mean the distance between C"%ftremovingﬁ of the already placed mirrors and replacing them
and the closest mirror.

3By “distance map” we mean a virtual topology of the Internet constructed
by tracing paths on the Internet. An architecture to build such a distance magA dominating set is a set d nodes such that every € V is either inD
was proposed in [7]. or has a neighbor iD.
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Algorithm 2 (£-Greedy [16]) Algorithm 4 (cost-adjustable gsc(#, B, x))
. §=0
1 if (M| <o) 2. VheH
2. Choose among all sets M’ with | M| = |M)] 3. sort B based on client-candidate distance
3 the set M” with minimal OC(M", p) 4., s=0
4 return set M"” 5. VbeB
5. end 6. s=5+b5=8+s
6. Set M’ to be an arbitrary set of size ¢ 7. Vs €S
7. while ((M'| < |IM]) 8. cost(s)=OC(M,p)+«
8.  Among all sets X of £ elements in M’ 9. M = gsc(B, S, cost(S))
9. and among all sets Y of £ + 1 elements
10. inV — M’ + X, choose the sets X, ¥ Fig. 4. Cost-adjustable greedy set-cover algorithm.
It. with minimal OC(M' — X +Y,p)
122 M=M-X+Y
13. end deletion of an element (the second operand) from an existing
14. return set M’ set, and " the union of two sets.
Ideally, we would apply the greedy set cover to the client
Fig. 2. Algorithm¢-greedy sets and obtain a set cover which is a collection of subsets, and
we can place a mirror in or near each such subset. However,
Algorithm 3 (gsc(U, S, cost(S))) under constrained mirror placement, we cannot directly apply
the greedy set-cover algorithm for two reasons. First, we do not
.C=0,X=90 have the collection of subsetS, Second, the greedy set-cover
2.vVse S algorithm only produces the “minimum” set cover with a fixed
3. a(s) =t number of mirrors, without allowing us the same flexibility of
4. While (C #U) o placing a variable number of mirrors as in tinén K -center or
5 select s such that a(s) is minimized. ¢-greedy algorithm.
g' $S=€ g UsX=X+s585=5-s _In order to apply the greedy se_t cover proble_m to constrained
g als) = 22t mirror placement, we need to deﬂng the co!lectlﬁmf subsets
9. X is the set cover | of clients, and the costpst(s), associated with each subset. We

obtain the subsets of clients by constructing sets of clients cen-
tered at each candidate site. For each candidate site, we order
the clients based on their distances from the candidate site. We
with £ 4+ 1 new mirrors. That is{ of the already placed mirrors thgn add one client at a time to f°“.’“ a separate sub.set. One can
nk of these subsets as concentric circles, each with one more

fr?;atljlgor::?hvrid around to optimize the gain. Fig. 2 summanzc |éent added to the immediately preceding subset. The cost of

3) Cost-Adjustable Set Coveifhe setup of the set-covereach such subset is simply the performance metd¢M, p) .
roblem is as follows: given several subsets, each coverin of Ihe subset. The use GIC(M, p) as the cost of a subset is
P! - gIvel . ' Y Shsistent with the objective of cost-effectiveness since we want
different set of elements, find the minimum number of the

. 16 minimize the performance metric for as many clients as pos-
subsets such that all elements are included or “covered.” Si P y P

) b | ith oth , b hle. A small performance metric along with a large set cardi-
a set’'s members may overlap with other sets’ members, so ity makes a set cost-effective.

elements may be covered by several sets. In our case, the €lgg e context of CMP, we need to examine the effect of dif-
ments are the clients of a Web server. This problem is NP-CORgzen nymbers of mirrors. Since the greedy algorithm can only
plete [15]. Vazirani [9] gives a greedy approximate solution tu,rm the “minimum” number of subsets, we need to introduce
the minimum set-cover problem. We now describe this greegdy,arameter to the algorithm that allows us to tune the algorithm
algorithm and explain how we apply it to the CMP problem. 4 hroduce the placement of any desired number of mirrors. We
In the greedy set-cover algorithm, each ses associated gpserve that the greedy algorithm uses the cost-effectiveness of
with a “cost-effectiveness &(s), which is the average cost ofgach set to decide which sets are included in the set cover; there-
the set. The greedy algorithm selects the most cost-effective ggb we can vary the cost-effectiveness of each set to favor set
iteratively until all elements are covered. The “COSt'effeCtiVQ:'overs of smaller or |arger sizes than the “minimum"’ hence pro-
ness” of a set is computed by dividing the cost associated wiflicing the placement of a larger or smaller number of mirrors.
the setcost(s) by the number of not-already-covered membeRge introduce an additive parametetto the set costgost(s),
of the set. Recall that a set's members may overlap with othghich we can use to vary the set costs. By increasinge
sets’ members and, therefore, some elements may be coveretke larger client sets more attractive since the cost-effective-
by several sets. Fig. 3 shows the outline of the greedy set-coress, which iscost(s) divided by the number of elements in
algorithm. Given a universé/, of elements and a collection of s, increases more for client sets of smaller sizes. By the same
subsetsg$, the algorithm finds the subsels to coverl by se- argument, we can make smaller client sets more attractive by
lecting the set with the minimurm(s) at each iteration. In the decreasing:. We call this variant of the set cover problem the
description of the algorithm, we use-" to indicate the addition cost-adjustable set cover problem. We show the outline of the
of an element (the second operand) to an existing s€ttlie cost-adjustable set cover in Fig. 4.

Fig. 3. Greedy set-cover algorithm.
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* Random Placement: Under random placement, each can-
didate host has a uniform probability of hosting a mirror.

C. Performance Analysis

In this section, we present an analysis of the performance of
: unconstrained mirror placement to illustrate what could be ex-
: pected of mirror placement in the ideal setting. In particular, the
; analysis shows that, under optimal mirror placement, there is a
E diminishing return in reducing client—mirror distafosith re-
Is) sy |8 x H| Is| spect to the_ number of mirrors, which agrees with our intui_tion.
The analysis also shows that the ratio of expected maximum
client—mirror distance between optimal and random placement
increases logarithmically; however, under random placement,
most clients are still close enough to their closest mirrors, and
only a small portion of the clients are actually very “far” from

We now discuss how: affects the overall performance oftheir closest mirrors as the number of mirrors increases. This
the cost-adjustable greedy set-cover algorithm. In particular, fegther illustrates the diminishing return in using the optimal
study the relationship betweenandc, the cost-effectiveness, placement as the number of mirrors increases.
and show how the relationship affects the solution to the cost-ad-To abstract the unconstrained mirror placement problem, we
justable greedy algorithm. Fig. 5 shows a sample curve of costn picture the network as a continuous plane on which clients
effectivenessgy, versus the client subset si3e|. We note that can be uniformly spread over the infinitely many poirty. (Ve
the shape of such a curve will generally be concave becawgnt to place a given number of mirrors such that the maximum
o is the sum of two monotonic functions of different trendsdistance of any client to its closest mirror is minimized. This
The first function/|s|, is a monotonically decreasing functionmeasure of quality translates into finding a placement such that
with respect tgs|, and the second functio®C(AM, p)/|s|, is the radius of the largest circle one can draw in the plane that
a monotonically nondecreasing function with respedsfdor  does not include any mirror is minimized.
all OC(M, p)s because marginal increase (when a new clientSolving this problem analytically is cumbersome, instead we
is included) inOC(M, p) is nonnegative. The sum of the twostudy the same problem in one dimension only. We can trans-
functions may not be monotonic with respectdpat all times, form the problem into one dimension by distributing the clients
depending on the magnitude«fBy increasings, the firstfunc-  uniformly on the segment (0, 1) and placing mirrors on the same
tion r/|s| will increase smaller setsis more than larger sets,segment. Clearly, the optimal allocation of mirrors given the
thus, making larger sets more attractive to the greedy algorithmaximum distance criterion is to separate the mirrors by the
and decreasing makes smaller sets more attractive. same distance apart. Thus, if one needs to plaeel mirrors,

The parameter: introduces concave instances in the “ the optimal location is at locatiorign, 1 < ¢ < n — 1, and the
versus|s|” curve, which make subsets of rather different sizesaximum distance from any client to its closest mirrot j%.6
appear to have identical or similar costs. A horizontal linet is clear that there is diminishing return in client—mirror dis-
cutting across the curve would intersect the Versus|s|” tance as the number of mirrors increases. We can also see that
curve at two different points, which correspond to two subsetéach mirror site will have approximately the same number of
of different sizes. This does not present a problem since neitleients if each client is directed to its closest mirror.
intersection would have the minimum. Thus, we use this The optimal placement could be difficult to achieve in real
parameter to “force” the algorithm to produce the set withlife. Hence, we would like to quantify how good random place-
sizek. If we get a smaller-than-expected set cover, we increasent is compared with the optimal placement in terms of the ex-
%, and in case of a large set cover (with respecjpwe pected maximum client-mirror distance. Under random place-
decrease:. We stop the algorithm when we get the desireghent,n — 1 points (mirrors) are uniformly distributed in the in-
set-cover size, or if getting the exact cover size is not possibierval (0, 1). Now, le,,) be the random variable representing
the largest set-cover size that is smaller than the desired valtlee longest segment lengthy; , the density function, angly,, |

4) Heuristics: In addition to the above placement algothe cumulative distribution function. Using known results from
rithms, we also look at the following heuristics that do nadrder statistics [17, Sec. 5.4], we have
require knowledge of the network topology.

- e

Fig. 5. Ideal cost-effectiveness versus set size.

n e
. Transit Node: The outdegree of a node is the number * Yoo > v} = Z (=1) 1<:>(1 —ay)" " (1)
of other nodes it is connected to. Assuming that nodes 1=iy>0,i21
with the highest outdegrees can reach more nodes with
lower latencies, we place mirrors on candidate hosts in
descending order of outdegree. We call this ttansit 5We use the term client-mirror distance to mean the distance between client

node heuristic under the assumption that nodes in tf8d the closestmirror. _ ,
6The actual optimal locations for mirrors should be at1/2n) + (i/n),

cpre of the Internet that act as transit points will have t%t the importance of this boundary condition diminishes with-or ease of
highest outdegrees. analysis, we consider only the limit case withgoing to infinity.

(4
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Expected maximum segment length on the unit interval. Fig. 8. Ratio of the random placement over the optimal placement.
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Fig. 8 shows the ratio of expected maximum segment length
0.1 ) ) between the random placement and the optimal for both the
. simulated data and the calculated data. Surprisingly, it seems
0005 that the ratio increases logarithmically with the number of mir-
o rors (we saw before that the absolute difference diminishes). To
e ol checkthis we fitted the exponent of the ratio with the best (mean
number of mirrors number of mirrors square) linear function of the form+ 3n. The resulting fitted
curve is 2.675+ 1.78. Plotting the fit for the expected max-
imum length in Fig. 6]n(2.675+ 1.78)/n, we could not dis-
uish it from the calculated one in all but the microscopic
cale.
One might be tempted to discount random placement algo-

expected maximum distance

expected maximum distance
=

Fig. 7. Expected maximum segment length on the unit interval (details).

The expected value of the maximum segment between t\%g
neighboring points is, thus, given by

rithm based on the above result. However, we show next that
E Y] = / Fay Wy dy random placement under the unconstrained regime studied here
1 is really not all that bad by examining what portion of the client
_ / d (FY du / Fy population is within a “good distance” from its closest mirror
dy o ‘”’ given random placement. In the optimal placement, a client is

. at mostl /2n away from its closest mirror. In the case of random
= Iy, (y)y|0 - / Pr {Y(n) < y} dy placement, we are interested in computing the portion of clients
0 that are farther away from their closest mirror by more than a

B ! PrlY, P factor of¢ from optimal, i.e., by more thaty2n. This is done
= _/0 [1=Pr{Y() > y}] dy by looking at the probability that, for a random point, no mirror
L is placed at a segment of lengtm around it (a one dimensional
- / Pr{Yy >y} dy ball of radiust/2n), which is given by
0
- Z oy <n) (1 — i) | Pr{distance> ¢/2n} = (1 — t/n)". 2
L —ig50.i>1 i in g As n grows, we can write

_ zn:(—l)i*l <n> i lim Pr{distance> #/2n} = lim (1 —¢/n)" =c'. (3)

< /)t

=t Thus, as the number of mirrors grows, a fixed portion of the

Fig. 6 depicts the computed expected maximum segmetients are away by a certain stretch from optimal. Specifically,
length together with numerical simulation results. Each poitf ¢ of the clients are at distance farther than the worst case of
in the simulation represents the mean of 1000 experimentsilie optimal distance. Fig. 9 shows the result of an experiment
each,n — 1 points are randomly placed on the unit interval witkve conducted to test the above analysis. As one can see, the
uniform probability and the maximum segment is computeg@robability converges te~—* for n values well below 100 (the
The confidence interval is negligible in most cases. It is cleimit values are plotted in Fig. 9 as small symbols.at 900).
that the simulation and the numerical calculation are almostThe above analysis shows that, under optimal placement,
identical. The detailed enlargement in Fig. 7 (also in Fig. 8he reduction in client—mirror distance has diminishing return
shows that some outliers are observable in different scalesth a well-defined “knee” as the number of mirrors increases.
There is a clear knee around = 60 after which the return When clients are uniformly distributed, the optimal placement
from adding additional mirrors diminishes. Comparing thean achieve good load balancing while directing clients to the
segment length to the optimal length shows that for a largésest mirrors. The analysis also shows that even though the
range,n < 150, the difference is substantial. optimal placement increasingly outperforms random placement
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an AS into a single unique request from the cache proxy, ef-
fectively making each AS look like a single client node. From
clients’ standpoint, mirrors servers inside large ASs are prefer-
able to mirrors inside smaller ASs due to better connectivity and
bandwidth provisioning inside large ASs. By modeling each AS
as a node actually makes mirrors in different ASs appear equally
o — good, therefore, offering more available mirrors to choose from
for each client than in reality. In other words, clients on the In-
e ternet are likely to select the closest mirrors from fewer candi-
G dates sites than in our simulations. Overall, using the AS-level
topology model is a good abstraction for client requests while
Fig. 9. Probability a client under random placement is farther than a stretch@Pr€Senting a more optimistic mirroring setup than in the In-
of the distance bound in the optimal placement. ternet.
The AS topologies used in our simulations are generated
in terms of expected maximum client—mirror distance as trl\JeSing the Inet topology generator [18]. For this study, we gen-

; . . . erate several random topologies with 3037 nodes éaelch
number of mirrors increases, the worst case maximum distances

. %enerated network is a connected graph on a plane, with each
occur very rarely under random placement. We will refer t . o
these results in interpreting our empirical data in Section V_Anode representing an AS; a link between two nodes represents
AS connectivity, and its Euclidean distance the latency between
the two connected nodes.
IV. PERFORMANCEEVALUATION In each simulation, we first select 50 nodes to act as candi-

. . L date hosts. We experiment with two candidate host selection
Our goal in conducting performance evaluation is to study ﬂ}ﬁ

. R ’ “nethods. We simulate brute-force candidate placement with
gffect of changind M| and’P(M) on the opt|m_|zat|on condi- uniform random selection, whereby each node has an equal
tion OC(M, p). For our performance evaluation, we condu

) : ; _ Probability of being selected. We also simulate a more intel-
both simulations on random topologies and experiments usif

Int ¢ AS to0ol E h set of . ‘ igent placement on nodes with largest outdegrees, which are
nterne opology. Tor €ach Set of experiments, we vary ed'enerally perceived to be close to the core of the Internet. After
ther |[M| or P(M) while holding all the other variables con

tant. W d ib imulati ¢ q S l}e candidate hosts are selected, we randomly, with uniform
stant. We now describe our simuiation S€tup and scenarios, obability, select 1000 of the remaining nodes to act as clients.
lowed by a description of our Internet experiment setup.

For each mirror placement algorithm, we comp&(AM, 1),
_ _ OC(M, 0.95 and OC(M, 1). We compute eaclC(M, p)
A. Simulation Setup for | M| ranging from 2 to 50. Client redirection is done by
The most accurate form of simulation for CMP would be ofither redirection to the mirror with the smallest latency or
the host level, where individual servers and clients are repf@ndomly. We present the simulation results in Section V.
sented as nodes in a network. There are two main difficulties )
with this approach: the computational overhead of large netwdpk INtérnet Experiments
and the representation of host-level topology capturing proper-In addition to studying CMP on generated topologies, we
ties of the Internet. We are not aware of any current topologyso evaluate it with trace-based experiments on the Internet.
generator that generates a network of a reasonable (thousadngsarticular, we study the effect of optimizing the number and
of nodes) size with Internet like characteristics. Instead of simplacement of mirrors on client download time when CMP is ap-
ulating at the host level, we decide to simulate at the AS levgljed to clients extracted from several Web server logs. We con-
which has several advantages. Instead of simulating hundreldsted two experiments, the first one in December 1999 and
of thousands of hosts, we could represent the AS-level topolaipe second in November 2000. The first experiment is based on
with just a few thousands nodes, thus, cutting down the comell Labs Web server log, and the second experiment is based
tation cost and make the simulation feasible. Second, since@r\Web server logs from nonprofit organizations Amnesty Inter-
AS is under a single administration, a caching solution can bational and the Apache Software Foundation, and commercial
employed within the AS to avoid redundant client requests. businesses Sun Microsystems and Marimba. The use of these
the best case, only a single cache server needs to make regsitss give our experiments a variety of client bases.
on behalf of all clients inside the AS [3], effectively merging 1) Candidate Host SetWe do not have access to 50
all the real clients into a single caching client. There are som@achines distributed across the Internet that can act as can-
issues that should be examined with using the AS-level topoltidate hosts. Given our optimization condition of minimizing
gies. Many ASs on the Internet are diverse in geographic lodhe latency experienced by clients, we observe that for the
tion and span different continents, while others are small apdrpose of performance evaluation, CMP can be emulated on
confined to a single geographic location. From mirrors’ stanthe Internet as long as we can determine the RTTs between
point, there are more potential clients inside large ASs, so rdpt| sites on the Internet and our client sets. We use multiple

resenting a large AS as a single node masks many potential . , _ _
This was the size of the Internetin November 1997; our Internet experiments

clients. However, VYe have already stated t_hat having a C?Qfl‘)ﬁ':h December 1999 and November 2000 (not included in this paper) indicate
proxy would essentially reduce redundant client requests withiiat observations made in this paper also apply to larger networks.

200 300 400 500 00 700 800 00 1000
umber of murors
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TABLE | TABLE 1l
LOCATIONS OF THE89 TRACEROUTE GATEWAYS (MTGS) HOST STATISTICS FROM INTERNET EXPERIMENT

Location Number of MTGs | Percentage —_— S .F;fS' E;‘JP?ﬁme“‘ = o .

. € 0g 1me Feno nique tve easure

North America 58 65.2 IPs IPs iPs, 5|
Western Europe 15 16.8 Bell Labs | 11/7-11/1498 | 10,115 4,080 3,130

Rest of Europe 6 6.7 Second Experiment

Australia 6 6.7 Web Log | Time Period | Unique | Reachable | Measured

Israel 1 1.1 IPs IPs IPs, |B|
1 1.1 Apache 10/1-11/30/97 | 274,843 51,227 25,635
Korea : Sun 10/1-10/31/97 | 219,528 39,304 19,914
Mexico 1 L1 Marimba | 12/1-12/31/97 | 26,566 4,078 2,173
S. Africa 1 1.1 Amnesty 10/1-11/30/97 5,436 1,268 681

traceroute gateways (MTGs) [19] to serve as our candiddb®kup on the Amnesty International clients to resolve their IP
host sites. Traceroute gateways are Web servers made availabldresses. Only 2% of the domain name system (DNS) lookups
to the public for measurement purposes by volunteers arouaded. We present the number of unique clients extracted from
the world. Given a host name or address, a traceroute gatewafyof the logs in Table II.
runstraceroute  to that host and reports the result back to Due to the dynamic nature of the Internet, some IP addresses
the user. In our experiments, we only need the RTTs betweiarthe log file may no longer exist. Furthermore, dial-up connec-
MTGs and clients, so using the MTGs is sufficient. tions with short lifetimes also prevent clients from being reached

Table | lists the geographical locations of the 89 tracerouby MTGs post facto Unreachable clients causaceroute
gateways used in the first experiment. The table reflects a réa-wait until a timeout occurs, which could take up to 450 s (5
sonable diversity of the geographic locations of the tracerouéprobex 3 probes/hop< 30 hops). Not only do unreachable IPs
gateways. Unfortunately, by the time we conducted our secogieatly lengthen the experiment, but they also place extra strain
experiment, only 50 of the 89 traceroute gateways were still opa the MTGs with prolonged connections. Since we do not
erational. have control over the MTGs and cannot change tinager-

In our experiments, we apply th&ransit heuristic by oute s timeout behavior, we attempt to send only “live” IPs to
placing mirrors on candidate hosts in descending order thie MTGs.
outdegrees. Since we do not know the outdegrees of thdn our first experiment with the Bell Labs clients, we use a
traceroute gateways, we associate with each traceroute gateWagP probe” to test for “live” IPs. With the “TCP probe,” we
the outdegree of the AS in which it is located. We first mappen a TCP connection to port 80 (HTTP) of each IP address,
the IP address of a traceroute gateway to its AS using a t@wld look for either a TCP SYN-ACK or RST reply from the
called prtraceroute , which is part of the routing arbiter IP. Either of these replies indicate the IP is “live,” regardless of
project toolkit (www.irrd.net). Then, to determine the ASsvhether anything is listening on port 80 to accept the connec-
outdegree, we use the AS summary information available tan. If we receive no reply to the connection attempt, then the
National Laboratory for Applied Network Research (NLANRhost is not reachable by the probe. We do this probe from two
(moat.nlanr.net/AS/), which lists the outdegree of each ASifferent sites (one in Michigan and the other in California), and
If the destination traceroute gateway’s AS has a single cosliminate IPs that are not reachable by at least one of the two
nection to the rest of the Internet, we assign it the outdegrpmbes. Even after this check for live IPs, only 63% of the IPs
of its closest upstream AS with outdegree larger than onehich passed our test were able to be reached by the MTGs.
The motivation here is to differentiate singly connected ASs For our second experiment, we take a different approach to
that have well-connected parents and those that have poatitermining “live” IPs. In the year between experiments, many
connected parents. Our intuition is that CMP can performetworks have become much more suspicious of unsolicited
better by selecting well-connected degree-one ASs to hastffic. To minimize the likelihood that our measurements are
mirrors than fringe ASs that have higher degrees. On the ottmisconceived as malicious, we add another layer of filtering to
hand, the performance may be worse if the latencies betwemn list of IPs. We use a standard “ICMP echo request” as the
the singly connected ASs and their well-connected parents &rst check on each IP. Many security conscious networks block
large. From examining the data, we find that the latter caseti®se requests, and we choose to interpret a failed request as a
not likely. However, we are not able to quantify the probabilitgign that they are unwilling to be measured. To each host, we
of it occuring given the limited granularity of the data. send three packets spaced five seconds apart, with a five second

2) Client Set: The client sets in our experiments are the IBmeout on each packet. If any of the probes successfully com-
addresses extracted from Web server logs of Bell Labs, Amneptgtes, we consider the host measurable. Otherwise, we remove
International, Apache Software Foundation, Sun Microsystentlke host from our list of unique IPs. We then send these IPs to
and Marimba Inc. All of the logs except the Amnesty InternaVITGs totraceroute ; despite being reachable to our ICMP
tional log store the client addresses as dotted decimal IPs. Fhebes, only about 50% of these IPs are reachable by the MTGs.
Amnesty International log stores the clients’ fully qualified doTo prevent these unreachable IPs from holding up the MTGs,
main names (FQDN) instead. Since we determine unique cliemts install an additional filtering step. Right before sending an
by comparing IP addresses, it is necessary to perform DNSto an MTG, we first sent another ICMP echo packet to the
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reachable, it is placed on a retry list to be tried again later; if a S e o R T ey ai |

retried IP is still not reachable, it is permanently removed. The
statistics on hosts that MTGs were ablettaceroute are (b)
presented in Table Il. We consider an IP address MTG-reach- o _ _ _

able when draceroute from anyMTG is successful. Fig. 11. Minimizing maximum RTTs between clients and closest mirrors.

. . (@) Random candidate placements. (b) Outdegree-based candidate placements.
The virtual network on which we conduct our CMP experi-

ment_s, thus, consists of 89 (later 50) traceroute_z gateways as gl e on 50 randomly selected candidate hosts first. We then
candidate hosts, and the IP addresses found in the Web Ser¥Bkat everything on 50 candidate hosts selected based on de-

logs as our clients. The “edges” of these virtual network cons asing outdegrees, except that we do not simulate the 1-greedy
of RTT measurements from each traceroute gateway to all of d 2-greedy algorithms as they do not show marked improve-
other traceroute gateways and to all of the clients. For iIIustratiyr(?

Fig. 10 sh le virtual K o fnt over the 0-greedy case in the former scenarios. Hence in
purposes, Fig. 10 shows a sample virtual network consisting,gt, e ran 7350 simulations on randomly selected candidate

three traceroute gateways and four clients. The traceroute g?ltgéts, and 6630 simulations on candidate selection based on out-
ways measure RTTs between each other and RTTs to the f

clients. The RTT measurements between traceroute gateway; or the first Internet-based experiment, we repeat the above

are bidirectionql, Wh"e those.be'tween 'tracerqute gateways as’&%nario with the 89 traceroute gateways acting as candidate
clients are unidirectional, as indicated in the figure. hosts. Mirror set sizes range from 3 to 89, stepping by 3 up to 45,
and stepping by 5 afterwards. Since there is only one virtual net-
work, we do not repeat the set of simulations ten times; we do,
Recall from Section IV-A that in all of our simulations wehowever, still repeat the experiment ten times for each mirror
use a network of 3037 nodes, of whifH| = 50 are selected set size when the mirror placement algorithm used is random
as candidate hosts. The choice of which host is selected toft@cement. This means we run 1014 experiments on the virtual
a candidate host is determined either randomly with uniforretwork. In the second experiment, the mirror set sizes range
probability for all nodes, or by the node outdegree. The client §e@m 2 to 50 with an increment of 2. Again, we perform ten
consists of 1000 nodes randomly selected, with uniform pro@xperiments for random mirror placement as in the first exper-
ability, from the remaining nodes. Recall also that we defirigent. Both sets of experiments show qualitatively similar re-
three optimization conditions9C(M, 1), OC(M, 0.95), and sults, hence, for ease of exposition, we discuss only the results
OC(M, 1i). For each optimization condition, we run a set o6f the first experiment in the rest of this paper. Results from the
simulations. In each set of simulation, we first pickt|, the second experiment are presented in the Appendix.
number of mirrors. For the given number of mirrors, we run o -
one simulation for each mirror placement algoritigA): A Optimization Conditior®OC(M, p)
min K -center, 0-greedy, 1-greedy, 2-greedy, cost-adjustable se¥We first consider the optimization conditio®@C(M, p).
cover, and Transit. Since random placement of mirrors gives difigs. 11(a), (b), and 12(a) show the maximum values of the
ferent results based on the sites selected, for random placemegnt—mirror RTTs forOC(AM, 1). The z axis of each figure
we run ten simulations for a given mirror set size and compuists the number of mirrors, and theaxis the maximum value
the mean of the observe&dC (M, p). Then, we repeat all simu- of the RTTs between clients and their closest mirrors. The
lations for the nextM|. In our simulations, we experiment with.z axes for the simulation results range from 0 to 50, while
| M| ranging from 2 to 50, stepping by 2 up to 26, and steppirtbose for Internet experiments range from 0 to 90. Flexis
by 5 afterwards. We then repeat each set of simulations on terthe various figures have different ranges. In the simulation
different Inet generated networks of 3037 nodes each. We do theults, the “distance” between two nodes is the Euclidean

V. EXPERIMENT RESULTS
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5000

i selected for mirror placement. This problem can be exacerbated
Min K % ) . . )
4500 |- Sy TR when the number of candidate sites is small relative to the

client population.
Recall that solution to themin K-center problem is

4000 -

Max RTT between Clients and Closest-Mirrors

oo : applicable only in the case of optimization condition
\ OC(M, 1). Hence, for optimization condition®C(M, )

% Lt - and OC(M, 0.95), we consider only thé-greedy, in partic-

B e i ular O-greedy, and the cost-adjustable set-cover algorithms.

Nomber of Mirors Fig. 12(b) shows the Internet experiment result for all place-
@) ment algorithms whe®C(M, 0.95) is used. We observe that

50 P —— 0-greedy outperforms the cost-adjustable set cover even though

iR both can optimize foK)C(AM, 0.95). Our explanation is that

500 /x 0-Greedy -3 |

the two greedy algorithms are actually quite similar except
that cost-adjustable set cover optimizes for the average of the
OC(M, p) by dividing the OC(M, p) of a client set by the
cardinality of the set. The division of the actual optimization
o0 | : condition causes cost-adjustable set cover to optimize for a
different objective even though it is qualitatively consistent
N with the optimization condition®C(A, p). Hence, we will

®) only consider 0-greedy algorithm for optimization conditions,
Fig. 12. Internet experiments based on Bell Labs’ clients. (a) Minimizinoc(-M’ 0.99 andOC(M, p). ; ; ; ;
mg;(imljm RTTs betvF\)/een clients and closest mirrors. (b)- Minimizing gg Fig. 13 ShOWSthQ mean_and 95 percentile of client-mirror dis-
percentile RTTs between clients and closest mirrors. tances when candidate sites are selected based on outdegrees,
and mirror placement is by the 0-greedy algorithm. Both the

distance between them on the simulated plane. In the Interggtpercem'le and mean cI|“ent—m"|rror.graphs .ShOW diminishing
return and a well-defined “knee,” which confirms the theoret-

experiments, distance is in milliseconds. The numbers foerI si d intuition. We ob imil f
all placement algorithms, except for random placement, dg analysis and ourintuition. We Observe very similar peror-
nce between the two curves, reflectidg (M, 0.95 and

averaged over simulations on ten random topologies to obtgj NV .. d :
g polod (M, p) optimization conditions, and attribute this to the po-

the mean, the maximum, and minimum. For clarity, we only ~" . . !
tially long, but nonetheless not heavy tail of the client—mirror

show the mean values in the figures, but we note that t o DT )
maximum and minimum values are typically within 20% o T distribution in our setups (which means that the 95 per-
gntile is not that far from the mean). In the remainder of this

the mean. Recall that for each of the ten random topologié: : N .
we simulate random placement ofmirrors ten times. From paper, we us€)C(AM, 0.95) as our optimization condition.
these ten random placements, we obtain the mean client—-mirror

RTTs. For random placement, the figures show the meansf Effect off M| and P(M) on OC(M, p)

T b o oot 1 P05 120) 2 vl as 14, and () show e oserved 5

. A . 7. percentile RTTs between clients and their closest mirrors when
yields very little improvement as the number of mirrors 'n'OC(M 0.95) is used. Note that in most cases, especially when
creases, both in simulations and actual Internet experiments 0-dreédy algoritﬁm for mirror placement s used. there is
The results from our remaining Internet experiments a '

ted in the A di d istent with the ob ittle improvement in 95 percentile RTT beyond ten mirrors.
presented in the Abpendix and are consistent wi €0 Ser'Oneimportantobservation with regard®o.M) is that place-
vations here. Under constrained mirror placement, the dista

: . ! . &ntis very important when the number of mirrors is small. In
between clients and mirrors cannot be improved increment

h b d the f . b . ¥ cases, whehM| is small, there is a significant difference in
much beyond the first ten mirrors because mirrors cannot B6served latency between using the greedy placement algorithm

placed progressively closer to the clients. Both candidate sif&y random placement. Wheén() is uniform, nonrandom
placement and mirror placement can contribute to this probleljﬁ(M) outperforms random placement. Even wHB(i) is

First, the optimal mirror placement is very “Iocation-sensitive’r’lonrandom, as in the case of outdegree-based candidate selec-
in that it has very specific requirements on where the candidgjgn using greedy placement improv@g(M, 0.95) by 10%

sites should be, i.e., separated by an equal distance. Also, {809 as shown in Fig. 14 (note the difference-axis ranges).
Optlmal solutions for different mirror value have Very little We conclude that increasing the number of mirrors beyond a
overlap so it is impossible for ald(n?) optimal locations (at small portion of the candidate sites (ten, in our examples) does
{1/2}, {1/3, 2/3}, {1/4, 1/2, 3/4}, ... in the case of the mirror not necessarily improve client to closest mirror latency. Further-
placement on the [0, 1] line segment studied in Section Ill-G)ore, careful placement of mirrors on a small number of can-
to be occupied if only» candidate sites are selected. Secondidate sites can provide the same performance gain as placing
adding more mirrors cannot improve the minimum distanagirrors on all candidate sites. These results suggest that candi-
between a client and its closest candidate site (therefore thete site placement can be just as important and possibly more
client's closest mirror) further, once the candidate site importantthan mirror placementitself. We note that, in practice,

95%-tile RTT between Clients and Closest-Mirrors

300
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C. Mirror Load Distribution (a) Simulation results. (b) Bell Labs experiment.

We now show that usin@C(M, 0.95) as the optimization
condition, mirror load distribution is not improved much eveare chosen based on decreasing outdegrees. In all cases, the op-
with larger numbers of mirrors. Fig. 15 plots client distributionimization condition i<2C (M, 0.95), and the mirror placement
among mirrors when the number of mirrors is increased froma2gorithm is 0-greedy. In the simulation, only a small number of
to 50 (3to 89, inthe Internet experiment). Thaxis is the popu- clients (less than 1% of mirrors) get redistributed with each ad-
larity rank of each mirror, and theaxis is the number of clients ditional mirror once the number of mirrors is above 15. Client
redirected to a particular mirror, with the most popular one getdistribution is also infrequent in our Internet experiments.
ting the most redirections. Each curve in the graphs representégain, we point to our analysis in Section 1lI-C, where
a specific mirror set size. For the simulations, the candidate sets showed that the optimal placement produces good load
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Fig. 17. 95 percentile RTT optimization under different redirection schemes 3
in Bell Labs experiment. § 4000 |-
. . . . F 3500 1
balancing among mirrors as the number of mirrors increases. §
We have already shown that it is difficult to reproduce the ideal E aoc0 |
setting when mirror placement is constrained so perhaps it is I s o e e e S e |
not surprising that the ability to load-balance is also lost. N"mb-(w')wm'-
C
D. Effect of|H| on OC(M, p) T ' S
Set Cover —8—
Thus far in simulation, we have shown that given 50 candi- E““"
date sites, we observe rapid diminishing return as more mir- ]
rors are placed on candidate sites. It is important to validate g‘“"
this result when more candidate sites are available. We repeat Joe
the simulations outlined in Section IV-A except now instead of E
selecting only 50 candidate sites, we select 100 and 200 can- ! e
didates sites based on outdegree. We perform the 95 percentile

optimization on RTTs between clients and closest mirrors using roe s
the 0-greedy algorithm. Fig. 16 shows the results of having 100
and 200 .Ca.ndldate sites along with the Cajse of 5_0 Canqldat? Sllt-"r:gs."l& Minimizing maximum RTTs between clients and closest mirrors.
Thez axis is the percentage of the candidate sites with mirrogg Apache. (b) Amnesty International. (c) Sun. (d) Marimba.
placed, and theg axis is the 95 percentile RTT between clients
and closest servers. Again, we average our results over thetign these ten, to a client must be estimated by doing triangu-
Inet topologies as stated before. We make two observationsigson on the distances measured by these ten traceroute gate-
expected, having more candidates improves performance—{f#s only. This simulates the case where the underlying net-
95 percentile RTT can be further improved with additional cafvork topology is not known (such is the case with the Internet),
didate sites; the rapid diminishing return is observed under ald a “distance map” of the underlying topology must be es-
three scenarios. We believe our conclusion that a careful plagghated by placing measurement boxes on the network. It was
ment algorithm is required to place mirrors on a small fractiogshown by simulations in [7] that when the underlying network
of candidate sites, holds for larger numbers of candidate siteypology is not known, nearest mirror redirection using some
] ] form of distance map outperforms random redirection. We now

E. Effect of Redirection Methods show that similar results can also be observed on the Internet.

Up to now, we have assumed that client—mirror distances clig. 17 shows the 95 percentile of client—mirror RTTs under
be directly measured. In this section, we consider the case wh&@&( M, 0.95 when distances are known, with random redi-
only ten of the highest outdegree traceroute gateways are ablesittion, and with redirection using a distance map. The results
performtraceroute . In this situation, distances among thevere obtained from Internet-based experiments, when mirrors
other traceroute gateways and from a traceroute gateway, othier placed using the 0-greedy algorithm.
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Fig. 19. Minimizing 95 percentile RTTs between clients and closest mirrors. (d)

(a) Apache. (b) Amnesty International. (c) Sun. (d) Marimba.
Fig. 20. Client population distribution under 95 percentile RTT optimization.
(a) Apache. (b) Amnesty International. (c) Sun. (d) Marimba.

VI. CONCLUSION ) .
solution and the subsequent performance benefits. Even under

In this paper, we take a detailed look at the problem of placiihe more elaborate placement schemes, simply increasing the
mirrors of Internet content on a restricted set of hosts. We introumber of mirrors yields very little performance improvement
duce a formal model to study the constrained mirror placemehgyond that of a relative small number of mirrors.

Using both simulation and real Internet delay data, we examine a

number of placement and redirection algorithms for placing var-

ious numbers of mirrors and their effects on client response time APPENDIX

and mirror load distribution. We determine that thgreedy al-

gorithm gives the best performance in CMP. We observe thatWe present in this appendix results from our second Internet
there is a rapidly diminishing return to placing more mirrors iexperiment described in Section V. Fig. 18 corresponds to
terms of both client latency and server load balancing. We hiyig. 12(a), Fig. 19 corresponds to Fig. 12(b), and Fig. 20
pothesize that the presence of the locality constraint has elirnérresponds to Fig. 15. Please see our discussions of the corre-
nated some of the necessary conditions for obtaining the optirspbnding figures on how to read and interpret these figures.
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